aboutsummaryrefslogtreecommitdiff
path: root/drivers/gpu/arm/midgard/mali_kbase_mem_alloc_carveout.c
blob: 8fa93b91430224517efa224d16293ab2d697837c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/*
 *
 * (C) COPYRIGHT ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU licence.
 *
 * A copy of the licence is included with the program, and can also be obtained
 * from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA  02110-1301, USA.
 *
 */



/**
 * @file mali_kbase_mem.c
 * Base kernel memory APIs
 */
#include <mali_kbase.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/mempool.h>
#include <linux/mm.h>
#include <linux/atomic.h>
#include <linux/debugfs.h>
#include <linux/memblock.h>
#include <linux/seq_file.h>
#include <linux/version.h>


/* This code does not support having multiple kbase devices, or rmmod/insmod */

static unsigned long kbase_carveout_start_pfn = ~0UL;
static unsigned long kbase_carveout_end_pfn;
static LIST_HEAD(kbase_carveout_free_list);
static DEFINE_MUTEX(kbase_carveout_free_list_lock);
static unsigned int kbase_carveout_pages;
static atomic_t kbase_carveout_used_pages;
static atomic_t kbase_carveout_system_pages;

static struct page *kbase_carveout_get_page(struct kbase_mem_allocator *allocator)
{
	struct page *p = NULL;
	gfp_t gfp;

	mutex_lock(&kbase_carveout_free_list_lock);
	if (!list_empty(&kbase_carveout_free_list)) {
		p = list_first_entry(&kbase_carveout_free_list, struct page, lru);
		list_del(&p->lru);
		atomic_inc(&kbase_carveout_used_pages);
	}
	mutex_unlock(&kbase_carveout_free_list_lock);

	if (!p) {
		dma_addr_t dma_addr;
#if defined(CONFIG_ARM) && !defined(CONFIG_HAVE_DMA_ATTRS) && LINUX_VERSION_CODE < KERNEL_VERSION(3, 5, 0)
		/* DMA cache sync fails for HIGHMEM before 3.5 on ARM */
		gfp = GFP_USER;
#else
		gfp = GFP_HIGHUSER;
#endif

		if (current->flags & PF_KTHREAD) {
			/* Don't trigger OOM killer from kernel threads, e.g.
			 * when growing memory on GPU page fault */
			gfp |= __GFP_NORETRY;
		}

		p = alloc_page(gfp);
		if (!p)
			goto out;

		dma_addr = dma_map_page(allocator->kbdev->dev, p, 0, PAGE_SIZE,
				DMA_BIDIRECTIONAL);
		if (dma_mapping_error(allocator->kbdev->dev, dma_addr)) {
			__free_page(p);
			p = NULL;
			goto out;
		}

		kbase_set_dma_addr(p, dma_addr);
		BUG_ON(dma_addr != PFN_PHYS(page_to_pfn(p)));
		atomic_inc(&kbase_carveout_system_pages);
	}
out:
	return p;
}

static void kbase_carveout_put_page(struct page *p,
				    struct kbase_mem_allocator *allocator)
{
	if (page_to_pfn(p) >= kbase_carveout_start_pfn &&
			page_to_pfn(p) <= kbase_carveout_end_pfn) {
		mutex_lock(&kbase_carveout_free_list_lock);
		list_add(&p->lru, &kbase_carveout_free_list);
		atomic_dec(&kbase_carveout_used_pages);
		mutex_unlock(&kbase_carveout_free_list_lock);
	} else {
		dma_unmap_page(allocator->kbdev->dev, kbase_dma_addr(p),
				PAGE_SIZE,
				DMA_BIDIRECTIONAL);
		ClearPagePrivate(p);
		__free_page(p);
		atomic_dec(&kbase_carveout_system_pages);
	}
}

static int kbase_carveout_seq_show(struct seq_file *s, void *data)
{
	seq_printf(s, "carveout pages: %u\n", kbase_carveout_pages);
	seq_printf(s, "used carveout pages: %u\n",
			atomic_read(&kbase_carveout_used_pages));
	seq_printf(s, "used system pages: %u\n",
			atomic_read(&kbase_carveout_system_pages));
	return 0;
}

static int kbasep_carveout_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, kbase_carveout_seq_show, NULL);
}

static const struct file_operations kbase_carveout_debugfs_fops = {
	.open           = kbasep_carveout_debugfs_open,
	.read           = seq_read,
	.llseek         = seq_lseek,
	.release        = seq_release_private,
};

static int kbase_carveout_init(struct device *dev)
{
	unsigned long pfn;
	static int once;

	mutex_lock(&kbase_carveout_free_list_lock);
	BUG_ON(once);
	once = 1;

	for (pfn = kbase_carveout_start_pfn; pfn <= kbase_carveout_end_pfn; pfn++) {
		struct page *p = pfn_to_page(pfn);
		dma_addr_t dma_addr;

		dma_addr = dma_map_page(dev, p, 0, PAGE_SIZE,
				DMA_BIDIRECTIONAL);
		if (dma_mapping_error(dev, dma_addr))
			goto out_rollback;

		kbase_set_dma_addr(p, dma_addr);
		BUG_ON(dma_addr != PFN_PHYS(page_to_pfn(p)));

		list_add_tail(&p->lru, &kbase_carveout_free_list);
	}

	mutex_unlock(&kbase_carveout_free_list_lock);

	debugfs_create_file("kbase_carveout", S_IRUGO, NULL, NULL,
		    &kbase_carveout_debugfs_fops);

	return 0;

out_rollback:
	while (!list_empty(&kbase_carveout_free_list)) {
		struct page *p;

		p = list_first_entry(&kbase_carveout_free_list, struct page, lru);
		dma_unmap_page(dev, kbase_dma_addr(p),
				PAGE_SIZE,
				DMA_BIDIRECTIONAL);
		ClearPagePrivate(p);
		list_del(&p->lru);
	}

	mutex_unlock(&kbase_carveout_free_list_lock);
	return -ENOMEM;
}

int __init kbase_carveout_mem_reserve(phys_addr_t size)
{
	phys_addr_t mem;

#if defined(CONFIG_ARM) && LINUX_VERSION_CODE < KERNEL_VERSION(3, 5, 0)
	/* DMA cache sync fails for HIGHMEM before 3.5 on ARM */
	mem = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ACCESSIBLE);
#else
	mem = memblock_alloc_base(size, PAGE_SIZE, MEMBLOCK_ALLOC_ANYWHERE);
#endif
	if (mem == 0) {
		pr_warn("%s: Failed to allocate %d for kbase carveout\n",
				__func__, size);
		return -ENOMEM;
	}

	kbase_carveout_start_pfn = PFN_DOWN(mem);
	kbase_carveout_end_pfn = PFN_DOWN(mem + size - 1);
	kbase_carveout_pages = kbase_carveout_end_pfn - kbase_carveout_start_pfn + 1;

	return 0;
}

int kbase_mem_lowlevel_init(struct kbase_device *kbdev)
{
	return kbase_carveout_init(kbdev->dev);
}

void kbase_mem_lowlevel_term(struct kbase_device *kbdev)
{
}

STATIC int kbase_mem_allocator_shrink(struct shrinker *s, struct shrink_control *sc)
{
	struct kbase_mem_allocator *allocator;
	int i;
	int freed;

	allocator = container_of(s, struct kbase_mem_allocator, free_list_reclaimer);

	if (sc->nr_to_scan == 0)
		return atomic_read(&allocator->free_list_size);

	might_sleep();

	mutex_lock(&allocator->free_list_lock);
	i = MIN(atomic_read(&allocator->free_list_size), sc->nr_to_scan);
	freed = i;

	atomic_sub(i, &allocator->free_list_size);

	while (i--) {
		struct page *p;

		BUG_ON(list_empty(&allocator->free_list_head));
		p = list_first_entry(&allocator->free_list_head, struct page, lru);
		list_del(&p->lru);
		kbase_carveout_put_page(p, allocator);
	}
	mutex_unlock(&allocator->free_list_lock);
	return atomic_read(&allocator->free_list_size);
}

mali_error kbase_mem_allocator_init(struct kbase_mem_allocator * const allocator,
		unsigned int max_size, struct kbase_device *kbdev)
{
	KBASE_DEBUG_ASSERT(NULL != allocator);
	KBASE_DEBUG_ASSERT(kbdev);

	INIT_LIST_HEAD(&allocator->free_list_head);

	allocator->kbdev = kbdev;

	mutex_init(&allocator->free_list_lock);

	atomic_set(&allocator->free_list_size, 0);

	allocator->free_list_max_size = max_size;
	allocator->free_list_reclaimer.shrink = kbase_mem_allocator_shrink;
	allocator->free_list_reclaimer.seeks = DEFAULT_SEEKS;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0) /* Kernel versions prior to 3.1 : struct shrinker does not define batch */
	allocator->free_list_reclaimer.batch = 0;
#endif

	register_shrinker(&allocator->free_list_reclaimer);

	return MALI_ERROR_NONE;
}

void kbase_mem_allocator_term(struct kbase_mem_allocator *allocator)
{
	KBASE_DEBUG_ASSERT(NULL != allocator);

	unregister_shrinker(&allocator->free_list_reclaimer);

	while (!list_empty(&allocator->free_list_head)) {
		struct page *p;

		p = list_first_entry(&allocator->free_list_head, struct page,
				lru);
		list_del(&p->lru);

		kbase_carveout_put_page(p, allocator);
	}
	mutex_destroy(&allocator->free_list_lock);
}


mali_error kbase_mem_allocator_alloc(struct kbase_mem_allocator *allocator, size_t nr_pages, phys_addr_t *pages)
{
	struct page *p;
	void *mp;
	int i;
	int num_from_free_list;
	struct list_head from_free_list = LIST_HEAD_INIT(from_free_list);

	might_sleep();

	KBASE_DEBUG_ASSERT(NULL != allocator);

	/* take from the free list first */
	mutex_lock(&allocator->free_list_lock);
	num_from_free_list = MIN(nr_pages, atomic_read(&allocator->free_list_size));
	atomic_sub(num_from_free_list, &allocator->free_list_size);
	for (i = 0; i < num_from_free_list; i++) {
		BUG_ON(list_empty(&allocator->free_list_head));
		p = list_first_entry(&allocator->free_list_head, struct page, lru);
		list_move(&p->lru, &from_free_list);
	}
	mutex_unlock(&allocator->free_list_lock);
	i = 0;

	/* Allocate as many pages from the pool of already allocated pages. */
	list_for_each_entry(p, &from_free_list, lru)
	{
		pages[i] = PFN_PHYS(page_to_pfn(p));
		i++;
	}

	if (i == nr_pages)
		return MALI_ERROR_NONE;

	/* If not all pages were sourced from the pool, request new ones. */
	for (; i < nr_pages; i++) {
		p = kbase_carveout_get_page(allocator);
		if (NULL == p)
			goto err_out_roll_back;

		mp = kmap(p);
		if (NULL == mp) {
			kbase_carveout_put_page(p, allocator);
			goto err_out_roll_back;
		}
		memset(mp, 0x00, PAGE_SIZE); /* instead of __GFP_ZERO, so we can
						do cache maintenance */
		dma_sync_single_for_device(allocator->kbdev->dev,
					   kbase_dma_addr(p),
					   PAGE_SIZE,
					   DMA_BIDIRECTIONAL);
		kunmap(p);
		pages[i] = PFN_PHYS(page_to_pfn(p));
	}

	return MALI_ERROR_NONE;

err_out_roll_back:
	while (i--) {
		struct page *p;

		p = pfn_to_page(PFN_DOWN(pages[i]));
		pages[i] = (phys_addr_t)0;
		kbase_carveout_put_page(p, allocator);
	}

	return MALI_ERROR_OUT_OF_MEMORY;
}

void kbase_mem_allocator_free(struct kbase_mem_allocator *allocator, u32 nr_pages, phys_addr_t *pages, mali_bool sync_back)
{
	int i = 0;
	int page_count = 0;
	int tofree;

	LIST_HEAD(new_free_list_items);

	KBASE_DEBUG_ASSERT(NULL != allocator);

	might_sleep();

	/* Starting by just freeing the overspill.
	* As we do this outside of the lock we might spill too many pages
	* or get too many on the free list, but the max_size is just a ballpark so it is ok
	* providing that tofree doesn't exceed nr_pages
	*/
	tofree = MAX((int)allocator->free_list_max_size - atomic_read(&allocator->free_list_size), 0);
	tofree = nr_pages - MIN(tofree, nr_pages);
	for (; i < tofree; i++) {
		if (likely(0 != pages[i])) {
			struct page *p;

			p = pfn_to_page(PFN_DOWN(pages[i]));
			pages[i] = (phys_addr_t)0;
			kbase_carveout_put_page(p, allocator);
		}
	}

	for (; i < nr_pages; i++) {
		if (likely(0 != pages[i])) {
			struct page *p;

			p = pfn_to_page(PFN_DOWN(pages[i]));
			pages[i] = (phys_addr_t)0;
			/* Sync back the memory to ensure that future cache
			 * invalidations don't trample on memory.
			 */
			if (sync_back)
				dma_sync_single_for_cpu(allocator->kbdev->dev,
						kbase_dma_addr(p),
						PAGE_SIZE,
						DMA_BIDIRECTIONAL);
			list_add(&p->lru, &new_free_list_items);
			page_count++;
		}
	}
	mutex_lock(&allocator->free_list_lock);
	list_splice(&new_free_list_items, &allocator->free_list_head);
	atomic_add(page_count, &allocator->free_list_size);
	mutex_unlock(&allocator->free_list_lock);
}
KBASE_EXPORT_TEST_API(kbase_mem_allocator_free)