aboutsummaryrefslogtreecommitdiff
path: root/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/testsuite/ada/acats/tests/cxg/cxg2015.a')
-rw-r--r--gcc/testsuite/ada/acats/tests/cxg/cxg2015.a686
1 files changed, 0 insertions, 686 deletions
diff --git a/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a b/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a
deleted file mode 100644
index 50fda5e1f4f..00000000000
--- a/gcc/testsuite/ada/acats/tests/cxg/cxg2015.a
+++ /dev/null
@@ -1,686 +0,0 @@
--- CXG2015.A
---
--- Grant of Unlimited Rights
---
--- Under contracts F33600-87-D-0337, F33600-84-D-0280, MDA903-79-C-0687,
--- F08630-91-C-0015, and DCA100-97-D-0025, the U.S. Government obtained
--- unlimited rights in the software and documentation contained herein.
--- Unlimited rights are defined in DFAR 252.227-7013(a)(19). By making
--- this public release, the Government intends to confer upon all
--- recipients unlimited rights equal to those held by the Government.
--- These rights include rights to use, duplicate, release or disclose the
--- released technical data and computer software in whole or in part, in
--- any manner and for any purpose whatsoever, and to have or permit others
--- to do so.
---
--- DISCLAIMER
---
--- ALL MATERIALS OR INFORMATION HEREIN RELEASED, MADE AVAILABLE OR
--- DISCLOSED ARE AS IS. THE GOVERNMENT MAKES NO EXPRESS OR IMPLIED
--- WARRANTY AS TO ANY MATTER WHATSOEVER, INCLUDING THE CONDITIONS OF THE
--- SOFTWARE, DOCUMENTATION OR OTHER INFORMATION RELEASED, MADE AVAILABLE
--- OR DISCLOSED, OR THE OWNERSHIP, MERCHANTABILITY, OR FITNESS FOR A
--- PARTICULAR PURPOSE OF SAID MATERIAL.
---*
---
--- OBJECTIVE:
--- Check that the ARCSIN and ARCCOS functions return
--- results that are within the error bound allowed.
---
--- TEST DESCRIPTION:
--- This test consists of a generic package that is
--- instantiated to check both Float and a long float type.
--- The test for each floating point type is divided into
--- several parts:
--- Special value checks where the result is a known constant.
--- Checks in a specific range where a Taylor series can be
--- used to compute an accurate result for comparison.
--- Exception checks.
--- The Taylor series tests are a direct translation of the
--- FORTRAN code found in the reference.
---
--- SPECIAL REQUIREMENTS
--- The Strict Mode for the numerical accuracy must be
--- selected. The method by which this mode is selected
--- is implementation dependent.
---
--- APPLICABILITY CRITERIA:
--- This test applies only to implementations supporting the
--- Numerics Annex.
--- This test only applies to the Strict Mode for numerical
--- accuracy.
---
---
--- CHANGE HISTORY:
--- 18 Mar 96 SAIC Initial release for 2.1
--- 24 Apr 96 SAIC Fixed error bounds.
--- 17 Aug 96 SAIC Added reference information and improved
--- checking for machines with more than 23
--- digits of precision.
--- 03 Feb 97 PWB.CTA Removed checks with explicit Cycle => 2.0*Pi
--- 22 Dec 99 RLB Added model range checking to "exact" results,
--- in order to avoid too strictly requiring a specific
--- result, and too weakly checking results.
---
--- CHANGE NOTE:
--- According to Ken Dritz, author of the Numerics Annex of the RM,
--- one should never specify the cycle 2.0*Pi for the trigonometric
--- functions. In particular, if the machine number for the first
--- argument is not an exact multiple of the machine number for the
--- explicit cycle, then the specified exact results cannot be
--- reasonably expected. The affected checks in this test have been
--- marked as comments, with the additional notation "pwb-math".
--- Phil Brashear
---!
-
---
--- References:
---
--- Software Manual for the Elementary Functions
--- William J. Cody, Jr. and William Waite
--- Prentice-Hall, 1980
---
--- CRC Standard Mathematical Tables
--- 23rd Edition
---
--- Implementation and Testing of Function Software
--- W. J. Cody
--- Problems and Methodologies in Mathematical Software Production
--- editors P. C. Messina and A. Murli
--- Lecture Notes in Computer Science Volume 142
--- Springer Verlag, 1982
---
--- CELEFUNT: A Portable Test Package for Complex Elementary Functions
--- ACM Collected Algorithms number 714
-
-with System;
-with Report;
-with Ada.Numerics.Generic_Elementary_Functions;
-procedure CXG2015 is
- Verbose : constant Boolean := False;
- Max_Samples : constant := 1000;
-
-
- -- CRC Standard Mathematical Tables; 23rd Edition; pg 738
- Sqrt2 : constant :=
- 1.41421_35623_73095_04880_16887_24209_69807_85696_71875_37695;
- Sqrt3 : constant :=
- 1.73205_08075_68877_29352_74463_41505_87236_69428_05253_81039;
-
- Pi : constant := Ada.Numerics.Pi;
-
- -- relative error bound from G.2.4(7);6.0
- Minimum_Error : constant := 4.0;
-
- generic
- type Real is digits <>;
- Half_PI_Low : in Real; -- The machine number closest to, but not greater
- -- than PI/2.0.
- Half_PI_High : in Real;-- The machine number closest to, but not less
- -- than PI/2.0.
- PI_Low : in Real; -- The machine number closest to, but not greater
- -- than PI.
- PI_High : in Real; -- The machine number closest to, but not less
- -- than PI.
- package Generic_Check is
- procedure Do_Test;
- end Generic_Check;
-
- package body Generic_Check is
- package Elementary_Functions is new
- Ada.Numerics.Generic_Elementary_Functions (Real);
-
- function Arcsin (X : Real) return Real renames
- Elementary_Functions.Arcsin;
- function Arcsin (X, Cycle : Real) return Real renames
- Elementary_Functions.Arcsin;
- function Arccos (X : Real) return Real renames
- Elementary_Functions.ArcCos;
- function Arccos (X, Cycle : Real) return Real renames
- Elementary_Functions.ArcCos;
-
- -- needed for support
- function Log (X, Base : Real) return Real renames
- Elementary_Functions.Log;
-
- -- flag used to terminate some tests early
- Accuracy_Error_Reported : Boolean := False;
-
- -- The following value is a lower bound on the accuracy
- -- required. It is normally 0.0 so that the lower bound
- -- is computed from Model_Epsilon. However, for tests
- -- where the expected result is only known to a certain
- -- amount of precision this bound takes on a non-zero
- -- value to account for that level of precision.
- Error_Low_Bound : Real := 0.0;
-
-
- procedure Check (Actual, Expected : Real;
- Test_Name : String;
- MRE : Real) is
- Max_Error : Real;
- Rel_Error : Real;
- Abs_Error : Real;
- begin
- -- In the case where the expected result is very small or 0
- -- we compute the maximum error as a multiple of Model_Epsilon instead
- -- of Model_Epsilon and Expected.
- Rel_Error := MRE * abs Expected * Real'Model_Epsilon;
- Abs_Error := MRE * Real'Model_Epsilon;
- if Rel_Error > Abs_Error then
- Max_Error := Rel_Error;
- else
- Max_Error := Abs_Error;
- end if;
-
- -- take into account the low bound on the error
- if Max_Error < Error_Low_Bound then
- Max_Error := Error_Low_Bound;
- end if;
-
- if abs (Actual - Expected) > Max_Error then
- Accuracy_Error_Reported := True;
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected: " & Real'Image (Expected) &
- " difference: " & Real'Image (Actual - Expected) &
- " max err:" & Real'Image (Max_Error) );
- elsif Verbose then
- if Actual = Expected then
- Report.Comment (Test_Name & " exact result");
- else
- Report.Comment (Test_Name & " passed");
- end if;
- end if;
- end Check;
-
-
- procedure Special_Value_Test is
- -- In the following tests the expected result is accurate
- -- to the machine precision so the minimum guaranteed error
- -- bound can be used.
-
- type Data_Point is
- record
- Degrees,
- Radians,
- Argument,
- Error_Bound : Real;
- end record;
-
- type Test_Data_Type is array (Positive range <>) of Data_Point;
-
- -- the values in the following tables only involve static
- -- expressions so no loss of precision occurs. However,
- -- rounding can be an issue with expressions involving Pi
- -- and square roots. The error bound specified in the
- -- table takes the sqrt error into account but not the
- -- error due to Pi. The Pi error is added in in the
- -- radians test below.
-
- Arcsin_Test_Data : constant Test_Data_Type := (
- -- degrees radians sine error_bound test #
- --( 0.0, 0.0, 0.0, 0.0 ), -- 1 - In Exact_Result_Test.
- ( 30.0, Pi/6.0, 0.5, 4.0 ), -- 2
- ( 60.0, Pi/3.0, Sqrt3/2.0, 5.0 ), -- 3
- --( 90.0, Pi/2.0, 1.0, 4.0 ), -- 4 - In Exact_Result_Test.
- --(-90.0, -Pi/2.0, -1.0, 4.0 ), -- 5 - In Exact_Result_Test.
- (-60.0, -Pi/3.0, -Sqrt3/2.0, 5.0 ), -- 6
- (-30.0, -Pi/6.0, -0.5, 4.0 ), -- 7
- ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
- (-45.0, -Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
-
- Arccos_Test_Data : constant Test_Data_Type := (
- -- degrees radians cosine error_bound test #
- --( 0.0, 0.0, 1.0, 0.0 ), -- 1 - In Exact_Result_Test.
- ( 30.0, Pi/6.0, Sqrt3/2.0, 5.0 ), -- 2
- ( 60.0, Pi/3.0, 0.5, 4.0 ), -- 3
- --( 90.0, Pi/2.0, 0.0, 4.0 ), -- 4 - In Exact_Result_Test.
- (120.0, 2.0*Pi/3.0, -0.5, 4.0 ), -- 5
- (150.0, 5.0*Pi/6.0, -Sqrt3/2.0, 5.0 ), -- 6
- --(180.0, Pi, -1.0, 4.0 ), -- 7 - In Exact_Result_Test.
- ( 45.0, Pi/4.0, Sqrt2/2.0, 5.0 ), -- 8
- (135.0, 3.0*Pi/4.0, -Sqrt2/2.0, 5.0 ) ); -- 9
-
- Cycle_Error,
- Radian_Error : Real;
- begin
- for I in Arcsin_Test_Data'Range loop
-
- -- note exact result requirements A.5.1(38);6.0 and
- -- G.2.4(12);6.0
- if Arcsin_Test_Data (I).Error_Bound = 0.0 then
- Cycle_Error := 0.0;
- Radian_Error := 0.0;
- else
- Cycle_Error := Arcsin_Test_Data (I).Error_Bound;
- -- allow for rounding error in the specification of Pi
- Radian_Error := Cycle_Error + 1.0;
- end if;
-
- Check (Arcsin (Arcsin_Test_Data (I).Argument),
- Arcsin_Test_Data (I).Radians,
- "test" & Integer'Image (I) &
- " arcsin(" &
- Real'Image (Arcsin_Test_Data (I).Argument) &
- ")",
- Radian_Error);
---pwb-math Check (Arcsin (Arcsin_Test_Data (I).Argument, 2.0 * Pi),
---pwb-math Arcsin_Test_Data (I).Radians,
---pwb-math "test" & Integer'Image (I) &
---pwb-math " arcsin(" &
---pwb-math Real'Image (Arcsin_Test_Data (I).Argument) &
---pwb-math ", 2pi)",
---pwb-math Cycle_Error);
- Check (Arcsin (Arcsin_Test_Data (I).Argument, 360.0),
- Arcsin_Test_Data (I).Degrees,
- "test" & Integer'Image (I) &
- " arcsin(" &
- Real'Image (Arcsin_Test_Data (I).Argument) &
- ", 360)",
- Cycle_Error);
- end loop;
-
-
- for I in Arccos_Test_Data'Range loop
-
- -- note exact result requirements A.5.1(39);6.0 and
- -- G.2.4(12);6.0
- if Arccos_Test_Data (I).Error_Bound = 0.0 then
- Cycle_Error := 0.0;
- Radian_Error := 0.0;
- else
- Cycle_Error := Arccos_Test_Data (I).Error_Bound;
- -- allow for rounding error in the specification of Pi
- Radian_Error := Cycle_Error + 1.0;
- end if;
-
- Check (Arccos (Arccos_Test_Data (I).Argument),
- Arccos_Test_Data (I).Radians,
- "test" & Integer'Image (I) &
- " arccos(" &
- Real'Image (Arccos_Test_Data (I).Argument) &
- ")",
- Radian_Error);
---pwb-math Check (Arccos (Arccos_Test_Data (I).Argument, 2.0 * Pi),
---pwb-math Arccos_Test_Data (I).Radians,
---pwb-math "test" & Integer'Image (I) &
---pwb-math " arccos(" &
---pwb-math Real'Image (Arccos_Test_Data (I).Argument) &
---pwb-math ", 2pi)",
---pwb-math Cycle_Error);
- Check (Arccos (Arccos_Test_Data (I).Argument, 360.0),
- Arccos_Test_Data (I).Degrees,
- "test" & Integer'Image (I) &
- " arccos(" &
- Real'Image (Arccos_Test_Data (I).Argument) &
- ", 360)",
- Cycle_Error);
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in special value test");
- when others =>
- Report.Failed ("exception in special value test");
- end Special_Value_Test;
-
-
- procedure Check_Exact (Actual, Expected_Low, Expected_High : Real;
- Test_Name : String) is
- -- If the expected result is not a model number, then Expected_Low is
- -- the first machine number less than the (exact) expected
- -- result, and Expected_High is the first machine number greater than
- -- the (exact) expected result. If the expected result is a model
- -- number, Expected_Low = Expected_High = the result.
- Model_Expected_Low : Real := Expected_Low;
- Model_Expected_High : Real := Expected_High;
- begin
- -- Calculate the first model number nearest to, but below (or equal)
- -- to the expected result:
- while Real'Model (Model_Expected_Low) /= Model_Expected_Low loop
- -- Try the next machine number lower:
- Model_Expected_Low := Real'Adjacent(Model_Expected_Low, 0.0);
- end loop;
- -- Calculate the first model number nearest to, but above (or equal)
- -- to the expected result:
- while Real'Model (Model_Expected_High) /= Model_Expected_High loop
- -- Try the next machine number higher:
- Model_Expected_High := Real'Adjacent(Model_Expected_High, 100.0);
- end loop;
-
- if Actual < Model_Expected_Low or Actual > Model_Expected_High then
- Accuracy_Error_Reported := True;
- if Actual < Model_Expected_Low then
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected low: " & Real'Image (Model_Expected_Low) &
- " expected high: " & Real'Image (Model_Expected_High) &
- " difference: " & Real'Image (Actual - Expected_Low));
- else
- Report.Failed (Test_Name &
- " actual: " & Real'Image (Actual) &
- " expected low: " & Real'Image (Model_Expected_Low) &
- " expected high: " & Real'Image (Model_Expected_High) &
- " difference: " & Real'Image (Expected_High - Actual));
- end if;
- elsif Verbose then
- Report.Comment (Test_Name & " passed");
- end if;
- end Check_Exact;
-
-
- procedure Exact_Result_Test is
- begin
- -- A.5.1(38)
- Check_Exact (Arcsin (0.0), 0.0, 0.0, "arcsin(0)");
- Check_Exact (Arcsin (0.0, 45.0), 0.0, 0.0, "arcsin(0,45)");
-
- -- A.5.1(39)
- Check_Exact (Arccos (1.0), 0.0, 0.0, "arccos(1)");
- Check_Exact (Arccos (1.0, 75.0), 0.0, 0.0, "arccos(1,75)");
-
- -- G.2.4(11-13)
- Check_Exact (Arcsin (1.0), Half_PI_Low, Half_PI_High, "arcsin(1)");
- Check_Exact (Arcsin (1.0, 360.0), 90.0, 90.0, "arcsin(1,360)");
-
- Check_Exact (Arcsin (-1.0), -Half_PI_High, -Half_PI_Low, "arcsin(-1)");
- Check_Exact (Arcsin (-1.0, 360.0), -90.0, -90.0, "arcsin(-1,360)");
-
- Check_Exact (Arccos (0.0), Half_PI_Low, Half_PI_High, "arccos(0)");
- Check_Exact (Arccos (0.0, 360.0), 90.0, 90.0, "arccos(0,360)");
-
- Check_Exact (Arccos (-1.0), PI_Low, PI_High, "arccos(-1)");
- Check_Exact (Arccos (-1.0, 360.0), 180.0, 180.0, "arccos(-1,360)");
-
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error raised in Exact_Result Test");
- when others =>
- Report.Failed ("Exception in Exact_Result Test");
- end Exact_Result_Test;
-
-
- procedure Arcsin_Taylor_Series_Test is
- -- the following range is chosen so that the Taylor series
- -- used will produce a result accurate to machine precision.
- --
- -- The following formula is used for the Taylor series:
- -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
- -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
- -- where xsq = x * x
- --
- A : constant := -0.125;
- B : constant := 0.125;
- X : Real;
- Y, Y_Sq : Real;
- Actual, Sum, Xm : Real;
- -- terms in Taylor series
- K : constant Integer := Integer (
- Log (
- Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
- 10.0)) + 1;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- -- make sure there is no error in x-1, x, and x+1
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Y := X;
- Y_Sq := Y * Y;
- Sum := 0.0;
- Xm := Real (K + K + 1);
- for M in 1 .. K loop
- Sum := Y_Sq * (Sum + 1.0/Xm);
- Xm := Xm - 2.0;
- Sum := Sum * (Xm /(Xm + 1.0));
- end loop;
- Sum := Sum * Y;
- Actual := Y + Sum;
- Sum := (Y - Actual) + Sum;
- if not Real'Machine_Rounds then
- Actual := Actual + (Sum + Sum);
- end if;
-
- Check (Actual, Arcsin (X),
- "Taylor Series test" & Integer'Image (I) & ": arcsin(" &
- Real'Image (X) & ") ",
- Minimum_Error);
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
-
- end loop;
-
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Arcsin_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- when others =>
- Report.Failed ("exception in Arcsin_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- end Arcsin_Taylor_Series_Test;
-
-
-
- procedure Arccos_Taylor_Series_Test is
- -- the following range is chosen so that the Taylor series
- -- used will produce a result accurate to machine precision.
- --
- -- The following formula is used for the Taylor series:
- -- TS(x) = x { 1 + (xsq/2) [ (1/3) + (3/4)xsq { (1/5) +
- -- (5/6)xsq [ (1/7) + (7/8)xsq/9 ] } ] }
- -- arccos(x) = pi/2 - TS(x)
- A : constant := -0.125;
- B : constant := 0.125;
- C1, C2 : Real;
- X : Real;
- Y, Y_Sq : Real;
- Actual, Sum, Xm, S : Real;
- -- terms in Taylor series
- K : constant Integer := Integer (
- Log (
- Real (Real'Machine_Radix) ** Real'Machine_Mantissa,
- 10.0)) + 1;
- begin
- if Real'Digits > 23 then
- -- constants in this section only accurate to 23 digits
- Error_Low_Bound := 0.00000_00000_00000_00000_001;
- Report.Comment ("arctan accuracy checked to 23 digits");
- end if;
-
- -- C1 + C2 equals Pi/2 accurate to 23 digits
- if Real'Machine_Radix = 10 then
- C1 := 1.57;
- C2 := 7.9632679489661923132E-4;
- else
- C1 := 201.0 / 128.0;
- C2 := 4.8382679489661923132E-4;
- end if;
-
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- -- make sure there is no error in x-1, x, and x+1
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Y := X;
- Y_Sq := Y * Y;
- Sum := 0.0;
- Xm := Real (K + K + 1);
- for M in 1 .. K loop
- Sum := Y_Sq * (Sum + 1.0/Xm);
- Xm := Xm - 2.0;
- Sum := Sum * (Xm /(Xm + 1.0));
- end loop;
- Sum := Sum * Y;
-
- -- at this point we have arcsin(x).
- -- We compute arccos(x) = pi/2 - arcsin(x).
- -- The following code segment is translated directly from
- -- the CELEFUNT FORTRAN implementation
-
- S := C1 + C2;
- Sum := ((C1 - S) + C2) - Sum;
- Actual := S + Sum;
- Sum := ((S - Actual) + Sum) - Y;
- S := Actual;
- Actual := S + Sum;
- Sum := (S - Actual) + Sum;
-
- if not Real'Machine_Rounds then
- Actual := Actual + (Sum + Sum);
- end if;
-
- Check (Actual, Arccos (X),
- "Taylor Series test" & Integer'Image (I) & ": arccos(" &
- Real'Image (X) & ") ",
- Minimum_Error);
-
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- exit when Accuracy_Error_Reported;
- end loop;
- Error_Low_Bound := 0.0; -- reset
- exception
- when Constraint_Error =>
- Report.Failed
- ("Constraint_Error raised in Arccos_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- when others =>
- Report.Failed ("exception in Arccos_Taylor_Series_Test" &
- " for X=" & Real'Image (X));
- end Arccos_Taylor_Series_Test;
-
-
-
- procedure Identity_Test is
- -- test the identity arcsin(-x) = -arcsin(x)
- -- range chosen to be most of the valid range of the argument.
- A : constant := -0.999;
- B : constant := 0.999;
- X : Real;
- begin
- Accuracy_Error_Reported := False; -- reset
- for I in 1..Max_Samples loop
- -- make sure there is no error in x-1, x, and x+1
- X := (B - A) * Real (I) / Real (Max_Samples) + A;
-
- Check (Arcsin(-X), -Arcsin (X),
- "Identity test" & Integer'Image (I) & ": arcsin(" &
- Real'Image (X) & ") ",
- 8.0); -- 2 arcsin evaluations => twice the error bound
-
- if Accuracy_Error_Reported then
- -- only report the first error in this test in order to keep
- -- lots of failures from producing a huge error log
- return;
- end if;
- end loop;
- end Identity_Test;
-
-
- procedure Exception_Test is
- X1, X2 : Real := 0.0;
- begin
- begin
- X1 := Arcsin (1.1);
- Report.Failed ("no exception for Arcsin (1.1)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error instead of " &
- "Argument_Error for Arcsin (1.1)");
- when Ada.Numerics.Argument_Error =>
- null; -- expected result
- when others =>
- Report.Failed ("wrong exception for Arcsin(1.1)");
- end;
-
- begin
- X2 := Arccos (-1.1);
- Report.Failed ("no exception for Arccos (-1.1)");
- exception
- when Constraint_Error =>
- Report.Failed ("Constraint_Error instead of " &
- "Argument_Error for Arccos (-1.1)");
- when Ada.Numerics.Argument_Error =>
- null; -- expected result
- when others =>
- Report.Failed ("wrong exception for Arccos(-1.1)");
- end;
-
-
- -- optimizer thwarting
- if Report.Ident_Bool (False) then
- Report.Comment (Real'Image (X1 + X2));
- end if;
- end Exception_Test;
-
-
- procedure Do_Test is
- begin
- Special_Value_Test;
- Exact_Result_Test;
- Arcsin_Taylor_Series_Test;
- Arccos_Taylor_Series_Test;
- Identity_Test;
- Exception_Test;
- end Do_Test;
- end Generic_Check;
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
- -- These expressions must be truly static, which is why we have to do them
- -- outside of the generic, and we use the named numbers. Note that we know
- -- that PI is not a machine number (it is irrational), and it should be
- -- represented to more digits than supported by the target machine.
- Float_Half_PI_Low : constant := Float'Adjacent(PI/2.0, 0.0);
- Float_Half_PI_High : constant := Float'Adjacent(PI/2.0, 10.0);
- Float_PI_Low : constant := Float'Adjacent(PI, 0.0);
- Float_PI_High : constant := Float'Adjacent(PI, 10.0);
- package Float_Check is new Generic_Check (Float,
- Half_PI_Low => Float_Half_PI_Low,
- Half_PI_High => Float_Half_PI_High,
- PI_Low => Float_PI_Low,
- PI_High => Float_PI_High);
-
- -- check the floating point type with the most digits
- type A_Long_Float is digits System.Max_Digits;
- A_Long_Float_Half_PI_Low : constant := A_Long_Float'Adjacent(PI/2.0, 0.0);
- A_Long_Float_Half_PI_High : constant := A_Long_Float'Adjacent(PI/2.0, 10.0);
- A_Long_Float_PI_Low : constant := A_Long_Float'Adjacent(PI, 0.0);
- A_Long_Float_PI_High : constant := A_Long_Float'Adjacent(PI, 10.0);
- package A_Long_Float_Check is new Generic_Check (A_Long_Float,
- Half_PI_Low => A_Long_Float_Half_PI_Low,
- Half_PI_High => A_Long_Float_Half_PI_High,
- PI_Low => A_Long_Float_PI_Low,
- PI_High => A_Long_Float_PI_High);
-
- -----------------------------------------------------------------------
- -----------------------------------------------------------------------
-
-
-begin
- Report.Test ("CXG2015",
- "Check the accuracy of the ARCSIN and ARCCOS functions");
-
- if Verbose then
- Report.Comment ("checking Standard.Float");
- end if;
-
- Float_Check.Do_Test;
-
- if Verbose then
- Report.Comment ("checking a digits" &
- Integer'Image (System.Max_Digits) &
- " floating point type");
- end if;
-
- A_Long_Float_Check.Do_Test;
-
-
- Report.Result;
-end CXG2015;