aboutsummaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/testsuite/ada/acats/tests/cxg/cxg2008.a')
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2008.a948
1 files changed, 0 insertions, 948 deletions
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
deleted file mode 100644
index 58cf367f61c..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2008.a
+++ /dev/null
@@ -1,948 +0,0 @@
--- CXG2008.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the complex multiplication and division
--- operations return results that are within the allowed
--- error bound.
--- Check that all the required pure Numerics packages are pure.
---
--- TEST DESCRIPTION:
--- This test contains three test packages that are almost
--- identical. The first two packages differ only in the
--- floating point type that is being tested. The first
--- and third package differ only in whether the generic
--- complex types package or the pre-instantiated
--- package is used.
--- The test package is not generic so that the arguments
--- and expected results for some of the test values
--- can be expressed as universal real instead of being
--- computed at runtime.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 24 FEB 96 SAIC Initial release for 2.1
--- 03 JUN 98 EDS Correct the test program's incorrect assumption
--- that Constraint_Error must be raised by complex
--- division by zero, which is contrary to the
--- allowance given by the Ada 95 standard G.1.1(40).
--- 13 MAR 01 RLB Replaced commented out Pure check on non-generic
--- packages, as required by Defect Report
--- 8652/0020 and as reflected in Technical
--- Corrigendum 1.
---!
-
-------------------------------------------------------------------------------
--- Check that the required pure packages are pure by withing them from a
--- pure package. The non-generic versions of those packages are required to
--- be pure by Defect Report 8652/0020, Technical Corrigendum 1 [A.5.1(9/1) and
--- G.1.1(25/1)].
-with Ada.Numerics.Generic_Elementary_Functions;
-with Ada.Numerics.Elementary_Functions;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Complex_Types;
-with Ada.Numerics.Generic_Complex_Elementary_Functions;
-with Ada.Numerics.Complex_Elementary_Functions;
-package CXG2008_0 is
- pragma Pure;
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-end CXG2008_0;
-
-------------------------------------------------------------------------------
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Complex_Types;
-with Ada.Numerics.Complex_Types;
-with CXG2008_0; use CXG2008_0;
-procedure CXG2008 is
- Verbose : constant Boolean := False;
-
- package Float_Check is
- subtype Real is Float;
- procedure Do_Test;
- end Float_Check;
-
- package body Float_Check is
- package Complex_Types is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
-
- -- keep track if an accuracy failure has occurred so the test
- -- can be short-circuited to avoid thousands of error messages.
- Failure_Detected : Boolean := False;
-
- Mult_MBE : constant Real := 5.0;
- Divide_MBE : constant Real := 13.0;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MBE : Real) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
- Abs_Error := MBE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual.Re - Expected.Re) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.re: " & Real'Image (Actual.Re) &
- " expected.re: " & Real'Image (Expected.Re) &
- " difference.re " &
- Real'Image (Actual.Re - Expected.Re) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for real part");
- else
- Report.Comment (Test_Name & " passed for real part");
- end if;
- end if;
-
- Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- if abs (Actual.Im - Expected.Im) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.im: " & Real'Image (Actual.Im) &
- " expected.im: " & Real'Image (Expected.Im) &
- " difference.im " &
- Real'Image (Actual.Im - Expected.Im) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for imaginary part");
- else
- Report.Comment (Test_Name & " passed for imaginary part");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Values is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : Complex := (0.0, 0.0);
- X : Complex := (0.0, 0.0);
- Y : Complex := (Big, Big);
- Z : Complex;
- begin
- Z := X * Y;
- Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
- Mult_MBE);
- Z := Y * X;
- Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Expected : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- Z := U * X;
- Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- B : Complex := (Big, Big);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := B / X;
- Report.Failed ("test 3 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := U / X;
- Report.Failed ("test 4 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
-
- --- test 5 ---
- declare
- X : Complex := (Sqrt2, Sqrt2);
- Z : Complex;
- Expected : constant Complex := (0.0, 4.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : Complex := Sqrt3 - Sqrt3 * i;
- Z : Complex;
- Expected : constant Complex := (0.0, -6.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- X : Complex := Sqrt2 + Sqrt2 * i;
- Y : Complex := Sqrt2 - Sqrt2 * i;
- Z : Complex;
- Expected : constant Complex := 0.0 + i;
- begin
- Z := X / Y;
- Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
- Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
- end Special_Values;
-
-
- procedure Do_Mult_Div (X, Y : Complex) is
- Z : Complex;
- Args : constant String :=
- "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
- "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
- begin
- Z := (X * X) / X;
- Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / X;
- Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / Y;
- Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
- when others =>
- Report.Failed ("exception in Do_Mult_Div for " & Args);
- end Do_Mult_Div;
-
- -- select complex values X and Y where the real and imaginary
- -- parts are selected from the ranges (1/radix..1) and
- -- (1..radix). This translates into quite a few combinations.
- procedure Mult_Div_Check is
- Samples : constant := 17;
- Radix : constant Real := Real(Real'Machine_Radix);
- Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
- Low_Sample : Real; -- (1/radix .. 1)
- High_Sample : Real; -- (1 .. radix)
- Sample : array (1..2) of Real;
- X, Y : Complex;
- begin
- for I in 1 .. Samples loop
- Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
- Inv_Radix;
- Sample (1) := Low_Sample;
- for J in 1 .. Samples loop
- High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
- Radix;
- Sample (2) := High_Sample;
- for K in 1 .. 2 loop
- for L in 1 .. 2 loop
- X := Complex'(Sample (K), Sample (L));
- Y := Complex'(Sample (L), Sample (K));
- Do_Mult_Div (X, Y);
- if Failure_Detected then
- return; -- minimize flood of error messages
- end if;
- end loop;
- end loop;
- end loop; -- J
- end loop; -- I
- end Mult_Div_Check;
-
-
- procedure Do_Test is
- begin
- Special_Values;
- Mult_Div_Check;
- end Do_Test;
- end Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- -- check the floating point type with the most digits
-
- package A_Long_Float_Check is
- type A_Long_Float is digits System.Max_Digits;
- subtype Real is A_Long_Float;
- procedure Do_Test;
- end A_Long_Float_Check;
-
- package body A_Long_Float_Check is
-
- package Complex_Types is new
- Ada.Numerics.Generic_Complex_Types (Real);
- use Complex_Types;
-
- -- keep track if an accuracy failure has occurred so the test
- -- can be short-circuited to avoid thousands of error messages.
- Failure_Detected : Boolean := False;
-
- Mult_MBE : constant Real := 5.0;
- Divide_MBE : constant Real := 13.0;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MBE : Real) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
- Abs_Error := MBE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual.Re - Expected.Re) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.re: " & Real'Image (Actual.Re) &
- " expected.re: " & Real'Image (Expected.Re) &
- " difference.re " &
- Real'Image (Actual.Re - Expected.Re) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for real part");
- else
- Report.Comment (Test_Name & " passed for real part");
- end if;
- end if;
-
- Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- if abs (Actual.Im - Expected.Im) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.im: " & Real'Image (Actual.Im) &
- " expected.im: " & Real'Image (Expected.Im) &
- " difference.im " &
- Real'Image (Actual.Im - Expected.Im) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for imaginary part");
- else
- Report.Comment (Test_Name & " passed for imaginary part");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Values is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : Complex := (0.0, 0.0);
- X : Complex := (0.0, 0.0);
- Y : Complex := (Big, Big);
- Z : Complex;
- begin
- Z := X * Y;
- Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
- Mult_MBE);
- Z := Y * X;
- Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Expected : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- Z := U * X;
- Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- B : Complex := (Big, Big);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := B / X;
- Report.Failed ("test 3 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := U / X;
- Report.Failed ("test 4 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
-
- --- test 5 ---
- declare
- X : Complex := (Sqrt2, Sqrt2);
- Z : Complex;
- Expected : constant Complex := (0.0, 4.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : Complex := Sqrt3 - Sqrt3 * i;
- Z : Complex;
- Expected : constant Complex := (0.0, -6.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- X : Complex := Sqrt2 + Sqrt2 * i;
- Y : Complex := Sqrt2 - Sqrt2 * i;
- Z : Complex;
- Expected : constant Complex := 0.0 + i;
- begin
- Z := X / Y;
- Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
- Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
- end Special_Values;
-
-
- procedure Do_Mult_Div (X, Y : Complex) is
- Z : Complex;
- Args : constant String :=
- "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
- "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
- begin
- Z := (X * X) / X;
- Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / X;
- Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / Y;
- Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
- when others =>
- Report.Failed ("exception in Do_Mult_Div for " & Args);
- end Do_Mult_Div;
-
- -- select complex values X and Y where the real and imaginary
- -- parts are selected from the ranges (1/radix..1) and
- -- (1..radix). This translates into quite a few combinations.
- procedure Mult_Div_Check is
- Samples : constant := 17;
- Radix : constant Real := Real(Real'Machine_Radix);
- Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
- Low_Sample : Real; -- (1/radix .. 1)
- High_Sample : Real; -- (1 .. radix)
- Sample : array (1..2) of Real;
- X, Y : Complex;
- begin
- for I in 1 .. Samples loop
- Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
- Inv_Radix;
- Sample (1) := Low_Sample;
- for J in 1 .. Samples loop
- High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
- Radix;
- Sample (2) := High_Sample;
- for K in 1 .. 2 loop
- for L in 1 .. 2 loop
- X := Complex'(Sample (K), Sample (L));
- Y := Complex'(Sample (L), Sample (K));
- Do_Mult_Div (X, Y);
- if Failure_Detected then
- return; -- minimize flood of error messages
- end if;
- end loop;
- end loop;
- end loop; -- J
- end loop; -- I
- end Mult_Div_Check;
-
-
- procedure Do_Test is
- begin
- Special_Values;
- Mult_Div_Check;
- end Do_Test;
- end A_Long_Float_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
- package Non_Generic_Check is
- subtype Real is Float;
- procedure Do_Test;
- end Non_Generic_Check;
-
- package body Non_Generic_Check is
-
- use Ada.Numerics.Complex_Types;
-
- -- keep track if an accuracy failure has occurred so the test
- -- can be short-circuited to avoid thousands of error messages.
- Failure_Detected : Boolean := False;
-
- Mult_MBE : constant Real := 5.0;
- Divide_MBE : constant Real := 13.0;
-
-
- procedure Check (Actual, Expected : Complex;
- Test_Name : String;
- MBE : Real) is
- Rel_Error : Real;
- Abs_Error : Real;
- Max_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MBE * abs Expected.Re * Real'Model_Epsilon;
- Abs_Error := MBE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- if abs (Actual.Re - Expected.Re) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.re: " & Real'Image (Actual.Re) &
- " expected.re: " & Real'Image (Expected.Re) &
- " difference.re " &
- Real'Image (Actual.Re - Expected.Re) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for real part");
- else
- Report.Comment (Test_Name & " passed for real part");
- end if;
- end if;
-
- Rel_Error := MBE * abs Expected.Im * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
- if abs (Actual.Im - Expected.Im) > Max_Error then
- Failure_Detected := True;
- Report.Failed (Test_Name &
- " actual.im: " & Real'Image (Actual.Im) &
- " expected.im: " & Real'Image (Expected.Im) &
- " difference.im " &
- Real'Image (Actual.Im - Expected.Im) &
- " mre:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result for imaginary part");
- else
- Report.Comment (Test_Name & " passed for imaginary part");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Values is
- begin
-
- --- test 1 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- Expected : Complex := (0.0, 0.0);
- X : Complex := (0.0, 0.0);
- Y : Complex := (Big, Big);
- Z : Complex;
- begin
- Z := X * Y;
- Check (Z, Expected, "test 1a -- (0+0i) * (big+big*i)",
- Mult_MBE);
- Z := Y * X;
- Check (Z, Expected, "test 1b -- (big+big*i) * (0+0i)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 1");
- when others =>
- Report.Failed ("exception in test 1");
- end;
-
- --- test 2 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Expected : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- Z := U * X;
- Check (Z, Expected, "test 2 -- (tiny,tiny) * (0,0)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 2");
- when others =>
- Report.Failed ("exception in test 2");
- end;
-
- --- test 3 ---
- declare
- T : constant := (Real'Machine_EMax - 1) / 2;
- Big : constant := (1.0 * Real'Machine_Radix) ** (2 * T);
- B : Complex := (Big, Big);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := B / X;
- Report.Failed ("test 3 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 3");
- end;
-
- --- test 4 ---
- declare
- T : constant := Real'Model_EMin + 1;
- Tiny : constant := (1.0 * Real'Machine_Radix) ** T;
- U : Complex := (Tiny, Tiny);
- X : Complex := (0.0, 0.0);
- Z : Complex;
- begin
- if Real'Machine_Overflows then
- Z := U / X;
- Report.Failed ("test 4 - Constraint_Error not raised");
- Check (Z, Z, "not executed - optimizer thwarting", 0.0);
- end if;
- exception
- when Constraint_Error => null; -- expected
- when others =>
- Report.Failed ("exception in test 4");
- end;
-
-
- --- test 5 ---
- declare
- X : Complex := (Sqrt2, Sqrt2);
- Z : Complex;
- Expected : constant Complex := (0.0, 4.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 5 -- (sqrt2,sqrt2) * (sqrt2,sqrt2)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 5");
- when others =>
- Report.Failed ("exception in test 5");
- end;
-
- --- test 6 ---
- declare
- X : Complex := Sqrt3 - Sqrt3 * i;
- Z : Complex;
- Expected : constant Complex := (0.0, -6.0);
- begin
- Z := X * X;
- Check (Z, Expected, "test 6 -- (sqrt3,-sqrt3) * (sqrt3,-sqrt3)",
- Mult_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 6");
- when others =>
- Report.Failed ("exception in test 6");
- end;
-
- --- test 7 ---
- declare
- X : Complex := Sqrt2 + Sqrt2 * i;
- Y : Complex := Sqrt2 - Sqrt2 * i;
- Z : Complex;
- Expected : constant Complex := 0.0 + i;
- begin
- Z := X / Y;
- Check (Z, Expected, "test 7 -- (sqrt2,sqrt2) / (sqrt2,-sqrt2)",
- Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in test 7");
- when others =>
- Report.Failed ("exception in test 7");
- end;
- end Special_Values;
-
-
- procedure Do_Mult_Div (X, Y : Complex) is
- Z : Complex;
- Args : constant String :=
- "X=(" & Real'Image (X.Re) & "," & Real'Image (X.Im) & ") " &
- "Y=(" & Real'Image (Y.Re) & "," & Real'Image (Y.Im) & ") " ;
- begin
- Z := (X * X) / X;
- Check (Z, X, "X*X/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / X;
- Check (Z, Y, "X*Y/X " & Args, Mult_MBE + Divide_MBE);
- Z := (X * Y) / Y;
- Check (Z, X, "X*Y/Y " & Args, Mult_MBE + Divide_MBE);
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error in Do_Mult_Div for " & Args);
- when others =>
- Report.Failed ("exception in Do_Mult_Div for " & Args);
- end Do_Mult_Div;
-
- -- select complex values X and Y where the real and imaginary
- -- parts are selected from the ranges (1/radix..1) and
- -- (1..radix). This translates into quite a few combinations.
- procedure Mult_Div_Check is
- Samples : constant := 17;
- Radix : constant Real := Real(Real'Machine_Radix);
- Inv_Radix : constant Real := 1.0 / Real(Real'Machine_Radix);
- Low_Sample : Real; -- (1/radix .. 1)
- High_Sample : Real; -- (1 .. radix)
- Sample : array (1..2) of Real;
- X, Y : Complex;
- begin
- for I in 1 .. Samples loop
- Low_Sample := (1.0 - Inv_Radix) / Real (Samples) * Real (I) +
- Inv_Radix;
- Sample (1) := Low_Sample;
- for J in 1 .. Samples loop
- High_Sample := (Radix - 1.0) / Real (Samples) * Real (I) +
- Radix;
- Sample (2) := High_Sample;
- for K in 1 .. 2 loop
- for L in 1 .. 2 loop
- X := Complex'(Sample (K), Sample (L));
- Y := Complex'(Sample (L), Sample (K));
- Do_Mult_Div (X, Y);
- if Failure_Detected then
- return; -- minimize flood of error messages
- end if;
- end loop;
- end loop;
- end loop; -- J
- end loop; -- I
- end Mult_Div_Check;
-
-
- procedure Do_Test is
- begin
- Special_Values;
- Mult_Div_Check;
- end Do_Test;
- end Non_Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-begin
- Report.Test ("CXG2008",
- "Check the accuracy of the complex multiplication and" &
- " division operators");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking non-generic package");
- end if;
-
- Non_Generic_Check.Do_Test;
-
- Report.Result;
-end CXG2008;