aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-loop-ivopts.c
diff options
context:
space:
mode:
Diffstat (limited to 'gcc/tree-ssa-loop-ivopts.c')
-rw-r--r--gcc/tree-ssa-loop-ivopts.c5077
1 files changed, 5077 insertions, 0 deletions
diff --git a/gcc/tree-ssa-loop-ivopts.c b/gcc/tree-ssa-loop-ivopts.c
new file mode 100644
index 00000000000..df567564dd7
--- /dev/null
+++ b/gcc/tree-ssa-loop-ivopts.c
@@ -0,0 +1,5077 @@
+/* Induction variable optimizations.
+ Copyright (C) 2003 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 2, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+/* This pass tries to find the optimal set of induction variables for the loop.
+ It optimizes just the basic linear induction variables (although adding
+ support for other types should not be too hard). It includes the
+ optimizations commonly known as strength reduction, induction variable
+ coalescing and induction variable elimination. It does it in the
+ following steps:
+
+ 1) The interesting uses of induction variables are found. This includes
+
+ -- uses of induction variables in non-linear expressions
+ -- adresses of arrays
+ -- comparisons of induction variables
+
+ 2) Candidates for the induction variables are found. This includes
+
+ -- old induction variables
+ -- the variables defined by expressions derived from the "interesting
+ uses" above
+
+ 3) The optimal (w.r. to a cost function) set of variables is chosen. The
+ cost function assigns a cost to sets of induction variables and consists
+ of three parts:
+
+ -- The use costs. Each of the interesting uses choses the best induction
+ variable in the set and adds its cost to the sum. The cost reflects
+ the time spent on modifying the induction variables value to be usable
+ for the given purpose (adding base and offset for arrays, etc.).
+ -- The variable costs. Each of the variables has a cost assigned that
+ reflects the costs assoctiated with incrementing the value of the
+ variable. The original variables are somewhat preferred.
+ -- The set cost. Depending on the size of the set, extra cost may be
+ added to reflect register pressure.
+
+ All the costs are defined in a machine-specific way, using the target
+ hooks and machine descriptions to determine them.
+
+ 4) The trees are transformed to use the new variables, the dead code is
+ removed.
+
+ All of this is done loop by loop. Doing it globally is theoretically
+ possible, it might give a better performance and it might enable us
+ to decide costs more precisely, but getting all the interactions right
+ would be complicated. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "tm.h"
+#include "tree.h"
+#include "rtl.h"
+#include "tm_p.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+#include "output.h"
+#include "diagnostic.h"
+#include "tree-flow.h"
+#include "tree-dump.h"
+#include "timevar.h"
+#include "cfgloop.h"
+#include "varray.h"
+#include "expr.h"
+#include "tree-pass.h"
+#include "ggc.h"
+#include "insn-config.h"
+#include "recog.h"
+#include "hashtab.h"
+#include "tree-fold-const.h"
+#include "tree-chrec.h"
+#include "tree-scalar-evolution.h"
+
+/* The infinite cost. */
+#define INFTY 10000000
+
+/* The expected number of loop iterations. TODO -- use profiling instead of
+ this. */
+#define AVG_LOOP_NITER(LOOP) 5
+
+/* Just to shorten the ugly names. */
+#define EXEC_BINARY nondestructive_fold_binary_to_constant
+#define EXEC_UNARY nondestructive_fold_unary_to_constant
+
+/* Representation of the induction variable. */
+struct iv
+{
+ tree base; /* Initial value of the iv. */
+ tree step; /* Step of the iv (constant only). */
+ tree ssa_name; /* The ssa name with the value. */
+ bool biv_p; /* Is it a biv? */
+ bool have_use_for; /* Do we already have a use for it? */
+ unsigned use_id; /* The identificator in the use if it is the case. */
+};
+
+/* Per-ssa version information (induction variable descriptions, etc.). */
+struct version_info
+{
+ tree name; /* The ssa name. */
+ struct iv *iv; /* Induction variable description. */
+ bool has_nonlin_use; /* For a loop-level invariant, whether it is used in
+ an expression that is not an induction variable. */
+ unsigned inv_id; /* Id of an invariant. */
+ bool preserve_biv; /* For the original biv, whether to preserve it. */
+};
+
+/* Description of number of iterations of a loop. */
+struct tree_niter_desc
+{
+ tree assumptions; /* Assumptions for the number of iterations be valid. */
+ tree may_be_zero; /* Condition under that the loop exits in the first
+ iteration. */
+ tree niter; /* Number of iterations. */
+};
+
+/* Information attached to loop. */
+struct loop_data
+{
+ unsigned n_exits; /* Number of exit edges. */
+ edge single_exit; /* The exit edge in case there is exactly one and
+ its source dominates the loops latch. */
+ struct tree_niter_desc niter;
+ /* Number of iterations. */
+
+ unsigned regs_used; /* Number of registers used. */
+};
+
+/* Types of uses. */
+enum use_type
+{
+ USE_NONLINEAR_EXPR, /* Use in a nonlinear expression. */
+ USE_OUTER, /* The induction variable is used outside the loop. */
+ USE_ADDRESS, /* Use in an address. */
+ USE_COMPARE /* Use is a compare. */
+};
+
+/* The candidate - cost pair. */
+struct cost_pair
+{
+ struct iv_cand *cand; /* The candidate. */
+ unsigned cost; /* The cost. */
+ bitmap depends_on; /* The list of invariants that have to be
+ preserved. */
+};
+
+/* Use. */
+struct iv_use
+{
+ unsigned id; /* The id of the use. */
+ enum use_type type; /* Type of the use. */
+ struct iv *iv; /* The induction variable it is based on. */
+ tree stmt; /* Statement in that it occurs. */
+ tree *op_p; /* The place where it occurs. */
+ bitmap related_cands; /* The set of "related" iv candidates. */
+
+ unsigned n_map_members; /* Number of candidates in the cost_map list. */
+ struct cost_pair *cost_map;
+ /* The costs wrto the iv candidates. */
+
+ struct iv_cand *selected;
+ /* The selected candidate. */
+};
+
+/* The position where the iv is computed. */
+enum iv_position
+{
+ IP_NORMAL, /* At the end, just before the exit condition. */
+ IP_END, /* At the end of the latch block. */
+ IP_ORIGINAL /* The original biv. */
+};
+
+/* The induction variable candidate. */
+struct iv_cand
+{
+ unsigned id; /* The number of the candidate. */
+ bool important; /* Whether this is an "important" candidate, i.e. such
+ that it should be considered by all uses. */
+ enum iv_position pos; /* Where it is computed. */
+ tree incremented_at; /* For original biv, the statement where it is
+ incremented. */
+ tree var_before; /* The variable used for it before incrementation. */
+ tree var_after; /* The variable used for it after incrementation. */
+ struct iv *iv; /* The value of the candidate. NULL for
+ "pseudocandidate" used to indicate the possibility
+ to replace the final value of an iv by direct
+ computation of the value. */
+ unsigned cost; /* Cost of the candidate. */
+};
+
+/* The data used by the induction variable optimizations. */
+
+struct ivopts_data
+{
+ /* The currently optimized loop. */
+ struct loop *current_loop;
+
+ /* The size of version_info array allocated. */
+ unsigned version_info_size;
+
+ /* The array of information for the ssa names. */
+ struct version_info *version_info;
+
+ /* The bitmap of indices in version_info whose value was changed. */
+ bitmap relevant;
+
+ /* The maximum invariant id. */
+ unsigned max_inv_id;
+
+ /* The uses of induction variables. */
+ varray_type iv_uses;
+
+ /* The candidates. */
+ varray_type iv_candidates;
+
+ /* Whether to consider just related and important candidates when replacing a
+ use. */
+ bool consider_all_candidates;
+};
+
+/* Bound on number of candidates below that all candidates are considered. */
+
+#define CONSIDER_ALL_CANDIDATES_BOUND 15
+
+/* The properties of the target. */
+
+static unsigned avail_regs; /* Number of available registers. */
+static unsigned res_regs; /* Number of reserved registers. */
+static unsigned small_cost; /* The cost for register when there is a free one. */
+static unsigned pres_cost; /* The cost for register when there are not too many
+ free ones. */
+static unsigned spill_cost; /* The cost for register when we need to spill. */
+
+/* The list of trees for that the decl_rtl field must be reset is stored
+ here. */
+
+static varray_type decl_rtl_to_reset;
+
+#define SWAP(X, Y) do { void *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
+
+static tree force_gimple_operand (tree, tree *, bool);
+
+/* Number of uses recorded in DATA. */
+
+static inline unsigned
+n_iv_uses (struct ivopts_data *data)
+{
+ return VARRAY_ACTIVE_SIZE (data->iv_uses);
+}
+
+/* Ith use recorded in DATA. */
+
+static inline struct iv_use *
+iv_use (struct ivopts_data *data, unsigned i)
+{
+ return VARRAY_GENERIC_PTR_NOGC (data->iv_uses, i);
+}
+
+/* Number of candidates recorded in DATA. */
+
+static inline unsigned
+n_iv_cands (struct ivopts_data *data)
+{
+ return VARRAY_ACTIVE_SIZE (data->iv_candidates);
+}
+
+/* Ith candidate recorded in DATA. */
+
+static inline struct iv_cand *
+iv_cand (struct ivopts_data *data, unsigned i)
+{
+ return VARRAY_GENERIC_PTR_NOGC (data->iv_candidates, i);
+}
+
+/* The data for LOOP. */
+
+static inline struct loop_data *
+loop_data (struct loop *loop)
+{
+ return loop->aux;
+}
+
+/* Dumps information about the induction variable IV to FILE. */
+
+extern void dump_iv (FILE *, struct iv *);
+void
+dump_iv (FILE *file, struct iv *iv)
+{
+ fprintf (file, "ssa name ");
+ print_generic_expr (file, iv->ssa_name, TDF_SLIM);
+ fprintf (file, "\n");
+
+ if (iv->step)
+ {
+ fprintf (file, " base ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " step ");
+ print_generic_expr (file, iv->step, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ else
+ {
+ fprintf (file, " invariant ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ if (iv->biv_p)
+ fprintf (file, " is a biv\n");
+}
+
+/* Dumps information about the USE to FILE. */
+
+extern void dump_use (FILE *, struct iv_use *);
+void
+dump_use (FILE *file, struct iv_use *use)
+{
+ struct iv *iv = use->iv;
+
+ fprintf (file, "use %d\n", use->id);
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ fprintf (file, " generic\n");
+ break;
+
+ case USE_OUTER:
+ fprintf (file, " outside\n");
+ break;
+
+ case USE_ADDRESS:
+ fprintf (file, " address\n");
+ break;
+
+ case USE_COMPARE:
+ fprintf (file, " compare\n");
+ break;
+
+ default:
+ abort ();
+ }
+
+ fprintf (file, " in statement ");
+ print_generic_expr (file, use->stmt, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " at position ");
+ print_generic_expr (file, *use->op_p, TDF_SLIM);
+ fprintf (file, "\n");
+
+ if (iv->step)
+ {
+ fprintf (file, " base ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " step ");
+ print_generic_expr (file, iv->step, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ else
+ {
+ fprintf (file, " invariant ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+
+ fprintf (file, " related candidates ");
+ dump_bitmap (file, use->related_cands);
+}
+
+/* Dumps information about the uses to FILE. */
+
+extern void dump_uses (FILE *, struct ivopts_data *);
+void
+dump_uses (FILE *file, struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ dump_use (file, use);
+ fprintf (file, "\n");
+ }
+}
+
+/* Dumps information about induction variable candidate CAND to FILE. */
+
+extern void dump_cand (FILE *, struct iv_cand *);
+void
+dump_cand (FILE *file, struct iv_cand *cand)
+{
+ struct iv *iv = cand->iv;
+
+ fprintf (file, "candidate %d%s\n",
+ cand->id, cand->important ? " (important)" : "");
+
+ if (!iv)
+ {
+ fprintf (file, " final value replacement\n");
+ return;
+ }
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ fprintf (file, " incremented before exit test\n");
+ break;
+
+ case IP_END:
+ fprintf (file, " incremented at end\n");
+ break;
+
+ case IP_ORIGINAL:
+ fprintf (file, " original biv\n");
+ break;
+ }
+
+ if (iv->step)
+ {
+ fprintf (file, " base ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+
+ fprintf (file, " step ");
+ print_generic_expr (file, iv->step, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+ else
+ {
+ fprintf (file, " invariant ");
+ print_generic_expr (file, iv->base, TDF_SLIM);
+ fprintf (file, "\n");
+ }
+}
+
+/* Returns the info for ssa version VER. */
+
+static inline struct version_info *
+ver_info (struct ivopts_data *data, unsigned ver)
+{
+ return data->version_info + ver;
+}
+
+/* Returns the info for ssa name NAME. */
+
+static inline struct version_info *
+name_info (struct ivopts_data *data, tree name)
+{
+ return ver_info (data, SSA_NAME_VERSION (name));
+}
+
+/* Checks whether ARG is either NULL_TREE or constant zero. */
+
+static bool
+zero_p (tree arg)
+{
+ if (!arg)
+ return true;
+
+ return integer_zerop (arg);
+}
+
+/* Checks that X is integer constant that fits in unsigned HOST_WIDE_INT.
+ Similar to host_integerp (x, 1), but does not fail if the value is
+ negative. */
+
+static bool
+cst_and_fits_in_hwi (tree x)
+{
+ if (TREE_CODE (x) != INTEGER_CST)
+ return false;
+
+ return (TREE_INT_CST_HIGH (x) == 0
+ || TREE_INT_CST_HIGH (x) == -1);
+}
+
+/* Return value of a constant X. */
+
+static HOST_WIDE_INT
+int_cst_value (tree x)
+{
+ unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
+ unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
+ bool negative = ((val >> (bits - 1)) & 1) != 0;
+
+ if (negative)
+ val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
+ else
+ val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
+
+ return val;
+}
+
+/* Builds integer constant of type TYPE and value VAL. */
+
+static tree
+build_int_cst (tree type, unsigned HOST_WIDE_INT val)
+{
+ unsigned bits = TYPE_PRECISION (type);
+ bool signed_p = !TREE_UNSIGNED (type);
+ bool negative = ((val >> (bits - 1)) & 1) != 0;
+ tree ival;
+
+ if (signed_p && negative)
+ {
+ val = val | (~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ ival = build_int_2 (val, -1);
+ }
+ else
+ {
+ val = val & ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ ival = build_int_2 (val, 0);
+ }
+
+ return convert (type, ival);
+}
+
+/* Checks whether there exists number X such that X * B = A, counting modulo
+ 2^BITS. */
+
+static bool
+divide (unsigned bits, unsigned HOST_WIDE_INT a, unsigned HOST_WIDE_INT b,
+ HOST_WIDE_INT *x)
+{
+ unsigned HOST_WIDE_INT mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ unsigned HOST_WIDE_INT inv, ex, val;
+ unsigned i;
+
+ a &= mask;
+ b &= mask;
+
+ /* First divide the whole equation by 2 as long as possible. */
+ while (!(a & 1) && !(b & 1))
+ {
+ a >>= 1;
+ b >>= 1;
+ bits--;
+ mask >>= 1;
+ }
+
+ if (!(b & 1))
+ {
+ /* If b is still even, a is odd and there is no such x. */
+ return false;
+ }
+
+ /* Find the inverse of b. We compute it as
+ b^(2^(bits - 1) - 1) (mod 2^bits). */
+ inv = 1;
+ ex = b;
+ for (i = 0; i < bits - 1; i++)
+ {
+ inv = (inv * ex) & mask;
+ ex = (ex * ex) & mask;
+ }
+
+ val = (a * inv) & mask;
+
+ if (((val * b) & mask) != a)
+ abort ();
+
+ if ((val >> (bits - 1)) & 1)
+ val |= ~mask;
+
+ *x = val;
+
+ return true;
+}
+
+/* Calls CBCK for each index in ADDR_P. It passes the pointer to the index,
+ the base if it is an array and DATA to the callback. If the callback returns
+ false, the whole search stops and false is returned. */
+
+bool
+for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
+{
+ tree *nxt;
+
+ for (; ; addr_p = nxt)
+ {
+ switch (TREE_CODE (*addr_p))
+ {
+ case SSA_NAME:
+ return cbck (NULL, addr_p, data);
+
+ case INDIRECT_REF:
+ nxt = &TREE_OPERAND (*addr_p, 0);
+ return cbck (NULL, nxt, data);
+
+ case BIT_FIELD_REF:
+ case COMPONENT_REF:
+ nxt = &TREE_OPERAND (*addr_p, 0);
+ break;
+
+ case ARRAY_REF:
+ nxt = &TREE_OPERAND (*addr_p, 0);
+ if (!cbck (*nxt, &TREE_OPERAND (*addr_p, 1), data))
+ return false;
+ break;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case STRING_CST:
+ case RESULT_DECL:
+ return true;
+
+ default:
+ abort ();
+ }
+ }
+}
+
+/* Forces IDX to be either constant or ssa name. Callback for
+ for_each_index. */
+
+struct idx_fs_data
+{
+ tree stmts;
+};
+
+static bool
+idx_force_simple (tree base ATTRIBUTE_UNUSED, tree *idx, void *data)
+{
+ struct idx_fs_data *d = data;
+ tree stmts;
+
+ *idx = force_gimple_operand (*idx, &stmts, true);
+
+ if (stmts)
+ {
+ tree_stmt_iterator tsi = tsi_start (d->stmts);
+ tsi_link_before (&tsi, stmts, TSI_SAME_STMT);
+ }
+
+ return true;
+}
+
+/* Updates TREE_ADDRESSABLE flag for the base variable of EXPR. */
+
+static void
+update_addressable_flag (tree expr)
+{
+ if (TREE_CODE (expr) != ADDR_EXPR)
+ abort ();
+
+ expr = TREE_OPERAND (expr, 0);
+ while (TREE_CODE (expr) == ARRAY_REF
+ || TREE_CODE (expr) == COMPONENT_REF
+ || TREE_CODE (expr) == REALPART_EXPR
+ || TREE_CODE (expr) == IMAGPART_EXPR)
+ expr = TREE_OPERAND (expr, 0);
+ if (TREE_CODE (expr) != VAR_DECL
+ && TREE_CODE (expr) != PARM_DECL)
+ return;
+
+ TREE_ADDRESSABLE (expr) = 1;
+}
+
+/* Expands EXPR to list of gimple statements STMTS, forcing it to become
+ a gimple operand that is returned. If SIMPLE is true, force the operand
+ to be either ssa_name or integer constant. */
+
+static tree
+force_gimple_operand (tree expr, tree *stmts, bool simple)
+{
+ enum tree_code code = TREE_CODE (expr);
+ char class = TREE_CODE_CLASS (code);
+ tree op0, op1, stmts0, stmts1, stmt, rhs, name;
+ tree_stmt_iterator tsi;
+ struct idx_fs_data d;
+ tree atmp;
+
+ if (is_gimple_val (expr)
+ && (!simple
+ || TREE_CODE (expr) == SSA_NAME
+ || TREE_CODE (expr) == INTEGER_CST))
+ {
+ if (code == ADDR_EXPR)
+ update_addressable_flag (expr);
+
+ *stmts = NULL_TREE;
+ return expr;
+ }
+
+ if (code == ADDR_EXPR)
+ {
+ op0 = TREE_OPERAND (expr, 0);
+ if (TREE_CODE (op0) == INDIRECT_REF)
+ return force_gimple_operand (TREE_OPERAND (op0, 0), stmts, simple);
+ }
+
+ atmp = create_tmp_var (TREE_TYPE (expr), "fgotmp");
+ add_referenced_tmp_var (atmp);
+
+ switch (class)
+ {
+ case '1':
+ case '2':
+ op0 = force_gimple_operand (TREE_OPERAND (expr, 0), &stmts0, false);
+ if (class == '2')
+ {
+ op1 = force_gimple_operand (TREE_OPERAND (expr, 1), &stmts1, false);
+ rhs = build (code, TREE_TYPE (expr), op0, op1);
+ }
+ else
+ {
+ rhs = build1 (code, TREE_TYPE (expr), op0);
+ stmts1 = NULL_TREE;
+ }
+
+ stmt = build (MODIFY_EXPR, void_type_node, atmp, rhs);
+ name = make_ssa_name (atmp, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+
+ if (stmts0)
+ {
+ *stmts = stmts0;
+ if (stmts1)
+ {
+ tsi = tsi_last (*stmts);
+ tsi_link_after (&tsi, stmts1, TSI_CONTINUE_LINKING);
+ }
+ }
+ else if (stmts1)
+ *stmts = stmts1;
+ else
+ *stmts = alloc_stmt_list ();
+
+ tsi = tsi_last (*stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ return name;
+
+ default:
+ break;
+ }
+
+ /* Some specially handled codes: */
+ switch (TREE_CODE (expr))
+ {
+ case ADDR_EXPR:
+ stmt = build (MODIFY_EXPR, void_type_node, atmp, expr);
+ name = make_ssa_name (atmp, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+
+ *stmts = alloc_stmt_list ();
+ tsi = tsi_last (*stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+
+ d.stmts = *stmts;
+ for_each_index (&TREE_OPERAND (expr, 0), idx_force_simple, &d);
+
+ update_addressable_flag (TREE_OPERAND (stmt, 1));
+
+ return name;
+
+ case INTEGER_CST:
+ if (!TREE_OVERFLOW (expr))
+ abort ();
+
+ stmt = build (MODIFY_EXPR, void_type_node, atmp, expr);
+ name = make_ssa_name (atmp, stmt);
+ TREE_OPERAND (stmt, 0) = name;
+
+ *stmts = alloc_stmt_list ();
+ tsi = tsi_last (*stmts);
+ tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
+ return name;
+
+ default:
+ abort ();
+ }
+}
+
+/* If TYPE is an array type, corresponding pointer type is returned,
+ otherwise the TYPE is returned unchanged. */
+
+static tree
+array2ptr (tree type)
+{
+ if (TREE_CODE (type) != ARRAY_TYPE)
+ return type;
+
+ return build_pointer_type (TREE_TYPE (type));
+}
+
+/* Sets single_exit field for loops. */
+
+static void
+find_exit_edges (void)
+{
+ basic_block bb;
+ edge e;
+ struct loop *src, *dest;;
+
+ FOR_EACH_BB (bb)
+ {
+ for (e = bb->succ; e; e = e->succ_next)
+ {
+ src = e->src->loop_father;
+ dest = find_common_loop (src, e->dest->loop_father);
+
+ for (; src != dest; src = src->outer)
+ {
+ loop_data (src)->n_exits++;
+ if (loop_data (src)->n_exits > 1)
+ {
+ loop_data (src)->single_exit = NULL;
+ continue;
+ }
+
+ if (!dominated_by_p (CDI_DOMINATORS, src->latch, e->src))
+ continue;
+
+ loop_data (src)->single_exit = e;
+ }
+ }
+ }
+}
+
+/* Returns the basic block in that statements should be emitted for IP_END
+ position in LOOP. */
+
+static basic_block
+ip_end_pos (struct loop *loop)
+{
+ return loop->latch;
+}
+
+/* Returns the basic block in that statements should be emitted for IP_NORMAL
+ position in LOOP. */
+
+static basic_block
+ip_normal_pos (struct loop *loop)
+{
+ tree last;
+ basic_block bb;
+ edge exit;
+
+ if (loop->latch->pred->pred_next)
+ return NULL;
+
+ bb = loop->latch->pred->src;
+ last = last_stmt (bb);
+ if (TREE_CODE (last) != COND_EXPR)
+ return NULL;
+
+ exit = bb->succ;
+ if (exit->dest == loop->latch)
+ exit = exit->succ_next;
+
+ if (flow_bb_inside_loop_p (loop, exit->dest))
+ return NULL;
+
+ return bb;
+}
+
+/* Returs true if STMT is after the place where the IP_NORMAL ivs will be
+ emitted in LOOP. */
+
+static bool
+stmt_after_ip_normal_pos (struct loop *loop, tree stmt)
+{
+ basic_block bb = ip_normal_pos (loop), sbb = bb_for_stmt (stmt);
+
+ if (!bb)
+ abort ();
+
+ if (sbb == loop->latch)
+ return true;
+
+ if (sbb != bb)
+ return false;
+
+ return stmt == last_stmt (bb);
+}
+
+/* Returns true if STMT if after the place where the original induction
+ variable CAND is incremented. */
+
+static bool
+stmt_after_ip_original_pos (struct iv_cand *cand, tree stmt)
+{
+ basic_block cand_bb = bb_for_stmt (cand->incremented_at);
+ basic_block stmt_bb = bb_for_stmt (stmt);
+ block_stmt_iterator bsi;
+
+ if (!dominated_by_p (CDI_DOMINATORS, stmt_bb, cand_bb))
+ return false;
+
+ if (stmt_bb != cand_bb)
+ return true;
+
+ /* Scan the block from the end, since the original ivs are usually
+ incremented at the end of the loop body. */
+ for (bsi = bsi_last (stmt_bb); ; bsi_prev (&bsi))
+ {
+ if (bsi_stmt (bsi) == cand->incremented_at)
+ return false;
+ if (bsi_stmt (bsi) == stmt)
+ return true;
+ }
+}
+
+/* Returns true if STMT if after the place where the induction variable
+ CAND is incremented in LOOP. */
+
+static bool
+stmt_after_increment (struct loop *loop, struct iv_cand *cand, tree stmt)
+{
+ switch (cand->pos)
+ {
+ case IP_END:
+ return false;
+
+ case IP_NORMAL:
+ return stmt_after_ip_normal_pos (loop, stmt);
+
+ case IP_ORIGINAL:
+ return stmt_after_ip_original_pos (cand, stmt);
+
+ default:
+ abort ();
+ }
+}
+
+/* Initializes data structures used by the iv optimization pass, stored
+ in DATA. LOOPS is the loop tree. */
+
+static void
+tree_ssa_iv_optimize_init (struct loops *loops, struct ivopts_data *data)
+{
+ unsigned i;
+
+ data->version_info_size = 2 * highest_ssa_version;
+ data->version_info = xcalloc (data->version_info_size,
+ sizeof (struct version_info));
+ data->relevant = BITMAP_XMALLOC ();
+ data->max_inv_id = 0;
+
+ for (i = 1; i < loops->num; i++)
+ if (loops->parray[i])
+ loops->parray[i]->aux = xcalloc (1, sizeof (struct loop_data));
+
+ find_exit_edges ();
+
+ VARRAY_GENERIC_PTR_NOGC_INIT (data->iv_uses, 20, "iv_uses");
+ VARRAY_GENERIC_PTR_NOGC_INIT (data->iv_candidates, 20, "iv_candidates");
+ VARRAY_GENERIC_PTR_NOGC_INIT (decl_rtl_to_reset, 20, "decl_rtl_to_reset");
+
+ scev_initialize (loops);
+}
+
+/* Allocates an induction variable with given initial value BASE and step STEP
+ for loop LOOP. */
+
+static struct iv *
+alloc_iv (tree base, tree step)
+{
+ struct iv *iv = xcalloc (1, sizeof (struct iv));
+
+ if (step && integer_zerop (step))
+ step = NULL_TREE;
+
+ iv->base = base;
+ iv->step = step;
+ iv->biv_p = false;
+ iv->have_use_for = false;
+ iv->use_id = 0;
+ iv->ssa_name = NULL_TREE;
+
+ return iv;
+}
+
+/* Sets STEP and BASE for induction variable IV. */
+
+static void
+set_iv (struct ivopts_data *data, tree iv, tree base, tree step)
+{
+ struct version_info *info = name_info (data, iv);
+
+ if (info->iv)
+ abort ();
+
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (iv));
+ info->iv = alloc_iv (base, step);
+ info->iv->ssa_name = iv;
+}
+
+/* Finds induction variable declaration for VAR. */
+
+static struct iv *
+get_iv (struct ivopts_data *data, tree var)
+{
+ basic_block bb;
+
+ if (!name_info (data, var)->iv)
+ {
+ bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
+
+ if (!bb
+ || !flow_bb_inside_loop_p (data->current_loop, bb))
+ set_iv (data, var, var, NULL_TREE);
+ }
+
+ return name_info (data, var)->iv;
+}
+
+/* Determines the step of a biv defined in PHI. */
+
+static tree
+determine_biv_step (tree phi)
+{
+ struct loop *loop = bb_for_stmt (phi)->loop_father;
+ tree name = PHI_RESULT (phi), ev, step;
+ tree type = TREE_TYPE (name);
+
+ if (!is_gimple_reg (name))
+ return NULL_TREE;
+
+ /* Just work for integers and pointers. */
+ if (TREE_CODE (type) != INTEGER_TYPE
+ && TREE_CODE (type) != POINTER_TYPE)
+ return NULL_TREE;
+
+ ev = analyze_scalar_evolution (loop, name);
+ if (TREE_CODE (ev) == INTEGER_CST
+ || TREE_CODE (ev) == SSA_NAME)
+ return convert (type, integer_zero_node);
+
+ if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
+ return NULL_TREE;
+
+ step = CHREC_RIGHT (ev);
+
+ if (TREE_CODE (step) != INTEGER_CST)
+ return NULL_TREE;
+
+ return step;
+}
+
+/* Retunrs false if INDEX is a ssa name that occurs in an
+ abnormal phi node. Callback for for_each_index. */
+
+static bool
+idx_contains_abnormal_ssa_name_p (tree base ATTRIBUTE_UNUSED, tree *index,
+ void *data ATTRIBUTE_UNUSED)
+{
+ if (TREE_CODE (*index) != SSA_NAME)
+ return true;
+
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*index) == 0;
+}
+
+/* Returns true if EXPR contains a ssa name that occurs in an
+ abnormal phi node. */
+
+static bool
+contains_abnormal_ssa_name_p (tree expr)
+{
+ enum tree_code code = TREE_CODE (expr);
+ char class = TREE_CODE_CLASS (code);
+
+ if (code == SSA_NAME)
+ return SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr) != 0;
+
+ if (code == INTEGER_CST
+ || is_gimple_min_invariant (expr))
+ return false;
+
+ if (code == ADDR_EXPR)
+ return !for_each_index (&TREE_OPERAND (expr, 1),
+ idx_contains_abnormal_ssa_name_p,
+ NULL);
+
+ switch (class)
+ {
+ case '2':
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 1)))
+ return true;
+
+ /* Fallthru. */
+ case '1':
+ if (contains_abnormal_ssa_name_p (TREE_OPERAND (expr, 0)))
+ return true;
+
+ break;
+
+ default:
+ abort ();
+ }
+
+ return false;
+}
+
+/* Finds basic ivs. */
+
+static bool
+find_bivs (struct ivopts_data *data)
+{
+ tree phi, step, type, base;
+ bool found = false;
+ struct loop *loop = data->current_loop;
+
+ for (phi = phi_nodes (loop->header); phi; phi = TREE_CHAIN (phi))
+ {
+ if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
+ continue;
+
+ step = determine_biv_step (phi);
+
+ if (!step)
+ continue;
+ if (cst_and_fits_in_hwi (step)
+ && int_cst_value (step) == 0)
+ continue;
+
+ base = phi_element_for_edge (phi, loop_preheader_edge (loop))->def;
+ if (contains_abnormal_ssa_name_p (base))
+ continue;
+
+ type = TREE_TYPE (PHI_RESULT (phi));
+ base = convert (type, base);
+ step = convert (type, step);
+
+ set_iv (data, PHI_RESULT (phi), base, step);
+ found = true;
+ }
+
+ return found;
+}
+
+/* Marks basic ivs. */
+
+static void
+mark_bivs (struct ivopts_data *data)
+{
+ tree phi, var;
+ struct iv *iv, *incr_iv;
+ struct loop *loop = data->current_loop;
+ basic_block incr_bb;
+
+ for (phi = phi_nodes (loop->header); phi; phi = TREE_CHAIN (phi))
+ {
+ iv = get_iv (data, PHI_RESULT (phi));
+ if (!iv)
+ continue;
+
+ var = phi_element_for_edge (phi, loop_latch_edge (loop))->def;
+ incr_iv = get_iv (data, var);
+ if (!incr_iv)
+ continue;
+
+ /* If the increment is in the subloop, ignore it. */
+ incr_bb = bb_for_stmt (SSA_NAME_DEF_STMT (var));
+ if (incr_bb->loop_father != data->current_loop
+ || (incr_bb->flags & BB_IRREDUCIBLE_LOOP))
+ continue;
+
+ iv->biv_p = true;
+ incr_iv->biv_p = true;
+ }
+}
+
+/* Finds definition of VAR and fills in BASE and STEP accordingly. */
+
+static bool
+get_var_def (struct ivopts_data *data, tree var, tree *base, tree *step)
+{
+ struct iv *iv;
+
+ if (is_gimple_min_invariant (var))
+ {
+ *base = var;
+ *step = NULL_TREE;
+ return true;
+ }
+
+ if (TREE_CODE (var) != SSA_NAME)
+ return false;
+
+ iv = get_iv (data, var);
+ if (!iv)
+ return false;
+
+ *base = iv->base;
+ *step = iv->step;
+
+ return true;
+}
+
+/* Checks whether STMT defines a linear induction variable and stores its
+ parameters to BASE and STEP. */
+
+static bool
+find_givs_in_stmt_scev (struct ivopts_data *data, tree stmt,
+ tree *base, tree *step)
+{
+ tree lhs, type, ev;
+ struct loop *loop = data->current_loop;
+ basic_block bb = bb_for_stmt (stmt);
+
+ *base = NULL_TREE;
+ *step = NULL_TREE;
+
+ if (TREE_CODE (stmt) != MODIFY_EXPR)
+ return false;
+
+ lhs = TREE_OPERAND (stmt, 0);
+ if (TREE_CODE (lhs) != SSA_NAME)
+ return false;
+
+ type = TREE_TYPE (lhs);
+ if (TREE_CODE (type) != INTEGER_TYPE
+ && TREE_CODE (type) != POINTER_TYPE)
+ return false;
+
+ ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, lhs);
+ if (tree_does_not_contain_chrecs (ev)
+ && !chrec_contains_symbols (ev))
+ {
+ *base = ev;
+ return true;
+ }
+
+ if (TREE_CODE (ev) != POLYNOMIAL_CHREC
+ || CHREC_VARIABLE (ev) != (unsigned) loop->num)
+ return false;
+
+ *step = CHREC_RIGHT (ev);
+ if (TREE_CODE (*step) != INTEGER_CST)
+ return false;
+ *base = CHREC_LEFT (ev);
+ if (tree_contains_chrecs (*base)
+ || chrec_contains_symbols (*base))
+ return false;
+
+ if (contains_abnormal_ssa_name_p (*base))
+ return false;
+
+ return true;
+}
+
+/* Finds general ivs in statement STMT. */
+
+static void
+find_givs_in_stmt (struct ivopts_data *data, tree stmt)
+{
+ tree base, step;
+
+ if (!find_givs_in_stmt_scev (data, stmt, &base, &step))
+ return;
+
+ set_iv (data, TREE_OPERAND (stmt, 0), base, step);
+}
+
+/* Finds general ivs in basic block BB. */
+
+static void
+find_givs_in_bb (struct ivopts_data *data, basic_block bb)
+{
+ block_stmt_iterator bsi;
+
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ find_givs_in_stmt (data, bsi_stmt (bsi));
+}
+
+/* Finds general ivs. */
+
+static void
+find_givs (struct ivopts_data *data)
+{
+ struct loop *loop = data->current_loop;
+ basic_block *body = get_loop_body_in_dom_order (loop);
+ unsigned i;
+
+ for (i = 0; i < loop->num_nodes; i++)
+ find_givs_in_bb (data, body[i]);
+ free (body);
+}
+
+/* Computes inverse of X modulo 2^s, where MASK = 2^s-1. */
+
+static tree
+inverse (tree x, tree mask)
+{
+ tree type = TREE_TYPE (x);
+ tree ctr = EXEC_BINARY (RSHIFT_EXPR, type, mask, integer_one_node);
+ tree rslt = convert (type, integer_one_node);
+
+ while (integer_nonzerop (ctr))
+ {
+ rslt = EXEC_BINARY (MULT_EXPR, type, rslt, x);
+ rslt = EXEC_BINARY (BIT_AND_EXPR, type, rslt, mask);
+ x = EXEC_BINARY (MULT_EXPR, type, x, x);
+ x = EXEC_BINARY (BIT_AND_EXPR, type, x, mask);
+ ctr = EXEC_BINARY (RSHIFT_EXPR, type, ctr, integer_one_node);
+ }
+
+ return rslt;
+}
+
+/* Determine the number of iterations according to condition (for staying
+ inside loop) BASE0 + STEP0 * i (CODE) BASE1 + STEP1 * i, computed in TYPE.
+ Store the results to NITER. */
+
+static void
+number_of_iterations_cond (tree type, tree base0, tree step0,
+ enum tree_code code, tree base1, tree step1,
+ struct tree_niter_desc *niter)
+{
+ tree step, delta, mmin, mmax;
+ tree may_xform, bound, s, d, tmp;
+ bool was_sharp = false;
+ tree assumption;
+ tree assumptions = boolean_true_node;
+ tree noloop_assumptions = boolean_false_node;
+ tree unsigned_step_type;
+
+ /* The meaning of these assumptions is this:
+ if !assumptions
+ then the rest of information does not have to be valid
+ if noloop_assumptions then the loop does not have to roll
+ (but it is only conservative approximation, i.e. it only says that
+ if !noloop_assumptions, then the loop does not end before the computed
+ number of iterations) */
+
+ /* Make < comparison from > ones. */
+ if (code == GE_EXPR
+ || code == GT_EXPR)
+ {
+ SWAP (base0, base1);
+ SWAP (step0, step1);
+ code = swap_tree_comparison (code);
+ }
+
+ /* We can take care of the case of two induction variables chasing each other
+ if the test is NE. I have never seen a loop using it, but still it is
+ cool. */
+ if (!zero_p (step0) && !zero_p (step1))
+ {
+ if (code != NE_EXPR)
+ return;
+
+ step0 = EXEC_BINARY (MINUS_EXPR, type, step0, step1);
+ step1 = NULL_TREE;
+ }
+
+ /* If the result is a constant, the loop is weird. More precise handling
+ would be possible, but the situation is not common enough to waste time
+ on it. */
+ if (zero_p (step0) && zero_p (step1))
+ return;
+
+ /* Ignore loops of while (i-- < 10) type. */
+ if (code != NE_EXPR)
+ {
+ if (step0 && !tree_expr_nonnegative_p (step0))
+ return;
+
+ if (!zero_p (step1) && tree_expr_nonnegative_p (step1))
+ return;
+ }
+
+ /* For pointers these are NULL. We assume pointer arithmetics never
+ overflows. */
+ mmin = TYPE_MIN_VALUE (type);
+ mmax = TYPE_MAX_VALUE (type);
+
+ /* Some more condition normalization. We must record some assumptions
+ due to overflows. */
+
+ if (code == LT_EXPR)
+ {
+ /* We want to take care only of <=; this is easy,
+ as in cases the overflow would make the transformation unsafe the loop
+ does not roll. Seemingly it would make more sense to want to take
+ care of <, as NE is more simmilar to it, but the problem is that here
+ the transformation would be more difficult due to possibly infinite
+ loops. */
+ if (zero_p (step0))
+ {
+ if (mmax)
+ assumption = fold (build (EQ_EXPR, boolean_type_node, base0, mmax));
+ else
+ assumption = boolean_true_node;
+ if (integer_nonzerop (assumption))
+ goto zero_iter;
+ base0 = fold (build (PLUS_EXPR, type, base0,
+ convert (type, integer_one_node)));
+ }
+ else
+ {
+ if (mmin)
+ assumption = fold (build (EQ_EXPR, boolean_type_node, base1, mmin));
+ else
+ assumption = boolean_true_node;
+ if (integer_nonzerop (assumption))
+ goto zero_iter;
+ base1 = fold (build (MINUS_EXPR, type, base1,
+ convert (type, integer_one_node)));
+ }
+ noloop_assumptions = assumption;
+ code = LE_EXPR;
+
+ /* It will be useful to be able to tell the difference once more in
+ <= -> != reduction. */
+ was_sharp = true;
+ }
+
+ /* Take care of trivially infinite loops. */
+ if (code != NE_EXPR)
+ {
+ if (zero_p (step0)
+ && mmin
+ && operand_equal_p (base0, mmin, 0))
+ return;
+ if (zero_p (step1)
+ && mmax
+ && operand_equal_p (base1, mmax, 0))
+ return;
+ }
+
+ /* If we can we want to take care of NE conditions instead of size
+ comparisons, as they are much more friendly (most importantly
+ this takes care of special handling of loops with step 1). We can
+ do it if we first check that upper bound is greater or equal to
+ lower bound, their difference is constant c modulo step and that
+ there is not an overflow. */
+ if (code != NE_EXPR)
+ {
+ if (zero_p (step0))
+ step = EXEC_UNARY (NEGATE_EXPR, type, step1);
+ else
+ step = step0;
+ delta = build (MINUS_EXPR, type, base1, base0);
+ delta = fold (build (FLOOR_MOD_EXPR, type, delta, step));
+ may_xform = boolean_false_node;
+
+ if (TREE_CODE (delta) == INTEGER_CST)
+ {
+ tmp = EXEC_BINARY (MINUS_EXPR, type, step, integer_zero_node);
+ if (was_sharp
+ && operand_equal_p (delta, tmp, 0))
+ {
+ /* A special case. We have transformed condition of type
+ for (i = 0; i < 4; i += 4)
+ into
+ for (i = 0; i <= 3; i += 4)
+ obviously if the test for overflow during that transformation
+ passed, we cannot overflow here. Most importantly any
+ loop with sharp end condition and step 1 falls into this
+ cathegory, so handling this case specially is definitely
+ worth the troubles. */
+ may_xform = boolean_true_node;
+ }
+ else if (zero_p (step0))
+ {
+ if (!mmin)
+ may_xform = boolean_true_node;
+ else
+ {
+ bound = EXEC_BINARY (PLUS_EXPR, type, mmin, step);
+ bound = EXEC_BINARY (MINUS_EXPR, type, bound, delta);
+ may_xform = fold (build (LE_EXPR, boolean_type_node,
+ bound, base0));
+ }
+ }
+ else
+ {
+ if (!mmax)
+ may_xform = boolean_true_node;
+ else
+ {
+ bound = EXEC_BINARY (MINUS_EXPR, type, mmax, step);
+ bound = EXEC_BINARY (PLUS_EXPR, type, bound, delta);
+ may_xform = fold (build (LE_EXPR, boolean_type_node,
+ base1, bound));
+ }
+ }
+ }
+
+ if (!integer_zerop (may_xform))
+ {
+ /* We perform the transformation always provided that it is not
+ completely senseless. This is OK, as we would need this assumption
+ to determine the number of iterations anyway. */
+ if (!integer_nonzerop (may_xform))
+ assumptions = may_xform;
+
+ if (zero_p (step0))
+ {
+ base0 = build (PLUS_EXPR, type, base0, delta);
+ base0 = fold (build (MINUS_EXPR, type, base0, step));
+ }
+ else
+ {
+ base1 = build (MINUS_EXPR, type, base1, delta);
+ base1 = fold (build (PLUS_EXPR, type, base1, step));
+ }
+
+ assumption = fold (build (GT_EXPR, boolean_type_node, base0, base1));
+ noloop_assumptions = fold (build (TRUTH_OR_EXPR, boolean_type_node,
+ noloop_assumptions, assumption));
+ code = NE_EXPR;
+ }
+ }
+
+ /* Count the number of iterations. */
+ if (code == NE_EXPR)
+ {
+ /* Everything we do here is just arithmetics modulo size of mode. This
+ makes us able to do more involved computations of number of iterations
+ than in other cases. First transform the condition into shape
+ s * i <> c, with s positive. */
+ base1 = fold (build (MINUS_EXPR, type, base1, base0));
+ base0 = NULL_TREE;
+ if (!zero_p (step1))
+ step0 = EXEC_UNARY (NEGATE_EXPR, type, step1);
+ step1 = NULL_TREE;
+ if (!tree_expr_nonnegative_p (step0))
+ {
+ step0 = EXEC_UNARY (NEGATE_EXPR, type, step0);
+ base1 = fold (build1 (NEGATE_EXPR, type, base1));
+ }
+
+ /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
+ is infinite. Otherwise, the number of iterations is
+ (inverse(s/d) * (c/d)) mod (size of mode/d). */
+ s = step0;
+ d = integer_one_node;
+ unsigned_step_type = make_unsigned_type (TYPE_PRECISION (type));
+ bound = convert (unsigned_step_type, build_int_2 (~0, ~0));
+ while (1)
+ {
+ tmp = EXEC_BINARY (BIT_AND_EXPR, type, s, integer_one_node);
+ if (integer_nonzerop (tmp))
+ break;
+
+ s = EXEC_BINARY (RSHIFT_EXPR, type, s, integer_one_node);
+ d = EXEC_BINARY (LSHIFT_EXPR, type, d, integer_one_node);
+ bound = EXEC_BINARY (RSHIFT_EXPR, type, bound, integer_one_node);
+ }
+
+ tmp = fold (build (EXACT_DIV_EXPR, type, base1, d));
+ tmp = fold (build (MULT_EXPR, type, tmp, inverse (s, bound)));
+ niter->niter = fold (build (BIT_AND_EXPR, type, tmp, bound));
+ }
+ else
+ {
+ if (zero_p (step1))
+ /* Condition in shape a + s * i <= b
+ We must know that b + s does not overflow and a <= b + s and then we
+ can compute number of iterations as (b + s - a) / s. (It might
+ seem that we in fact could be more clever about testing the b + s
+ overflow condition using some information about b - a mod s,
+ but it was already taken into account during LE -> NE transform). */
+ {
+ if (mmax)
+ {
+ bound = EXEC_BINARY (MINUS_EXPR, type, mmax, step0);
+ assumption = fold (build (LE_EXPR, boolean_type_node,
+ base1, bound));
+ assumptions = fold (build (TRUTH_AND_EXPR, boolean_type_node,
+ assumptions, assumption));
+ }
+ step = step0;
+ tmp = fold (build (PLUS_EXPR, type, base1, step0));
+ assumption = fold (build (GT_EXPR, boolean_type_node, base0, tmp));
+ delta = fold (build (PLUS_EXPR, type, base1, step));
+ delta = fold (build (MINUS_EXPR, type, delta, base0));
+ }
+ else
+ {
+ /* Condition in shape a <= b - s * i
+ We must know that a - s does not overflow and a - s <= b and then
+ we can again compute number of iterations as (b - (a - s)) / s. */
+ if (mmin)
+ {
+ bound = EXEC_BINARY (MINUS_EXPR, type, mmin, step1);
+ assumption = fold (build (LE_EXPR, boolean_type_node,
+ bound, base0));
+ assumptions = fold (build (TRUTH_AND_EXPR, boolean_type_node,
+ assumptions, assumption));
+ }
+ step = fold (build1 (NEGATE_EXPR, type, step1));
+ tmp = fold (build (PLUS_EXPR, type, base0, step1));
+ assumption = fold (build (GT_EXPR, boolean_type_node, tmp, base1));
+ delta = fold (build (MINUS_EXPR, type, base0, step));
+ delta = fold (build (MINUS_EXPR, type, base1, delta));
+ }
+ noloop_assumptions = fold (build (TRUTH_OR_EXPR, boolean_type_node,
+ noloop_assumptions, assumption));
+ delta = fold (build (FLOOR_DIV_EXPR, type, delta, step));
+ niter->niter = delta;
+ }
+
+ niter->assumptions = assumptions;
+ niter->may_be_zero = noloop_assumptions;
+ return;
+
+zero_iter:
+ niter->assumptions = boolean_true_node;
+ niter->may_be_zero = boolean_true_node;
+ niter->niter = convert (type, integer_zero_node);
+ return;
+}
+
+/* Determine the number of iterations of the current loop. */
+
+static void
+determine_number_of_iterations (struct ivopts_data *data)
+{
+ tree stmt, cond, type;
+ tree op0, base0, step0;
+ tree op1, base1, step1;
+ enum tree_code code;
+ struct loop *loop = data->current_loop;
+
+ if (!loop_data (loop)->single_exit)
+ return;
+
+ stmt = last_stmt (loop_data (loop)->single_exit->src);
+ if (!stmt || TREE_CODE (stmt) != COND_EXPR)
+ return;
+
+ /* We want the condition for staying inside loop. */
+ cond = COND_EXPR_COND (stmt);
+ if (loop_data (loop)->single_exit->flags & EDGE_TRUE_VALUE)
+ cond = invert_truthvalue (cond);
+
+ code = TREE_CODE (cond);
+ switch (code)
+ {
+ case GT_EXPR:
+ case GE_EXPR:
+ case NE_EXPR:
+ case LT_EXPR:
+ case LE_EXPR:
+ break;
+
+ default:
+ return;
+ }
+
+ op0 = TREE_OPERAND (cond, 0);
+ op1 = TREE_OPERAND (cond, 1);
+ type = TREE_TYPE (op0);
+
+ if (TREE_CODE (type) != INTEGER_TYPE
+ && TREE_CODE (type) != POINTER_TYPE)
+ return;
+
+ if (!get_var_def (data, op0, &base0, &step0))
+ return;
+ if (!get_var_def (data, op1, &base1, &step1))
+ return;
+
+ number_of_iterations_cond (type, base0, step0, code, base1, step1,
+ &loop_data (loop)->niter);
+}
+
+/* For each ssa name defined in LOOP determines whether it is an induction
+ variable and if so, its initial value and step. */
+
+static bool
+find_induction_variables (struct ivopts_data *data)
+{
+ unsigned i;
+ struct loop *loop = data->current_loop;
+
+ if (!find_bivs (data))
+ return false;
+
+ find_givs (data);
+ mark_bivs (data);
+ determine_number_of_iterations (data);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ if (loop_data (loop)->niter.niter)
+ {
+ fprintf (dump_file, " number of iterations ");
+ print_generic_expr (dump_file, loop_data (loop)->niter.niter,
+ TDF_SLIM);
+ fprintf (dump_file, "\n");
+
+ fprintf (dump_file, " may be zero if ");
+ print_generic_expr (dump_file, loop_data (loop)->niter.may_be_zero,
+ TDF_SLIM);
+ fprintf (dump_file, "\n");
+
+ fprintf (dump_file, " bogus unless ");
+ print_generic_expr (dump_file, loop_data (loop)->niter.assumptions,
+ TDF_SLIM);
+ fprintf (dump_file, "\n");
+ fprintf (dump_file, "\n");
+ };
+
+ fprintf (dump_file, "Induction variables:\n\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i,
+ {
+ if (ver_info (data, i)->iv)
+ dump_iv (dump_file, ver_info (data, i)->iv);
+ });
+ }
+
+ return true;
+}
+
+/* Records a use of type USE_TYPE at *USE_P in STMT whose value is IV. */
+
+static struct iv_use *
+record_use (struct ivopts_data *data, tree *use_p, struct iv *iv,
+ tree stmt, enum use_type use_type)
+{
+ struct iv_use *use = xcalloc (1, sizeof (struct iv_use));
+
+ use->id = n_iv_uses (data);
+ use->type = use_type;
+ use->iv = iv;
+ use->stmt = stmt;
+ use->op_p = use_p;
+ use->related_cands = BITMAP_XMALLOC ();
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_use (dump_file, use);
+
+ VARRAY_PUSH_GENERIC_PTR_NOGC (data->iv_uses, use);
+
+ return use;
+}
+
+/* Checks whether OP is a loop-level invariant and if so, records it.
+ NONLINEAR_USE is true if the invariant is used in a way we do not
+ handle specially. */
+
+static void
+record_invariant (struct ivopts_data *data, tree op, bool nonlinear_use)
+{
+ basic_block bb;
+ struct version_info *info;
+
+ if (TREE_CODE (op) != SSA_NAME
+ || !is_gimple_reg (op))
+ return;
+
+ bb = bb_for_stmt (SSA_NAME_DEF_STMT (op));
+ if (bb
+ && flow_bb_inside_loop_p (data->current_loop, bb))
+ return;
+
+ info = name_info (data, op);
+ info->name = op;
+ info->has_nonlin_use |= nonlinear_use;
+ if (!info->inv_id)
+ info->inv_id = ++data->max_inv_id;
+ bitmap_set_bit (data->relevant, SSA_NAME_VERSION (op));
+}
+
+/* Checks whether the use OP is interesting and if so, records it
+ as TYPE. */
+
+static struct iv_use *
+find_interesting_uses_outer_or_nonlin (struct ivopts_data *data, tree op,
+ enum use_type type)
+{
+ struct iv *iv;
+ struct iv *civ;
+ tree stmt, *op_p;
+ struct iv_use *use;
+
+ if (TREE_CODE (op) != SSA_NAME)
+ return NULL;
+
+ iv = get_iv (data, op);
+ if (!iv)
+ return NULL;
+
+ if (iv->have_use_for)
+ {
+ use = iv_use (data, iv->use_id);
+
+ if (use->type != USE_NONLINEAR_EXPR
+ && use->type != USE_OUTER)
+ abort ();
+
+ if (type == USE_NONLINEAR_EXPR)
+ use->type = USE_NONLINEAR_EXPR;
+ return use;
+ }
+
+ if (zero_p (iv->step))
+ {
+ record_invariant (data, op, true);
+ return NULL;
+ }
+ iv->have_use_for = true;
+
+ civ = xmalloc (sizeof (struct iv));
+ *civ = *iv;
+
+ stmt = SSA_NAME_DEF_STMT (op);
+ if (TREE_CODE (stmt) == PHI_NODE)
+ op_p = &PHI_RESULT (stmt);
+ else if (TREE_CODE (stmt) == MODIFY_EXPR)
+ op_p = &TREE_OPERAND (stmt, 0);
+ else
+ abort ();
+
+ use = record_use (data, op_p, civ, stmt, type);
+ iv->use_id = use->id;
+
+ return use;
+}
+
+/* Checks whether the use OP is interesting and if so, records it. */
+
+static struct iv_use *
+find_interesting_uses_op (struct ivopts_data *data, tree op)
+{
+ return find_interesting_uses_outer_or_nonlin (data, op, USE_NONLINEAR_EXPR);
+}
+
+/* Records a definition of induction variable OP that is used outside of the
+ loop. */
+
+static struct iv_use *
+find_interesting_uses_outer (struct ivopts_data *data, tree op)
+{
+ return find_interesting_uses_outer_or_nonlin (data, op, USE_OUTER);
+}
+
+/* Checks whether the condition *COND_P in STMT is interesting
+ and if so, records it. */
+
+static void
+find_interesting_uses_cond (struct ivopts_data *data, tree stmt, tree *cond_p)
+{
+ tree *op0_p;
+ tree *op1_p;
+ struct iv *iv0 = NULL, *iv1 = NULL, *civ;
+ struct iv const_iv;
+ tree zero = integer_zero_node;
+
+ const_iv.step = NULL_TREE;
+
+ if (integer_zerop (*cond_p)
+ || integer_nonzerop (*cond_p))
+ return;
+
+ if (TREE_CODE (*cond_p) == SSA_NAME)
+ {
+ op0_p = cond_p;
+ op1_p = &zero;
+ }
+ else
+ {
+ op0_p = &TREE_OPERAND (*cond_p, 0);
+ op1_p = &TREE_OPERAND (*cond_p, 1);
+ }
+
+ if (TREE_CODE (*op0_p) == SSA_NAME)
+ iv0 = get_iv (data, *op0_p);
+ else
+ iv0 = &const_iv;
+
+ if (TREE_CODE (*op1_p) == SSA_NAME)
+ iv1 = get_iv (data, *op1_p);
+ else
+ iv1 = &const_iv;
+
+ if (/* When comparing with non-invariant value, we may not do any senseful
+ induction variable elimination. */
+ (!iv0 || !iv1)
+ /* Eliminating condition based on two ivs would be nontrivial.
+ ??? TODO -- it is not really important to handle this case. */
+ || (!zero_p (iv0->step) && !zero_p (iv1->step)))
+ {
+ find_interesting_uses_op (data, *op0_p);
+ find_interesting_uses_op (data, *op1_p);
+ return;
+ }
+
+ if (zero_p (iv0->step) && zero_p (iv1->step))
+ {
+ /* If both are invariants, this is a work for unswitching. */
+ return;
+ }
+
+ civ = xmalloc (sizeof (struct iv));
+ *civ = zero_p (iv0->step) ? *iv1: *iv0;
+ record_use (data, cond_p, civ, stmt, USE_COMPARE);
+}
+
+/* Cumulates the steps of indices into DATA and replaces their values with the
+ initial ones. Returns false when the value of the index cannot be determined.
+ Callback for for_each_index. */
+
+static struct ivopts_data *ifs_ivopts_data;
+static bool
+idx_find_step (tree base, tree *idx, void *data)
+{
+ tree *step_p = data;
+ struct iv *iv;
+ tree step, type, iv_type;
+
+ if (TREE_CODE (*idx) != SSA_NAME)
+ return true;
+
+ iv = get_iv (ifs_ivopts_data, *idx);
+ if (!iv)
+ return false;
+
+ *idx = iv->base;
+
+ if (!iv->step)
+ return true;
+
+ iv_type = TREE_TYPE (iv->base);
+ if (base)
+ {
+ type = array2ptr (TREE_TYPE (base));
+ step = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base)));
+ }
+ else
+ {
+ type = TREE_TYPE (*idx);
+ /* The step for pointer arithmetics already is 1 byte. */
+ step = convert (type, integer_one_node);
+ }
+
+ if (TYPE_PRECISION (iv_type) < TYPE_PRECISION (type))
+ {
+ /* The index might wrap. */
+
+ /* TODO -- this is especially bad for targets where
+ sizeof (int) < sizeof (void *). We should at least:
+
+ 1) Use the number of iterations of the current loop to prove
+ that the index cannot wrap.
+ 2) Record whether only a signed arithmetics is used during computation
+ of the index (behavior of overflows during signed arithmetics is
+ undefined, so we may assume that it does not happen). Problems:
+ * The optimizations may create overflowing signed arithmetics.
+ * And they may also remove the no-op casts used to make the
+ behavior of overflows defined.
+ 3) Use array bounds when known (if the memory is accessed at each
+ iteration, we know the index cannot come out of them). Better,
+ use this to estimate the number of iterations of the loop.
+ 4) If all indices are of the same type, we can also rewrite the
+ access as &base + (extend) (step * i), and optimize the step * i
+ part separately. */
+ return false;
+ }
+
+ step = EXEC_BINARY (MULT_EXPR, type, step,
+ convert (type, iv->step));
+
+ if (!*step_p)
+ *step_p = step;
+ else
+ *step_p = EXEC_BINARY (PLUS_EXPR, type, *step_p, step);
+
+ return true;
+}
+
+/* Records use in index IDX. Callback for for_each_index. Ivopts data
+ object is passed to it in DATA. */
+
+static bool
+idx_record_use (tree base ATTRIBUTE_UNUSED, tree *idx,
+ void *data)
+{
+ find_interesting_uses_op (data, *idx);
+ return true;
+}
+
+/* Finds addresses in *OP_P inside STMT. */
+
+static void
+find_interesting_uses_address (struct ivopts_data *data, tree stmt, tree *op_p)
+{
+ tree base = unshare_expr (*op_p), step = NULL;
+ struct iv *civ;
+
+ /* Ignore bitfields for now. Not really something terribly complicated
+ to handle. TODO. */
+ if (TREE_CODE (base) == COMPONENT_REF
+ && DECL_NONADDRESSABLE_P (TREE_OPERAND (base, 1)))
+ goto fail;
+
+ ifs_ivopts_data = data;
+ if (!for_each_index (&base, idx_find_step, &step)
+ || zero_p (step))
+ goto fail;
+
+ if (TREE_CODE (base) == INDIRECT_REF)
+ base = TREE_OPERAND (base, 0);
+ else
+ base = build1 (ADDR_EXPR,
+ build_pointer_type (TREE_TYPE (base)),
+ base);
+
+ civ = alloc_iv (base, step);
+ record_use (data, op_p, civ, stmt, USE_ADDRESS);
+ return;
+
+fail:
+ for_each_index (op_p, idx_record_use, data);
+}
+
+/* Finds and records invariants used in STMT. */
+
+static void
+find_invariants_stmt (struct ivopts_data *data, tree stmt)
+{
+ use_optype uses = NULL;
+ unsigned i, n;
+ tree op;
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ n = PHI_NUM_ARGS (stmt);
+ else
+ {
+ get_stmt_operands (stmt);
+ uses = STMT_USE_OPS (stmt);
+ n = NUM_USES (uses);
+ }
+
+ for (i = 0; i < n; i++)
+ {
+ if (TREE_CODE (stmt) == PHI_NODE)
+ op = PHI_ARG_DEF (stmt, i);
+ else
+ op = USE_OP (uses, i);
+
+ record_invariant (data, op, false);
+ }
+}
+
+/* Finds interesting uses of induction variables in the statement STMT. */
+
+static void
+find_interesting_uses_stmt (struct ivopts_data *data, tree stmt)
+{
+ struct iv *iv;
+ tree *op_p, lhs, rhs;
+ use_optype uses = NULL;
+ unsigned i, n;
+
+ find_invariants_stmt (data, stmt);
+
+ if (TREE_CODE (stmt) == COND_EXPR)
+ {
+ find_interesting_uses_cond (data, stmt, &COND_EXPR_COND (stmt));
+ return;
+ }
+
+ if (TREE_CODE (stmt) == MODIFY_EXPR)
+ {
+ lhs = TREE_OPERAND (stmt, 0);
+ rhs = TREE_OPERAND (stmt, 1);
+
+ if (TREE_CODE (lhs) == SSA_NAME)
+ {
+ /* If the statement defines an induction variable, the uses are not
+ interesting by themselves. */
+
+ iv = get_iv (data, lhs);
+
+ if (iv && !zero_p (iv->step))
+ return;
+ }
+
+ switch (TREE_CODE_CLASS (TREE_CODE (rhs)))
+ {
+ case '<':
+ find_interesting_uses_cond (data, stmt, &TREE_OPERAND (stmt, 1));
+ return;
+
+ case 'r':
+ find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 1));
+ if (TREE_CODE_CLASS (TREE_CODE (lhs)) == 'r')
+ find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 0));
+ return;
+
+ default: ;
+ }
+
+ if (TREE_CODE_CLASS (TREE_CODE (lhs)) == 'r')
+ {
+ find_interesting_uses_address (data, stmt, &TREE_OPERAND (stmt, 0));
+ find_interesting_uses_op (data, rhs);
+ return;
+ }
+ }
+
+ if (TREE_CODE (stmt) == PHI_NODE
+ && bb_for_stmt (stmt) == data->current_loop->header)
+ {
+ lhs = PHI_RESULT (stmt);
+ iv = get_iv (data, lhs);
+
+ if (iv && !zero_p (iv->step))
+ return;
+ }
+
+ if (TREE_CODE (stmt) == PHI_NODE)
+ n = PHI_NUM_ARGS (stmt);
+ else
+ {
+ uses = STMT_USE_OPS (stmt);
+ n = NUM_USES (uses);
+ }
+
+ for (i = 0; i < n; i++)
+ {
+ if (TREE_CODE (stmt) == PHI_NODE)
+ op_p = &PHI_ARG_DEF (stmt, i);
+ else
+ op_p = USE_OP_PTR (uses, i);
+
+ if (TREE_CODE (*op_p) != SSA_NAME)
+ continue;
+
+ iv = get_iv (data, *op_p);
+ if (!iv)
+ continue;
+
+ find_interesting_uses_op (data, *op_p);
+ }
+}
+
+/* Finds interesting uses of induction variables outside of loops
+ on loop exit edge EXIT. */
+
+static void
+find_interesting_uses_outside (struct ivopts_data *data, edge exit)
+{
+ tree phi, def;
+
+ for (phi = phi_nodes (exit->dest); phi; phi = TREE_CHAIN (phi))
+ {
+ def = phi_element_for_edge (phi, exit)->def;
+ find_interesting_uses_outer (data, def);
+ }
+}
+
+/* Finds uses of the induction variables that are interesting. */
+
+static void
+find_interesting_uses (struct ivopts_data *data)
+{
+ basic_block bb;
+ block_stmt_iterator bsi;
+ tree phi;
+ basic_block *body = get_loop_body (data->current_loop);
+ unsigned i;
+ struct version_info *info;
+ edge e;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Uses:\n\n");
+
+ for (i = 0; i < data->current_loop->num_nodes; i++)
+ {
+ bb = body[i];
+
+ for (e = bb->succ; e; e = e->succ_next)
+ if (e->dest != EXIT_BLOCK_PTR
+ && !flow_bb_inside_loop_p (data->current_loop, e->dest))
+ find_interesting_uses_outside (data, e);
+
+ for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
+ find_interesting_uses_stmt (data, phi);
+ for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
+ find_interesting_uses_stmt (data, bsi_stmt (bsi));
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "\n");
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i,
+ {
+ info = ver_info (data, i);
+ if (info->inv_id)
+ {
+ fprintf (dump_file, " ");
+ print_generic_expr (dump_file, info->name, TDF_SLIM);
+ fprintf (dump_file, " is invariant (%d)%s\n",
+ info->inv_id, info->has_nonlin_use ? "" : ", eliminable");
+ }
+ });
+
+ fprintf (dump_file, "\n");
+ }
+
+ free (body);
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. If both BASE and STEP are NULL, we add a pseudocandidate for the
+ replacement of the final value of the iv by a direct computation. */
+
+static struct iv_cand *
+add_candidate_1 (struct ivopts_data *data,
+ tree base, tree step, bool important, enum iv_position pos,
+ struct iv_use *use, tree incremented_at)
+{
+ unsigned i;
+ struct iv_cand *cand = NULL;
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ cand = iv_cand (data, i);
+
+ if (cand->pos != pos)
+ continue;
+
+ if (cand->incremented_at != incremented_at)
+ continue;
+
+ if (!cand->iv)
+ {
+ if (!base && !step)
+ break;
+
+ continue;
+ }
+
+ if (!base && !step)
+ continue;
+
+ if (!operand_equal_p (base, cand->iv->base, 0))
+ continue;
+
+ if (zero_p (cand->iv->step))
+ {
+ if (zero_p (step))
+ break;
+ }
+ else
+ {
+ if (step && operand_equal_p (step, cand->iv->step, 0))
+ break;
+ }
+ }
+
+ if (i == n_iv_cands (data))
+ {
+ cand = xcalloc (1, sizeof (struct iv_cand));
+ cand->id = i;
+
+ if (!base && !step)
+ cand->iv = NULL;
+ else
+ cand->iv = alloc_iv (base, step);
+
+ cand->pos = pos;
+ if (pos != IP_ORIGINAL && cand->iv)
+ {
+ cand->var_before = create_tmp_var_raw (TREE_TYPE (base), "ivtmp");
+ cand->var_after = cand->var_before;
+ }
+ cand->important = important;
+ cand->incremented_at = incremented_at;
+ VARRAY_PUSH_GENERIC_PTR_NOGC (data->iv_candidates, cand);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ dump_cand (dump_file, cand);
+ }
+
+ if (important && !cand->important)
+ {
+ cand->important = true;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is important\n", cand->id);
+ }
+
+ if (use)
+ {
+ bitmap_set_bit (use->related_cands, i);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Candidate %d is related to use %d\n",
+ cand->id, use->id);
+ }
+
+ return cand;
+}
+
+/* Adds a candidate BASE + STEP * i. Important field is set to IMPORTANT and
+ position to POS. If USE is not NULL, the candidate is set as related to
+ it. The candidate computation is scheduled on all available positions. */
+
+static void
+add_candidate (struct ivopts_data *data,
+ tree base, tree step, bool important, struct iv_use *use)
+{
+ if (ip_normal_pos (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_NORMAL, use, NULL_TREE);
+ if (ip_end_pos (data->current_loop))
+ add_candidate_1 (data, base, step, important, IP_END, use, NULL_TREE);
+}
+
+/* Adds standard iv candidates. */
+
+static void
+add_standard_iv_candidates (struct ivopts_data *data)
+{
+ /* Add 0 + 1 * iteration candidate. */
+ add_candidate (data,
+ convert (integer_type_node, integer_zero_node),
+ convert (integer_type_node, integer_one_node),
+ true, NULL);
+
+ /* The same for a long type. */
+ add_candidate (data,
+ convert (long_integer_type_node, integer_zero_node),
+ convert (long_integer_type_node, integer_one_node),
+ true, NULL);
+}
+
+
+/* Adds candidates bases on the old induction variable IV. */
+
+static void
+add_old_iv_candidates (struct ivopts_data *data, struct iv *iv)
+{
+ tree phi, def;
+ struct iv_cand *cand;
+
+ add_candidate (data, iv->base, iv->step, true, NULL);
+
+ /* The same, but with initial value zero. */
+ add_candidate (data,
+ convert (TREE_TYPE (iv->base), integer_zero_node),
+ iv->step, true, NULL);
+
+ phi = SSA_NAME_DEF_STMT (iv->ssa_name);
+ if (TREE_CODE (phi) == PHI_NODE)
+ {
+ /* Additionally record the possibility of leaving the original iv
+ untouched. */
+ def = phi_element_for_edge (phi,
+ loop_latch_edge (data->current_loop))->def;
+ cand = add_candidate_1 (data,
+ iv->base, iv->step, true, IP_ORIGINAL, NULL,
+ SSA_NAME_DEF_STMT (def));
+ cand->var_before = iv->ssa_name;
+ cand->var_after = def;
+ }
+}
+
+/* Adds candidates based on the old induction variables. */
+
+static void
+add_old_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv *iv;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i,
+ {
+ iv = ver_info (data, i)->iv;
+ if (iv && iv->biv_p && !zero_p (iv->step))
+ add_old_iv_candidates (data, iv);
+ });
+}
+
+/* Adds candidates based on the value of the induction variable IV and USE. */
+
+static void
+add_iv_value_candidates (struct ivopts_data *data,
+ struct iv *iv, struct iv_use *use)
+{
+ add_candidate (data, iv->base, iv->step, false, use);
+
+ /* The same, but with initial value zero. */
+ add_candidate (data,
+ convert (array2ptr (TREE_TYPE (iv->base)), integer_zero_node),
+ iv->step, false, use);
+}
+
+/* Adds candidates based on the address IV and USE. */
+
+static void
+add_address_candidates (struct ivopts_data *data,
+ struct iv *iv, struct iv_use *use)
+{
+ tree base, type;
+
+ /* First, the trivial choices. */
+ add_iv_value_candidates (data, iv, use);
+
+ /* Second, try removing the COMPONENT_REFs. */
+ if (TREE_CODE (iv->base) == ADDR_EXPR)
+ {
+ base = TREE_OPERAND (iv->base, 0);
+ type = TREE_TYPE (iv->base);
+ while (TREE_CODE (base) == COMPONENT_REF
+ || (TREE_CODE (base) == ARRAY_REF
+ && TREE_CODE (TREE_OPERAND (base, 1)) == INTEGER_CST))
+ base = TREE_OPERAND (base, 0);
+
+ if (base != TREE_OPERAND (iv->base, 0))
+ {
+ if (TREE_CODE (base) == INDIRECT_REF)
+ base = TREE_OPERAND (base, 0);
+ else
+ base = build1 (ADDR_EXPR, type, base);
+ add_candidate (data, base, iv->step, false, use);
+ }
+ }
+}
+
+/* Possibly adds pseudocandidate for replacing the final value of USE by
+ a direct computation. */
+
+static void
+add_iv_outer_candidates (struct ivopts_data *data, struct iv_use *use)
+{
+ struct tree_niter_desc *niter;
+ struct loop *loop = data->current_loop;
+
+ /* We must know where we exit the loop and how many times does it roll. */
+ if (!loop_data (loop)->single_exit)
+ return;
+
+ niter = &loop_data (loop)->niter;
+ if (!niter->niter
+ || !operand_equal_p (niter->assumptions, boolean_true_node, 0)
+ || !operand_equal_p (niter->may_be_zero, boolean_false_node, 0))
+ return;
+
+ add_candidate_1 (data, NULL, NULL, false, IP_NORMAL, use, NULL_TREE);
+}
+
+/* Adds candidates based on the uses. */
+
+static void
+add_derived_ivs_candidates (struct ivopts_data *data)
+{
+ unsigned i;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ if (!use)
+ continue;
+
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ case USE_COMPARE:
+ /* Just add the ivs based on the value of the iv used here. */
+ add_iv_value_candidates (data, use->iv, use);
+ break;
+
+ case USE_OUTER:
+ add_iv_value_candidates (data, use->iv, use);
+
+ /* Additionally, add the pseudocandidate for the possibility to
+ replace the final value by a direct computation. */
+ add_iv_outer_candidates (data, use);
+ break;
+
+ case USE_ADDRESS:
+ add_address_candidates (data, use->iv, use);
+ break;
+
+ default:
+ abort ();
+ }
+ }
+}
+
+/* Finds the candidates for the induction variables. */
+
+static void
+find_iv_candidates (struct ivopts_data *data)
+{
+ /* Add commonly used ivs. */
+ add_standard_iv_candidates (data);
+
+ /* Add old induction variables. */
+ add_old_ivs_candidates (data);
+
+ /* Add induction variables derived from uses. */
+ add_derived_ivs_candidates (data);
+}
+
+/* Allocates the data structure mapping the (use, candidate) pairs to costs.
+ If consider_all_candidates is true, we use a two-dimensional array, otherwise
+ we allocate a simple list to every use. */
+
+static void
+alloc_use_cost_map (struct ivopts_data *data)
+{
+ unsigned i, n_imp = 0, size, j;
+
+ if (!data->consider_all_candidates)
+ {
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+ if (cand->important)
+ n_imp++;
+ }
+ }
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ if (data->consider_all_candidates)
+ {
+ size = n_iv_cands (data);
+ use->n_map_members = size;
+ }
+ else
+ {
+ size = n_imp;
+ EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j, size++);
+ use->n_map_members = 0;
+ }
+
+ use->cost_map = xcalloc (size, sizeof (struct cost_pair));
+ }
+}
+
+/* Sets cost of (USE, CANDIDATE) pair to COST and record that it depends
+ on invariants DEPENDS_ON. */
+
+static void
+set_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand, unsigned cost,
+ bitmap depends_on)
+{
+ if (cost == INFTY
+ && depends_on)
+ {
+ BITMAP_XFREE (depends_on);
+ depends_on = NULL;
+ }
+
+ if (data->consider_all_candidates)
+ {
+ use->cost_map[cand->id].cand = cand;
+ use->cost_map[cand->id].cost = cost;
+ use->cost_map[cand->id].depends_on = depends_on;
+ return;
+ }
+
+ if (cost == INFTY)
+ return;
+
+ use->cost_map[use->n_map_members].cand = cand;
+ use->cost_map[use->n_map_members].cost = cost;
+ use->cost_map[use->n_map_members].depends_on = depends_on;
+ use->n_map_members++;
+}
+
+/* Gets cost of (USE, CANDIDATE) pair. Stores the bitmap of dependencies to
+ DEPENDS_ON. */
+
+static unsigned
+get_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand, bitmap *depends_on)
+{
+ unsigned i;
+
+ if (!cand)
+ return INFTY;
+
+ if (data->consider_all_candidates)
+ i = cand->id;
+ else
+ {
+ for (i = 0; i < use->n_map_members; i++)
+ if (use->cost_map[i].cand == cand)
+ break;
+
+ if (i == use->n_map_members)
+ return INFTY;
+ }
+
+ if (depends_on)
+ *depends_on = use->cost_map[i].depends_on;
+ return use->cost_map[i].cost;
+}
+
+/* Returns estimate on cost of computing SEQ. */
+
+static unsigned
+seq_cost (rtx seq)
+{
+ unsigned cost = 0;
+ rtx set;
+
+ for (; seq; seq = NEXT_INSN (seq))
+ {
+ set = single_set (seq);
+ if (set)
+ cost += rtx_cost (set, SET);
+ else
+ cost++;
+ }
+
+ return cost;
+}
+
+/* Prepares decl_rtl for variables referred in *EXPR_P. Callback for
+ walk_tree. DATA contains the actual fake register number. */
+
+static tree
+prepare_decl_rtl (tree *expr_p, int *ws, void *data)
+{
+ tree obj = NULL_TREE;
+ rtx x = NULL_RTX;
+ int *regno = data;
+
+ switch (TREE_CODE (*expr_p))
+ {
+ case SSA_NAME:
+ *ws = 0;
+ obj = SSA_NAME_VAR (*expr_p);
+ if (!DECL_RTL_SET_P (obj))
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+ break;
+
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ *ws = 0;
+ obj = *expr_p;
+
+ if (DECL_RTL_SET_P (obj))
+ break;
+
+ if (DECL_MODE (obj) == BLKmode)
+ {
+ if (TREE_STATIC (obj)
+ || DECL_EXTERNAL (obj))
+ {
+ const char *name = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (obj));
+ x = gen_rtx_SYMBOL_REF (Pmode, name);
+ }
+ else
+ x = gen_raw_REG (Pmode, (*regno)++);
+
+ x = gen_rtx_MEM (DECL_MODE (obj), x);
+ }
+ else
+ x = gen_raw_REG (DECL_MODE (obj), (*regno)++);
+
+ break;
+
+ default:
+ break;
+ }
+
+ if (x)
+ {
+ VARRAY_PUSH_GENERIC_PTR_NOGC (decl_rtl_to_reset, obj);
+ SET_DECL_RTL (obj, x);
+ }
+
+ return NULL_TREE;
+}
+
+/* Determines cost of the computation of EXPR. */
+
+static unsigned
+computation_cost (tree expr)
+{
+ rtx seq, rslt;
+ tree type = TREE_TYPE (expr);
+ unsigned cost;
+ int regno = 0;
+
+ walk_tree (&expr, prepare_decl_rtl, &regno, NULL);
+ start_sequence ();
+ rslt = expand_expr (expr, NULL_RTX, TYPE_MODE (type), EXPAND_NORMAL);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq);
+ if (GET_CODE (rslt) == MEM)
+ cost += address_cost (XEXP (rslt, 0), TYPE_MODE (type));
+
+ return cost;
+}
+
+/* Returns variable containing the value of candidate CAND at statement AT. */
+
+static tree
+var_at_stmt (struct loop *loop, struct iv_cand *cand, tree stmt)
+{
+ if (stmt_after_increment (loop, cand, stmt))
+ return cand->var_after;
+ else
+ return cand->var_before;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND at statement AT in LOOP. */
+
+static tree
+get_computation_at (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand, tree at)
+{
+ tree ubase = use->iv->base, ustep = use->iv->step;
+ tree cbase = cand->iv->base, cstep = cand->iv->step;
+ tree utype = TREE_TYPE (ubase), ctype = TREE_TYPE (cbase);
+ tree expr, delta;
+ tree ratio;
+ unsigned HOST_WIDE_INT ustepi, cstepi;
+ HOST_WIDE_INT ratioi;
+
+ expr = var_at_stmt (loop, cand, at);
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return NULL_TREE;
+ }
+
+ if (utype != ctype)
+ {
+ expr = convert (utype, expr);
+ cbase = convert (utype, cbase);
+ cstep = convert (utype, cstep);
+ }
+
+ if (!cst_and_fits_in_hwi (cstep)
+ || !cst_and_fits_in_hwi (ustep))
+ return NULL_TREE;
+
+ ustepi = int_cst_value (ustep);
+ cstepi = int_cst_value (cstep);
+
+ if (!divide (TYPE_PRECISION (utype), ustepi, cstepi, &ratioi))
+ {
+ /* TODO maybe consider case when ustep divides cstep and the ratio is
+ a power of 2 (so that the division is fast to execute)? We would
+ need to be much more careful with overflows etc. then. */
+ return NULL_TREE;
+ }
+
+ /* We may need to shift the value if we are after the increment. */
+ if (stmt_after_increment (loop, cand, at))
+ cbase = fold (build (PLUS_EXPR, utype, cbase, cstep));
+
+ /* use = ubase + ratio * (var - cbase). If either cbase is a constant
+ or |ratio| == 1, it is better to handle this like
+
+ ubase - ratio * cbase + ratio * var. */
+
+ if (ratioi == 1)
+ {
+ delta = fold (build (MINUS_EXPR, utype, ubase, cbase));
+ expr = fold (build (PLUS_EXPR, utype, expr, delta));
+ }
+ else if (ratioi == -1)
+ {
+ delta = fold (build (PLUS_EXPR, utype, ubase, cbase));
+ expr = fold (build (MINUS_EXPR, utype, delta, expr));
+ }
+ else if (TREE_CODE (cbase) == INTEGER_CST)
+ {
+ ratio = build_int_cst (utype, ratioi);
+ delta = fold (build (MULT_EXPR, utype, ratio, cbase));
+ delta = fold (build (MINUS_EXPR, utype, ubase, delta));
+ expr = fold (build (MULT_EXPR, utype, ratio, expr));
+ expr = fold (build (PLUS_EXPR, utype, delta, expr));
+ }
+ else
+ {
+ expr = fold (build (MINUS_EXPR, utype, expr, cbase));
+ ratio = build_int_cst (utype, ratioi);
+ expr = fold (build (MULT_EXPR, utype, ratio, expr));
+ expr = fold (build (PLUS_EXPR, utype, ubase, expr));
+ }
+
+ return expr;
+}
+
+/* Determines the expression by that USE is expressed from induction variable
+ CAND in LOOP. */
+
+static tree
+get_computation (struct loop *loop, struct iv_use *use, struct iv_cand *cand)
+{
+ return get_computation_at (loop, use, cand, use->stmt);
+}
+
+/* Strips constant offsets from EXPR and adds them to OFFSET. */
+
+static void
+strip_offset (tree *expr, unsigned HOST_WIDE_INT *offset)
+{
+ tree op0, op1;
+ enum tree_code code;
+
+ while (1)
+ {
+ if (cst_and_fits_in_hwi (*expr))
+ {
+ *offset += int_cst_value (*expr);
+ *expr = integer_zero_node;
+ return;
+ }
+
+ code = TREE_CODE (*expr);
+
+ if (code != PLUS_EXPR && code != MINUS_EXPR)
+ return;
+
+ op0 = TREE_OPERAND (*expr, 0);
+ op1 = TREE_OPERAND (*expr, 1);
+
+ if (cst_and_fits_in_hwi (op1))
+ {
+ if (code == PLUS_EXPR)
+ *offset += int_cst_value (op1);
+ else
+ *offset -= int_cst_value (op1);
+
+ *expr = op0;
+ continue;
+ }
+
+ if (code != PLUS_EXPR)
+ return;
+
+ if (!cst_and_fits_in_hwi (op0))
+ return;
+
+ *offset += int_cst_value (op0);
+ *expr = op1;
+ }
+}
+
+/* Returns cost of addition in MODE. */
+
+static unsigned
+add_cost (enum machine_mode mode)
+{
+ static unsigned costs[NUM_MACHINE_MODES];
+ rtx seq;
+ unsigned cost;
+
+ if (costs[mode])
+ return costs[mode];
+
+ start_sequence ();
+ force_operand (gen_rtx_fmt_ee (PLUS, mode,
+ gen_raw_REG (mode, FIRST_PSEUDO_REGISTER),
+ gen_raw_REG (mode, FIRST_PSEUDO_REGISTER + 1)),
+ NULL_RTX);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq);
+ if (!cost)
+ cost = 1;
+
+ costs[mode] = cost;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Addition in %s costs %d\n",
+ GET_MODE_NAME (mode), cost);
+ return cost;
+}
+
+/* Entry in a hashtable of already known costs for multiplication. */
+struct mbc_entry
+{
+ HOST_WIDE_INT cst; /* The constant to multiply by. */
+ enum machine_mode mode; /* In mode. */
+ unsigned cost; /* The cost. */
+};
+
+/* Counts hash value for the ENTRY. */
+
+static hashval_t
+mbc_entry_hash (const void *entry)
+{
+ const struct mbc_entry *e = entry;
+
+ return 57 * (hashval_t) e->mode + (hashval_t) (e->cst % 877);
+}
+
+/* Compares the hash table entries ENTRY1 and ENTRY2. */
+
+static int
+mbc_entry_eq (const void *entry1, const void *entry2)
+{
+ const struct mbc_entry *e1 = entry1;
+ const struct mbc_entry *e2 = entry2;
+
+ return (e1->mode == e2->mode
+ && e1->cst == e2->cst);
+}
+
+/* Returns cost of multiplication by constant CST in MODE. */
+
+static unsigned
+multiply_by_cost (HOST_WIDE_INT cst, enum machine_mode mode)
+{
+ static htab_t costs;
+ struct mbc_entry **cached, act;
+ rtx seq;
+ unsigned cost;
+
+ if (!costs)
+ costs = htab_create (100, mbc_entry_hash, mbc_entry_eq, free);
+
+ act.mode = mode;
+ act.cst = cst;
+ cached = (struct mbc_entry **) htab_find_slot (costs, &act, INSERT);
+ if (*cached)
+ return (*cached)->cost;
+
+ *cached = xmalloc (sizeof (struct mbc_entry));
+ (*cached)->mode = mode;
+ (*cached)->cst = cst;
+
+ start_sequence ();
+ expand_mult (mode, gen_raw_REG (mode, FIRST_PSEUDO_REGISTER), GEN_INT (cst),
+ NULL_RTX, 0);
+ seq = get_insns ();
+ end_sequence ();
+
+ cost = seq_cost (seq);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Multiplication by %d in %s costs %d\n",
+ (int) cst, GET_MODE_NAME (mode), cost);
+
+ (*cached)->cost = cost;
+
+ return cost;
+}
+
+/* Returns cost of address in shape symbol + var + OFFSET + RATIO * index.
+ If SYMBOL_PRESENT is false, symbol is omitted. If VAR_PRESENT is false,
+ variable is omitted. The created memory accesses MODE.
+
+ TODO -- there must be some better way. This all is quite crude. */
+
+static unsigned
+get_address_cost (bool symbol_present, bool var_present,
+ unsigned HOST_WIDE_INT offset, HOST_WIDE_INT ratio)
+{
+#define MAX_RATIO 128
+ static sbitmap valid_mult;
+ static HOST_WIDE_INT rat, off;
+ static HOST_WIDE_INT min_offset, max_offset;
+ static unsigned costs[2][2][2][2];
+ unsigned cost, acost;
+ rtx seq, addr, base;
+ bool offset_p, ratio_p;
+ rtx reg1;
+ HOST_WIDE_INT s_offset;
+ unsigned HOST_WIDE_INT mask;
+ unsigned bits;
+
+ if (!valid_mult)
+ {
+ HOST_WIDE_INT i;
+
+ reg1 = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER);
+
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, reg1, NULL_RTX);
+ for (i = 1; i <= 1 << 20; i <<= 1)
+ {
+ XEXP (addr, 1) = GEN_INT (i);
+ if (!memory_address_p (Pmode, addr))
+ break;
+ }
+ max_offset = i >> 1;
+ off = max_offset;
+
+ for (i = 1; i <= 1 << 20; i <<= 1)
+ {
+ XEXP (addr, 1) = GEN_INT (-i);
+ if (!memory_address_p (Pmode, addr))
+ break;
+ }
+ min_offset = -(i >> 1);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "get_address_cost:\n");
+ fprintf (dump_file, " min offset %d\n", (int) min_offset);
+ fprintf (dump_file, " max offset %d\n", (int) max_offset);
+ }
+
+ valid_mult = sbitmap_alloc (2 * MAX_RATIO + 1);
+ sbitmap_zero (valid_mult);
+ rat = 1;
+ addr = gen_rtx_fmt_ee (MULT, Pmode, reg1, NULL_RTX);
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ {
+ XEXP (addr, 1) = GEN_INT (i);
+ if (memory_address_p (Pmode, addr))
+ {
+ SET_BIT (valid_mult, i + MAX_RATIO);
+ rat = i;
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " allowed multipliers:");
+ for (i = -MAX_RATIO; i <= MAX_RATIO; i++)
+ if (TEST_BIT (valid_mult, i + MAX_RATIO))
+ fprintf (dump_file, " %d", (int) i);
+ fprintf (dump_file, "\n");
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ bits = GET_MODE_BITSIZE (Pmode);
+ mask = ~(~(unsigned HOST_WIDE_INT) 0 << (bits - 1) << 1);
+ offset &= mask;
+ if ((offset >> (bits - 1) & 1))
+ offset |= ~mask;
+ s_offset = offset;
+
+ cost = 0;
+ offset_p = (min_offset <= s_offset && s_offset <= max_offset);
+ ratio_p = (ratio != 1
+ && -MAX_RATIO <= ratio && ratio <= MAX_RATIO
+ && TEST_BIT (valid_mult, ratio + MAX_RATIO));
+
+ if (ratio != 1 && !ratio_p)
+ cost += multiply_by_cost (ratio, Pmode);
+
+ if (s_offset && !offset_p && !symbol_present)
+ {
+ cost += add_cost (Pmode);
+ var_present = true;
+ }
+
+ acost = costs[symbol_present][var_present][offset_p][ratio_p];
+ if (!acost)
+ {
+ acost = 0;
+
+ addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER);
+ reg1 = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 1);
+ if (ratio_p)
+ addr = gen_rtx_fmt_ee (MULT, Pmode, addr, GEN_INT (rat));
+
+ if (symbol_present)
+ {
+ base = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (""));
+ if (offset_p)
+ base = gen_rtx_fmt_e (CONST, Pmode,
+ gen_rtx_fmt_ee (PLUS, Pmode,
+ base,
+ GEN_INT (off)));
+ if (var_present)
+ base = gen_rtx_fmt_ee (PLUS, Pmode, reg1, base);
+ }
+
+ else if (var_present)
+ {
+ base = reg1;
+ if (offset_p)
+ base = gen_rtx_fmt_ee (PLUS, Pmode, base, GEN_INT (off));
+ }
+ else if (offset_p)
+ base = GEN_INT (off);
+ else
+ base = NULL_RTX;
+
+ if (base)
+ addr = gen_rtx_fmt_ee (PLUS, Pmode, base, addr);
+
+ start_sequence ();
+ addr = memory_address (Pmode, addr);
+ seq = get_insns ();
+ end_sequence ();
+
+ acost = seq_cost (seq);
+ acost += address_cost (addr, Pmode);
+
+ if (!acost)
+ acost = 1;
+ costs[symbol_present][var_present][offset_p][ratio_p] = acost;
+ }
+
+ return cost + acost;
+}
+
+/* Records invariants in *EXPR_P. Callback for walk_tree. DATA contains
+ the bitmap to that we should store it. */
+
+static struct ivopts_data *fd_ivopts_data;
+static tree
+find_depends (tree *expr_p, int *ws ATTRIBUTE_UNUSED, void *data)
+{
+ bitmap *depends_on = data;
+ struct version_info *info;
+
+ if (TREE_CODE (*expr_p) != SSA_NAME)
+ return NULL_TREE;
+ info = name_info (fd_ivopts_data, *expr_p);
+
+ if (!info->inv_id || info->has_nonlin_use)
+ return NULL_TREE;
+
+ if (!*depends_on)
+ *depends_on = BITMAP_XMALLOC ();
+ bitmap_set_bit (*depends_on, info->inv_id);
+
+ return NULL_TREE;
+}
+
+/* Estimates cost of forcing EXPR into variable. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static unsigned
+force_var_cost (struct ivopts_data *data,
+ tree expr, bitmap *depends_on)
+{
+ if (depends_on)
+ {
+ fd_ivopts_data = data;
+ walk_tree (&expr, find_depends, depends_on, NULL);
+ }
+
+ if (TREE_INVARIANT (expr)
+ || SSA_VAR_P (expr))
+ return 0;
+
+ return spill_cost;
+}
+
+/* Peels a single layer of ADDR. If DIFF is not NULL, do it only if the
+ offset is constant and add the offset to DIFF. */
+
+static tree
+peel_address (tree addr, unsigned HOST_WIDE_INT *diff)
+{
+ tree off, size;
+ HOST_WIDE_INT bit_offset;
+
+ switch (TREE_CODE (addr))
+ {
+ case SSA_NAME:
+ case INDIRECT_REF:
+ case BIT_FIELD_REF:
+ case VAR_DECL:
+ case PARM_DECL:
+ case RESULT_DECL:
+ case STRING_CST:
+ return NULL_TREE;
+
+ case COMPONENT_REF:
+ off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (addr, 1));
+ bit_offset = TREE_INT_CST_LOW (off);
+
+ if (bit_offset % BITS_PER_UNIT)
+ abort ();
+
+ if (diff)
+ *diff += bit_offset / BITS_PER_UNIT;
+
+ return TREE_OPERAND (addr, 0);
+
+ case ARRAY_REF:
+ off = TREE_OPERAND (addr, 1);
+
+ if (diff)
+ {
+ if (!cst_and_fits_in_hwi (off))
+ return NULL_TREE;
+
+ size = TYPE_SIZE_UNIT (TREE_TYPE (addr));
+ if (!cst_and_fits_in_hwi (size))
+ return NULL_TREE;
+
+ *diff += TREE_INT_CST_LOW (off) * TREE_INT_CST_LOW (size);
+ }
+
+ return TREE_OPERAND (addr, 0);
+
+ default:
+ abort ();
+ }
+}
+
+/* Checks whether E1 and E2 have constant difference, and if they do,
+ store it in *DIFF. */
+
+static bool
+ptr_difference_const (tree e1, tree e2, unsigned HOST_WIDE_INT *diff)
+{
+ int d1 = 0, d2 = 0;
+ tree x;
+ unsigned HOST_WIDE_INT delta1 = 0, delta2 = 0;
+
+ /* Find depths of E1 and E2. */
+ for (x = e1; x; x = peel_address (x, NULL))
+ d1++;
+ for (x = e2; x; x = peel_address (x, NULL))
+ d2++;
+
+ for (; e1 && d1 > d2; e1 = peel_address (e1, &delta1))
+ d1--;
+ for (; e2 && d2 > d1; e2 = peel_address (e2, &delta2))
+ d2--;
+
+ while (e1 && e2 && !operand_equal_p (e1, e2, 0))
+ {
+ e1 = peel_address (e1, &delta1);
+ e2 = peel_address (e2, &delta1);
+ }
+
+ if (!e1 || !e2)
+ return false;
+
+ *diff = delta1 - delta2;
+ return true;
+}
+
+/* Estimates cost of expressing address ADDR as var + symbol + offset. The
+ value of offset is added to OFFSET, SYMBOL_PRESENT and VAR_PRESENT are set
+ to false if the corresponding part is missing. DEPENDS_ON is a set of the
+ invariants the computation depends on. */
+
+static unsigned
+split_address_cost (struct ivopts_data *data,
+ tree addr, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ tree core = addr;
+
+ while (core
+ && TREE_CODE (core) != VAR_DECL)
+ core = peel_address (core, offset);
+
+ if (!core)
+ {
+ *symbol_present = false;
+ *var_present = true;
+ fd_ivopts_data = data;
+ walk_tree (&addr, find_depends, depends_on, NULL);
+ return spill_cost;
+ }
+
+ if (TREE_STATIC (core)
+ || DECL_EXTERNAL (core))
+ {
+ *symbol_present = true;
+ *var_present = false;
+ return 0;
+ }
+
+ *symbol_present = false;
+ *var_present = true;
+ return 0;
+}
+
+/* Estimates cost of expressing difference of addresses E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static unsigned
+ptr_difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ unsigned HOST_WIDE_INT diff = 0;
+ unsigned cost;
+
+ if (TREE_CODE (e1) != ADDR_EXPR)
+ abort ();
+
+ if (TREE_CODE (e2) == ADDR_EXPR
+ && ptr_difference_const (TREE_OPERAND (e1, 0),
+ TREE_OPERAND (e2, 0), &diff))
+ {
+ *offset += diff;
+ *symbol_present = false;
+ *var_present = false;
+ return 0;
+ }
+
+ if (e2 == integer_zero_node)
+ return split_address_cost (data, TREE_OPERAND (e1, 0),
+ symbol_present, var_present, offset, depends_on);
+
+ *symbol_present = false;
+ *var_present = true;
+
+ cost = force_var_cost (data, e1, depends_on);
+ cost += force_var_cost (data, e2, depends_on);
+ cost += add_cost (Pmode);
+
+ return cost;
+}
+
+/* Estimates cost of expressing difference E1 - E2 as
+ var + symbol + offset. The value of offset is added to OFFSET,
+ SYMBOL_PRESENT and VAR_PRESENT are set to false if the corresponding
+ part is missing. DEPENDS_ON is a set of the invariants the computation
+ depends on. */
+
+static unsigned
+difference_cost (struct ivopts_data *data,
+ tree e1, tree e2, bool *symbol_present, bool *var_present,
+ unsigned HOST_WIDE_INT *offset, bitmap *depends_on)
+{
+ unsigned cost;
+ enum machine_mode mode = TYPE_MODE (TREE_TYPE (e1));
+
+ strip_offset (&e1, offset);
+ *offset = -*offset;
+ strip_offset (&e2, offset);
+ *offset = -*offset;
+
+ if (TREE_CODE (e1) == ADDR_EXPR)
+ return ptr_difference_cost (data, e1, e2, symbol_present, var_present, offset,
+ depends_on);
+ *symbol_present = false;
+
+ if (operand_equal_p (e1, e2, 0))
+ {
+ *var_present = false;
+ return 0;
+ }
+ *var_present = true;
+ if (zero_p (e2))
+ return force_var_cost (data, e1, depends_on);
+
+ if (zero_p (e1))
+ {
+ cost = force_var_cost (data, e2, depends_on);
+ cost += multiply_by_cost (-1, mode);
+
+ return cost;
+ }
+
+ cost = force_var_cost (data, e1, depends_on);
+ cost += force_var_cost (data, e2, depends_on);
+ cost += add_cost (mode);
+
+ return cost;
+}
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. AT is the statement at that the value is computed. */
+
+static unsigned
+get_computation_cost_at (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on, tree at)
+{
+ tree ubase = use->iv->base, ustep = use->iv->step;
+ tree cbase, cstep;
+ tree utype = TREE_TYPE (ubase), ctype;
+ unsigned HOST_WIDE_INT ustepi, cstepi, offset = 0;
+ HOST_WIDE_INT ratio, aratio;
+ bool var_present, symbol_present;
+ unsigned cost = 0, n_sums;
+
+ *depends_on = NULL;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ return INFTY;
+
+ cbase = cand->iv->base;
+ cstep = cand->iv->step;
+ ctype = TREE_TYPE (cbase);
+
+ if (TYPE_PRECISION (utype) > TYPE_PRECISION (ctype))
+ {
+ /* We do not have a precision to express the values of use. */
+ return INFTY;
+ }
+
+ if (!cst_and_fits_in_hwi (ustep)
+ || !cst_and_fits_in_hwi (cstep))
+ return INFTY;
+
+ if (TREE_CODE (ubase) == INTEGER_CST
+ && !cst_and_fits_in_hwi (ubase))
+ goto fallback;
+
+ if (TREE_CODE (cbase) == INTEGER_CST
+ && !cst_and_fits_in_hwi (cbase))
+ goto fallback;
+
+ ustepi = int_cst_value (ustep);
+ cstepi = int_cst_value (cstep);
+
+ if (TYPE_PRECISION (utype) != TYPE_PRECISION (ctype))
+ {
+ /* TODO -- add direct handling of this case. */
+ goto fallback;
+ }
+
+ if (!divide (TYPE_PRECISION (utype), ustepi, cstepi, &ratio))
+ return INFTY;
+
+ /* use = ubase + ratio * (var - cbase). If either cbase is a constant
+ or ratio == 1, it is better to handle this like
+
+ ubase - ratio * cbase + ratio * var
+
+ (also holds in the case ratio == -1, TODO. */
+
+ if (TREE_CODE (cbase) == INTEGER_CST)
+ {
+ offset = - ratio * int_cst_value (cbase);
+ cost += difference_cost (data,
+ ubase, integer_zero_node,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+ else if (ratio == 1)
+ {
+ cost += difference_cost (data,
+ ubase, cbase,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+ else
+ {
+ cost += force_var_cost (data, cbase, depends_on);
+ cost += add_cost (TYPE_MODE (ctype));
+ cost += difference_cost (data,
+ ubase, integer_zero_node,
+ &symbol_present, &var_present, &offset,
+ depends_on);
+ }
+
+ /* If we are after the increment, the value of the candidate is higher by
+ one iteration. */
+ if (stmt_after_increment (data->current_loop, cand, at))
+ offset -= ratio * cstepi;
+
+ /* Now the computation is in shape symbol + var1 + const + ratio * var2.
+ (symbol/var/const parts may be omitted). If we are looking for an address,
+ find the cost of addressing this. */
+ if (address_p)
+ return get_address_cost (symbol_present, var_present, offset, ratio);
+
+ /* Otherwise estimate the costs for computing the expression. */
+ aratio = ratio > 0 ? ratio : -ratio;
+ if (!symbol_present && !var_present && !offset)
+ {
+ if (ratio != 1)
+ cost += multiply_by_cost (ratio, TYPE_MODE (ctype));
+
+ return cost;
+ }
+
+ if (aratio != 1)
+ cost += multiply_by_cost (aratio, TYPE_MODE (ctype));
+
+ n_sums = 1;
+ if (var_present
+ /* Symbol + offset should be compile-time computable. */
+ && (symbol_present || offset))
+ n_sums++;
+
+ return cost + n_sums * add_cost (TYPE_MODE (ctype));
+
+fallback:
+ {
+ /* Just get the expression, expand it and measure the cost. */
+ tree comp = get_computation_at (data->current_loop, use, cand, at);
+
+ if (!comp)
+ return INFTY;
+
+ if (address_p)
+ comp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (comp)), comp);
+
+ return computation_cost (comp);
+ }
+}
+
+/* Determines the cost of the computation by that USE is expressed
+ from induction variable CAND. If ADDRESS_P is true, we just need
+ to create an address from it, otherwise we want to get it into
+ register. A set of invariants we depend on is stored in
+ DEPENDS_ON. */
+
+static unsigned
+get_computation_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand,
+ bool address_p, bitmap *depends_on)
+{
+ return get_computation_cost_at (data,
+ use, cand, address_p, depends_on, use->stmt);
+}
+
+/* Determines cost of basing replacement of USE on CAND in a generic
+ expression. */
+
+static void
+determine_use_iv_cost_generic (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ unsigned cost = get_computation_cost (data, use, cand, false, &depends_on);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on);
+}
+
+/* Determines cost of basing replacement of USE on CAND in an address. */
+
+static void
+determine_use_iv_cost_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ unsigned cost = get_computation_cost (data, use, cand, true, &depends_on);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on);
+}
+
+/* Computes value of induction variable IV in iteration NITER. */
+
+static tree
+iv_value (struct iv *iv, tree niter)
+{
+ tree val;
+ tree type = TREE_TYPE (iv->base);
+
+ niter = convert (type, niter);
+ val = fold (build (MULT_EXPR, type, iv->step, niter));
+
+ return fold (build (PLUS_EXPR, type, iv->base, val));
+}
+
+/* Computes value of candidate CAND at position AT in iteration NITER. */
+
+static tree
+cand_value_at (struct loop *loop, struct iv_cand *cand, tree at, tree niter)
+{
+ tree type = TREE_TYPE (niter);
+
+ if (stmt_after_increment (loop, cand, at))
+ niter = fold (build (PLUS_EXPR, type, niter,
+ convert (type, integer_one_node)));
+
+ return iv_value (cand->iv, niter);
+}
+
+/* Check whether it is possible to express the condition in USE by comparison
+ of candidate CAND. If so, store the comparison code to COMPARE and the
+ value compared with to BOUND. */
+
+static bool
+may_eliminate_iv (struct loop *loop,
+ struct iv_use *use, struct iv_cand *cand,
+ enum tree_code *compare, tree *bound)
+{
+ edge exit;
+ struct tree_niter_desc *niter;
+
+ /* For now just very primitive -- we work just for the single exit condition,
+ and are quite conservative about the possible overflows. TODO -- both of
+ these can be improved. */
+ exit = loop_data (loop)->single_exit;
+ if (!exit)
+ return false;
+ if (use->stmt != last_stmt (exit->src))
+ return false;
+
+ niter = &loop_data (loop)->niter;
+ if (!niter->niter
+ || !operand_equal_p (niter->assumptions, boolean_true_node, 0)
+ || !operand_equal_p (niter->may_be_zero, boolean_false_node, 0))
+ return false;
+
+ /* FIXME -- we ignore the possible overflow here. For example
+ in case the loop iterates MAX_UNSIGNED_INT / 2 times and
+ the step of candidate is 4, this is wrong. */
+ if (exit->flags & EDGE_TRUE_VALUE)
+ *compare = EQ_EXPR;
+ else
+ *compare = NE_EXPR;
+
+ *bound = cand_value_at (loop, cand, use->stmt, niter->niter);
+
+ return true;
+}
+
+/* Determines cost of basing replacement of USE on CAND in a condition. */
+
+static void
+determine_use_iv_cost_condition (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree bound;
+ enum tree_code compare;
+
+ /* Only consider real candidates. */
+ if (!cand->iv)
+ {
+ set_use_iv_cost (data, use, cand, INFTY, NULL);
+ return;
+ }
+
+ if (may_eliminate_iv (data->current_loop, use, cand, &compare, &bound))
+ {
+ bitmap depends_on = NULL;
+ unsigned cost = force_var_cost (data, bound, &depends_on);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on);
+ return;
+ }
+
+ /* The induction variable elimination failed; just express the original
+ giv. If it is compared with an invariant, note that we cannot get
+ rid of it. */
+ if (TREE_CODE (*use->op_p) == SSA_NAME)
+ record_invariant (data, *use->op_p, true);
+ else
+ {
+ record_invariant (data, TREE_OPERAND (*use->op_p, 0), true);
+ record_invariant (data, TREE_OPERAND (*use->op_p, 1), true);
+ }
+
+ determine_use_iv_cost_generic (data, use, cand);
+}
+
+/* Checks whether it is possible to replace the final value of USE by
+ a direct computation. If so, the formula is stored to *VALUE. */
+
+static bool
+may_replace_final_value (struct loop *loop, struct iv_use *use, tree *value)
+{
+ edge exit;
+ struct tree_niter_desc *niter;
+
+ exit = loop_data (loop)->single_exit;
+ if (!exit)
+ return false;
+
+ if (!dominated_by_p (CDI_DOMINATORS, exit->src,
+ bb_for_stmt (use->stmt)))
+ abort ();
+
+ niter = &loop_data (loop)->niter;
+ if (!niter->niter
+ || !operand_equal_p (niter->assumptions, boolean_true_node, 0)
+ || !operand_equal_p (niter->may_be_zero, boolean_false_node, 0))
+ return false;
+
+ *value = iv_value (use->iv, niter->niter);
+
+ return true;
+}
+
+/* Determines cost of replacing final value of USE using CAND. */
+
+static void
+determine_use_iv_cost_outer (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ bitmap depends_on;
+ unsigned cost;
+ edge exit;
+ tree value;
+ struct loop *loop = data->current_loop;
+
+ if (!cand->iv)
+ {
+ if (!may_replace_final_value (loop, use, &value))
+ {
+ set_use_iv_cost (data, use, cand, INFTY, NULL);
+ return;
+ }
+
+ depends_on = NULL;
+ cost = force_var_cost (data, value, &depends_on);
+
+ cost /= AVG_LOOP_NITER (loop);
+
+ set_use_iv_cost (data, use, cand, cost, depends_on);
+ return;
+ }
+
+ exit = loop_data (loop)->single_exit;
+ if (exit)
+ {
+ /* If there is just a single exit, we may use value of the candidate
+ after we take it to determine the value of use. */
+ cost = get_computation_cost_at (data, use, cand, false, &depends_on,
+ last_stmt (exit->src));
+ cost /= AVG_LOOP_NITER (loop);
+ }
+ else
+ {
+ /* Otherwise we just need to compute the iv. */
+ cost = get_computation_cost (data, use, cand, false, &depends_on);
+ }
+
+ set_use_iv_cost (data, use, cand, cost, depends_on);
+}
+
+/* Determines cost of basing replacement of USE on CAND. */
+
+static void
+determine_use_iv_cost (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ determine_use_iv_cost_generic (data, use, cand);
+ break;
+
+ case USE_OUTER:
+ determine_use_iv_cost_outer (data, use, cand);
+ break;
+
+ case USE_ADDRESS:
+ determine_use_iv_cost_address (data, use, cand);
+ break;
+
+ case USE_COMPARE:
+ determine_use_iv_cost_condition (data, use, cand);
+ break;
+
+ default:
+ abort ();
+ }
+}
+
+/* Determines costs of basing the use of the iv on an iv candidate. */
+
+static void
+determine_use_iv_costs (struct ivopts_data *data)
+{
+ unsigned i, j;
+ struct iv_use *use;
+ struct iv_cand *cand;
+
+ data->consider_all_candidates = (n_iv_cands (data)
+ <= CONSIDER_ALL_CANDIDATES_BOUND);
+
+ alloc_use_cost_map (data);
+
+ if (!data->consider_all_candidates)
+ {
+ /* Add the important candidate entries. */
+ for (j = 0; j < n_iv_cands (data); j++)
+ {
+ cand = iv_cand (data, j);
+ if (!cand->important)
+ continue;
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ determine_use_iv_cost (data, use, cand);
+ }
+ }
+ }
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ if (data->consider_all_candidates)
+ {
+ for (j = 0; j < n_iv_cands (data); j++)
+ {
+ cand = iv_cand (data, j);
+ determine_use_iv_cost (data, use, cand);
+ }
+ }
+ else
+ {
+ EXECUTE_IF_SET_IN_BITMAP (use->related_cands, 0, j,
+ {
+ cand = iv_cand (data, j);
+ if (!cand->important)
+ determine_use_iv_cost (data, use, cand);
+ });
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Use-candidate costs:\n");
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+
+ fprintf (dump_file, "Use %d:\n", i);
+ fprintf (dump_file, " cand\tcost\tdepends on\n");
+ for (j = 0; j < use->n_map_members; j++)
+ {
+ if (!use->cost_map[j].cand
+ || use->cost_map[j].cost == INFTY)
+ continue;
+
+ fprintf (dump_file, " %d\t%d\t",
+ use->cost_map[j].cand->id,
+ use->cost_map[j].cost);
+ if (use->cost_map[j].depends_on)
+ bitmap_print (dump_file,
+ use->cost_map[j].depends_on, "","");
+ fprintf (dump_file, "\n");
+ }
+
+ fprintf (dump_file, "\n");
+ }
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Determines cost of the candidate CAND. */
+
+static void
+determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
+{
+ unsigned cost_base, cost_step;
+ tree base, last;
+ basic_block bb;
+
+ if (!cand->iv)
+ {
+ cand->cost = 0;
+ return;
+ }
+
+ /* There are two costs associated with the candidate -- its incrementation
+ and its initialization. The second is almost negligible for any loop
+ that rolls enough, so we take it just very little into account. */
+
+ base = cand->iv->base;
+ cost_base = force_var_cost (data, base, NULL);
+ cost_step = add_cost (TYPE_MODE (TREE_TYPE (base)));
+
+ cand->cost = cost_step + cost_base / AVG_LOOP_NITER (current_loop);
+
+ /* Prefer the original iv unless we may gain something by replacing it. */
+ if (cand->pos == IP_ORIGINAL)
+ cand->cost--;
+
+ /* Prefer not to insert statements into latch unless there are some
+ already (so that we do not create unnecesary jumps). */
+ if (cand->pos == IP_END)
+ {
+ bb = ip_end_pos (data->current_loop);
+ last = last_stmt (bb);
+
+ if (!last
+ || TREE_CODE (last) == LABEL_EXPR)
+ cand->cost++;
+ }
+}
+
+/* Determines costs of computation of the candidates. */
+
+static void
+determine_iv_costs (struct ivopts_data *data)
+{
+ unsigned i;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Candidate costs:\n");
+ fprintf (dump_file, " cand\tcost\n");
+ }
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ determine_iv_cost (data, cand);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " %d\t%d\n", i, cand->cost);
+ }
+
+if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "\n");
+}
+
+/* Calculates cost for having SIZE new loop global variables. REGS_USED is the
+ number of global registers used in loop. N_USES is the number of relevant
+ variable uses. */
+
+unsigned
+global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
+{
+ unsigned regs_needed = regs_used + size;
+ unsigned cost = 0;
+
+ if (regs_needed + res_regs <= avail_regs)
+ cost += small_cost * size;
+ else if (regs_needed <= avail_regs)
+ cost += pres_cost * size;
+ else
+ {
+ cost += pres_cost * size;
+ cost += spill_cost * n_uses * (regs_needed - avail_regs) / regs_needed;
+ }
+
+ return cost;
+}
+
+/* Calculates cost for having SIZE induction variables. */
+
+static unsigned
+ivopts_global_cost_for_size (struct ivopts_data *data, unsigned size)
+{
+ return global_cost_for_size (size,
+ loop_data (data->current_loop)->regs_used,
+ n_iv_uses (data));
+}
+
+/* Initialize the constants for computing set costs. */
+
+void
+init_set_costs (void)
+{
+ rtx seq;
+ rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
+ rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
+ rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
+ rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
+ unsigned i;
+
+ for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
+ if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
+ && !fixed_regs[i])
+ avail_regs++;
+
+ res_regs = 3;
+
+ /* These are really just heuristic values. */
+
+ start_sequence ();
+ emit_move_insn (reg1, reg2);
+ seq = get_insns ();
+ end_sequence ();
+ small_cost = seq_cost (seq);
+ pres_cost = 2 * small_cost;
+
+ start_sequence ();
+ emit_move_insn (mem, reg1);
+ emit_move_insn (reg2, mem);
+ seq = get_insns ();
+ end_sequence ();
+ spill_cost = seq_cost (seq);
+}
+
+/* For each size of the induction variable set determine the penalty. */
+
+static void
+determine_set_costs (struct ivopts_data *data)
+{
+ unsigned j, n;
+ tree phi, op;
+ struct loop *loop = data->current_loop;
+
+ /* We use the following model (definitely improvable, especially the
+ cost function -- TODO):
+
+ We estimate the number of registers available (using MD data), name it A.
+
+ We estimate the number of registers used by the loop, name it U. This
+ number is obtained as the number of loop phi nodes (not counting virtual
+ registers and bivs) + the number of variables from outside of the loop.
+
+ We set a reserve R (free regs that are used for temporary computations,
+ etc.). For now the reserve a constant 3.
+
+ Let I be the number of induction variables.
+
+ -- if U + I + R <= A, the cost is I * SMALL_COST (just not to encourage
+ make a lot of ivs without a reason).
+ -- if A - R < U + I <= A, the cost is I * PRES_COST
+ -- if U + I > A, the cost is I * PRES_COST and
+ number of uses * SPILL_COST * (U + I - A) / (U + I) is added. */
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Global costs:\n");
+ fprintf (dump_file, " avail_regs %d\n", avail_regs);
+ fprintf (dump_file, " small_cost %d\n", small_cost);
+ fprintf (dump_file, " pres_cost %d\n", pres_cost);
+ fprintf (dump_file, " spill_cost %d\n", spill_cost);
+ }
+
+ n = 0;
+ for (phi = phi_nodes (loop->header); phi; phi = TREE_CHAIN (phi))
+ {
+ op = PHI_RESULT (phi);
+
+ if (!is_gimple_reg (op))
+ continue;
+
+ if (get_iv (data, op))
+ continue;
+
+ n++;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j,
+ {
+ struct version_info *info = ver_info (data, j);
+
+ if (info->inv_id && info->has_nonlin_use)
+ n++;
+ });
+
+ loop_data (loop)->regs_used = n;
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, " regs_used %d\n", n);
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, " cost for size:\n");
+ fprintf (dump_file, " ivs\tcost\n");
+ for (j = 0; j <= 2 * avail_regs; j++)
+ fprintf (dump_file, " %d\t%d\n", j,
+ ivopts_global_cost_for_size (data, j));
+ fprintf (dump_file, "\n");
+ }
+}
+
+/* Finds a best candidate for USE and stores it to CAND. The candidates are
+ taken from the set SOL and they may depend on invariants in the set INV.
+ The really used candidate and invariants are noted to USED_IVS and
+ USED_INV. */
+
+static unsigned
+find_best_candidate (struct ivopts_data *data,
+ struct iv_use *use, bitmap sol, bitmap inv,
+ bitmap used_ivs, bitmap used_inv, struct iv_cand **cand)
+{
+ unsigned c, d;
+ unsigned best_cost = INFTY, cost;
+ struct iv_cand *cnd = NULL, *acnd;
+ bitmap depends_on = NULL;
+
+ EXECUTE_IF_SET_IN_BITMAP (sol, 0, c,
+ {
+ acnd = iv_cand (data, c);
+ cost = get_use_iv_cost (data, use, acnd, &depends_on);
+
+ if (cost == INFTY)
+ goto next_cand;
+ if (cost > best_cost)
+ goto next_cand;
+ if (cost == best_cost)
+ {
+ /* Prefer the cheaper iv. */
+ if (acnd->cost >= cnd->cost)
+ goto next_cand;
+ }
+
+ if (depends_on)
+ {
+ EXECUTE_IF_AND_COMPL_IN_BITMAP (depends_on, inv, 0, d,
+ goto next_cand);
+ if (used_inv)
+ bitmap_a_or_b (used_inv, used_inv, depends_on);
+ }
+
+ cnd = acnd;
+ best_cost = cost;
+next_cand: ;
+ });
+
+ if (cnd && used_ivs)
+ bitmap_set_bit (used_ivs, cnd->id);
+
+ if (cand)
+ *cand = cnd;
+
+ return best_cost;
+}
+
+/* Computes cost of set of ivs SOL + invariants INV. Removes unnecessary
+ induction variable candidates and invariants from the sets. */
+
+static unsigned
+set_cost (struct ivopts_data *data, bitmap sol, bitmap inv)
+{
+ unsigned i;
+ unsigned cost = 0, size = 0, acost;
+ struct iv_use *use;
+ struct iv_cand *cand;
+ bitmap used_ivs = BITMAP_XMALLOC (), used_inv = BITMAP_XMALLOC ();
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ acost = find_best_candidate (data, use, sol, inv,
+ used_ivs, used_inv, NULL);
+ if (acost == INFTY)
+ {
+ BITMAP_XFREE (used_ivs);
+ BITMAP_XFREE (used_inv);
+ return INFTY;
+ }
+ cost += acost;
+ }
+
+ EXECUTE_IF_SET_IN_BITMAP (used_ivs, 0, i,
+ {
+ cand = iv_cand (data, i);
+
+ /* Do not count the pseudocandidates. */
+ if (cand->iv)
+ size++;
+
+ cost += cand->cost;
+ });
+ EXECUTE_IF_SET_IN_BITMAP (used_inv, 0, i, size++);
+ cost += ivopts_global_cost_for_size (data, size);
+
+ bitmap_copy (sol, used_ivs);
+ bitmap_copy (inv, used_inv);
+
+ BITMAP_XFREE (used_ivs);
+ BITMAP_XFREE (used_inv);
+
+ return cost;
+}
+
+/* Finds an initial set of IVS and invariants INV. We do this by simply
+ chosing the best candidate for each use. */
+
+static unsigned
+get_initial_solution (struct ivopts_data *data, bitmap ivs, bitmap inv)
+{
+ unsigned i;
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ bitmap_set_bit (ivs, i);
+ for (i = 1; i <= data->max_inv_id; i++)
+ if (!ver_info (data, i)->has_nonlin_use)
+ bitmap_set_bit (inv, i);
+
+ return set_cost (data, ivs, inv);
+}
+
+/* Tries to improve set of induction variables IVS and invariants INV to get
+ it better than COST. */
+
+static bool
+try_improve_iv_set (struct ivopts_data *data,
+ bitmap ivs, bitmap inv, unsigned *cost)
+{
+ unsigned i, acost;
+ bitmap new_ivs = BITMAP_XMALLOC (), new_inv = BITMAP_XMALLOC ();
+ bitmap best_new_ivs = NULL, best_new_inv = NULL;
+
+ /* Try altering the set of induction variables by one. */
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ bitmap_copy (new_ivs, ivs);
+ bitmap_copy (new_inv, inv);
+
+ if (bitmap_bit_p (ivs, i))
+ bitmap_clear_bit (new_ivs, i);
+ else
+ bitmap_set_bit (new_ivs, i);
+
+ acost = set_cost (data, new_ivs, new_inv);
+ if (acost >= *cost)
+ continue;
+
+ if (!best_new_ivs)
+ {
+ best_new_ivs = BITMAP_XMALLOC ();
+ best_new_inv = BITMAP_XMALLOC ();
+ }
+
+ *cost = acost;
+ bitmap_copy (best_new_ivs, new_ivs);
+ bitmap_copy (best_new_inv, new_inv);
+ }
+
+ /* Ditto for invariants. */
+ for (i = 1; i <= data->max_inv_id; i++)
+ {
+ if (ver_info (data, i)->has_nonlin_use)
+ continue;
+
+ bitmap_copy (new_ivs, ivs);
+ bitmap_copy (new_inv, inv);
+
+ if (bitmap_bit_p (inv, i))
+ bitmap_clear_bit (new_inv, i);
+ else
+ bitmap_set_bit (new_inv, i);
+
+ acost = set_cost (data, new_ivs, new_inv);
+ if (acost >= *cost)
+ continue;
+
+ if (!best_new_ivs)
+ {
+ best_new_ivs = BITMAP_XMALLOC ();
+ best_new_inv = BITMAP_XMALLOC ();
+ }
+
+ *cost = acost;
+ bitmap_copy (best_new_ivs, new_ivs);
+ bitmap_copy (best_new_inv, new_inv);
+ }
+
+ BITMAP_XFREE (new_ivs);
+ BITMAP_XFREE (new_inv);
+
+ if (!best_new_ivs)
+ return false;
+
+ bitmap_copy (ivs, best_new_ivs);
+ bitmap_copy (inv, best_new_inv);
+ BITMAP_XFREE (best_new_ivs);
+ BITMAP_XFREE (best_new_inv);
+ return true;
+}
+
+/* Attempts to find the optimal set of induction variables. We do simple
+ greedy heuristic -- we try to replace at most one candidate in the selected
+ solution and remove the unused ivs while this improves the cost. */
+
+static bitmap
+find_optimal_iv_set (struct ivopts_data *data)
+{
+ unsigned cost, i;
+ bitmap set = BITMAP_XMALLOC ();
+ bitmap inv = BITMAP_XMALLOC ();
+ struct iv_use *use;
+
+ /* Set the upper bound. */
+ cost = get_initial_solution (data, set, inv);
+ if (cost == INFTY)
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Unable to substitute for ivs, failed.\n");
+ BITMAP_XFREE (inv);
+ BITMAP_XFREE (set);
+ return NULL;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Initial set of candidates (cost %d): ", cost);
+ bitmap_print (dump_file, set, "", "");
+ fprintf (dump_file, " invariants ");
+ bitmap_print (dump_file, inv, "", "");
+ fprintf (dump_file, "\n");
+ }
+
+ while (try_improve_iv_set (data, set, inv, &cost))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Improved to (cost %d): ", cost);
+ bitmap_print (dump_file, set, "", "");
+ fprintf (dump_file, " invariants ");
+ bitmap_print (dump_file, inv, "", "");
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Final cost %d\n\n", cost);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ find_best_candidate (data, use, set, inv, NULL, NULL, &use->selected);
+ }
+
+ BITMAP_XFREE (inv);
+
+ return set;
+}
+
+/* Creates an induction variable with value BASE + STEP * iteration in LOOP.
+ It is expected that neither BASE nor STEP are shared with other expressions
+ (unless the sharing rules allow this). Use VAR as a base var_decl for it
+ (if NULL, a new temporary will be created). The increment will occur at
+ INCR_POS (after it if AFTER is true, before it otherwise). The ssa versions
+ of the variable before and after increment will be stored in VAR_BEFORE and
+ VAR_AFTER (unless they are NULL). */
+
+void
+create_iv (tree base, tree step, tree var, struct loop *loop,
+ block_stmt_iterator *incr_pos, bool after,
+ tree *var_before, tree *var_after)
+{
+ tree stmt, stmts, initial;
+ tree vb, va;
+
+ if (!var)
+ {
+ var = create_tmp_var (TREE_TYPE (base), "ivtmp");
+ add_referenced_tmp_var (var);
+ }
+
+ vb = make_ssa_name (var, NULL_TREE);
+ if (var_before)
+ *var_before = vb;
+ va = make_ssa_name (var, NULL_TREE);
+ if (var_after)
+ *var_after = va;
+
+ stmt = build (MODIFY_EXPR, void_type_node, va,
+ build (PLUS_EXPR, TREE_TYPE (base),
+ vb, step));
+ SSA_NAME_DEF_STMT (va) = stmt;
+ if (after)
+ bsi_insert_after (incr_pos, stmt, BSI_NEW_STMT);
+ else
+ bsi_insert_before (incr_pos, stmt, BSI_NEW_STMT);
+
+ initial = force_gimple_operand (base, &stmts, false);
+ if (stmts)
+ {
+ basic_block new_bb;
+ edge pe = loop_preheader_edge (loop);
+
+ new_bb = bsi_insert_on_edge_immediate (pe, stmts);
+ if (new_bb)
+ add_bb_to_loop (new_bb, new_bb->pred->src->loop_father);
+ }
+
+ stmt = create_phi_node (vb, loop->header);
+ SSA_NAME_DEF_STMT (vb) = stmt;
+ add_phi_arg (&stmt, initial, loop_preheader_edge (loop));
+ add_phi_arg (&stmt, va, loop_latch_edge (loop));
+}
+
+/* Creates a new induction variable corresponding to CAND. */
+
+static void
+create_new_iv (struct ivopts_data *data, struct iv_cand *cand)
+{
+ block_stmt_iterator incr_pos;
+ tree base;
+ bool after = false;
+
+ if (!cand->iv)
+ return;
+
+ switch (cand->pos)
+ {
+ case IP_NORMAL:
+ incr_pos = bsi_last (ip_normal_pos (data->current_loop));
+ break;
+
+ case IP_END:
+ incr_pos = bsi_last (ip_end_pos (data->current_loop));
+ after = true;
+ break;
+
+ case IP_ORIGINAL:
+ /* Mark that the iv is preserved. */
+ name_info (data, cand->var_before)->preserve_biv = true;
+ name_info (data, cand->var_after)->preserve_biv = true;
+
+ /* Rewrite the increment so that it uses var_before directly. */
+ find_interesting_uses_op (data, cand->var_after)->selected = cand;
+
+ return;
+ }
+
+ gimple_add_tmp_var (cand->var_before);
+ add_referenced_tmp_var (cand->var_before);
+
+ base = unshare_expr (cand->iv->base);
+
+ create_iv (base, cand->iv->step, cand->var_before, data->current_loop,
+ &incr_pos, after, &cand->var_before, &cand->var_after);
+}
+
+/* Creates new induction variables described in SET. */
+
+static void
+create_new_ivs (struct ivopts_data *data, bitmap set)
+{
+ unsigned i;
+ struct iv_cand *cand;
+
+ EXECUTE_IF_SET_IN_BITMAP (set, 0, i,
+ {
+ cand = iv_cand (data, i);
+ create_new_iv (data, cand);
+ });
+}
+
+/* Removes statement STMT (real or a phi node). If INCLUDING_DEFINED_NAME
+ is true, remove also the ssa name defined by the statement. */
+
+static void
+remove_statement (tree stmt, bool including_defined_name)
+{
+ if (TREE_CODE (stmt) == PHI_NODE)
+ {
+ if (!including_defined_name)
+ {
+ /* Prevent the ssa name defined by the statement from being removed. */
+ PHI_RESULT (stmt) = NULL;
+ }
+ remove_phi_node (stmt, NULL_TREE, bb_for_stmt (stmt));
+ }
+ else
+ {
+ block_stmt_iterator bsi = stmt_bsi (stmt);
+
+ bsi_remove (&bsi);
+ }
+}
+
+/* Rewrites USE (definition of iv used in a nonlinear expression)
+ using candidate CAND. */
+
+static void
+rewrite_use_nonlinear_expr (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp = unshare_expr (get_computation (data->current_loop,
+ use, cand));
+ tree op, stmts, tgt, ass;
+ block_stmt_iterator bsi, pbsi;
+
+ if (TREE_CODE (use->stmt) == PHI_NODE)
+ {
+ tgt = PHI_RESULT (use->stmt);
+
+ /* If we should keep the biv, do not replace it. */
+ if (name_info (data, tgt)->preserve_biv)
+ return;
+
+ pbsi = bsi = bsi_start (bb_for_stmt (use->stmt));
+ while (!bsi_end_p (pbsi)
+ && TREE_CODE (bsi_stmt (pbsi)) == LABEL_EXPR)
+ {
+ bsi = pbsi;
+ bsi_next (&pbsi);
+ }
+ }
+ else
+ {
+ tgt = TREE_OPERAND (use->stmt, 0);
+ bsi = stmt_bsi (use->stmt);
+ }
+
+ op = force_gimple_operand (comp, &stmts, false);
+
+ if (TREE_CODE (use->stmt) == PHI_NODE)
+ {
+ if (stmts)
+ bsi_insert_after (&bsi, stmts, BSI_CONTINUE_LINKING);
+ ass = build (MODIFY_EXPR, TREE_TYPE (tgt), tgt, op);
+ bsi_insert_after (&bsi, ass, BSI_NEW_STMT);
+ remove_statement (use->stmt, false);
+ SSA_NAME_DEF_STMT (tgt) = ass;
+ }
+ else
+ {
+ if (stmts)
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+ TREE_OPERAND (use->stmt, 1) = op;
+ }
+}
+
+/* Rewrites USE (address that is an iv) using candidate CAND. */
+
+static void
+rewrite_use_address (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp = unshare_expr (get_computation (data->current_loop,
+ use, cand));
+ block_stmt_iterator bsi = stmt_bsi (use->stmt);
+ tree stmts;
+ tree op = force_gimple_operand (comp, &stmts, false);
+ tree var, tmp_var, name;
+
+ if (stmts)
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+
+ if (TREE_CODE (op) == SSA_NAME)
+ {
+ /* We need to add a memory tag for the variable. But we do not want
+ to add it to the temporary used for the computations, since this leads
+ to problems in redundancy elimination when there are common parts
+ in two computations refering to the different arrays. So we rewrite
+ the base variable of the ssa name to a new temporary. */
+ tmp_var = create_tmp_var (TREE_TYPE (op), "ruatmp");
+ add_referenced_tmp_var (tmp_var);
+ SSA_NAME_VAR (op) = tmp_var;
+
+ var = get_base_address (*use->op_p);
+ if (TREE_CODE (var) == INDIRECT_REF)
+ var = TREE_OPERAND (var, 0);
+ if (TREE_CODE (var) == SSA_NAME)
+ {
+ name = var;
+ var = SSA_NAME_VAR (var);
+ }
+ else
+ name = NULL_TREE;
+ if (var_ann (var)->type_mem_tag)
+ var = var_ann (var)->type_mem_tag;
+ var_ann (tmp_var)->type_mem_tag = var;
+
+ if (name)
+ {
+ ssa_name_ann_t ann = ssa_name_ann (name), new_ann;
+
+ if (ann && ann->name_mem_tag)
+ {
+ new_ann = get_ssa_name_ann (op);
+ new_ann->name_mem_tag = ann->name_mem_tag;
+ }
+ }
+ }
+
+ *use->op_p = build1 (INDIRECT_REF, TREE_TYPE (*use->op_p), op);
+}
+
+/* Rewrites USE (the condition such that one of the arguments is an iv) using
+ candidate CAND. */
+
+static void
+rewrite_use_compare (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ tree comp;
+ tree *op_p, cond, op, stmts, bound;
+ block_stmt_iterator bsi = stmt_bsi (use->stmt);
+ enum tree_code compare;
+
+ if (may_eliminate_iv (data->current_loop,
+ use, cand, &compare, &bound))
+ {
+ op = force_gimple_operand (unshare_expr (bound), &stmts, false);
+
+ if (stmts)
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+
+ *use->op_p = build (compare, boolean_type_node,
+ var_at_stmt (data->current_loop,
+ cand, use->stmt), op);
+ modify_stmt (use->stmt);
+ return;
+ }
+
+ /* The induction variable elimination failed; just express the original
+ giv. */
+ comp = unshare_expr (get_computation (data->current_loop, use, cand));
+
+ cond = *use->op_p;
+ op_p = &TREE_OPERAND (cond, 0);
+ if (TREE_CODE (*op_p) != SSA_NAME
+ || zero_p (get_iv (data, *op_p)->step))
+ op_p = &TREE_OPERAND (cond, 1);
+
+ op = force_gimple_operand (comp, &stmts, false);
+ if (stmts)
+ bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
+
+ *op_p = op;
+}
+
+/* Split loop exit edge EXIT. The things are a bit complicated by a need to
+ preserve the loop closed ssa form. */
+
+static void
+split_loop_exit_edge (edge exit)
+{
+ basic_block dest = exit->dest;
+ basic_block bb = loop_split_edge_with (exit, NULL);
+ tree phi, *def_p, new_phi, new_name;
+
+ for (phi = phi_nodes (dest); phi; phi = TREE_CHAIN (phi))
+ {
+ def_p = &phi_element_for_edge (phi, bb->succ)->def;
+
+ new_name = duplicate_ssa_name (*def_p, NULL);
+ new_phi = create_phi_node (new_name, bb);
+ SSA_NAME_DEF_STMT (new_name) = new_phi;
+ add_phi_arg (&new_phi, *def_p, exit);
+ *def_p = new_name;
+ }
+}
+
+/* Ensure that operand *OP_P may be used at the end of EXIT without
+ violating loop closed ssa form. */
+
+static void
+protect_loop_closed_ssa_form_use (edge exit, tree *op_p)
+{
+ basic_block def_bb;
+ struct loop *def_loop;
+ tree phi;
+
+ if (TREE_CODE (*op_p) != SSA_NAME)
+ return;
+
+ def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (*op_p));
+ if (!def_bb)
+ return;
+
+ def_loop = def_bb->loop_father;
+ if (flow_bb_inside_loop_p (def_loop, exit->dest))
+ return;
+
+ /* Try finding a phi node that copies the value out of the loop. */
+ for (phi = phi_nodes (exit->dest); phi; phi = TREE_CHAIN (phi))
+ if (phi_element_for_edge (phi, exit)->def == *op_p)
+ break;
+
+ if (!phi)
+ {
+ /* Create such a phi node. */
+ tree new_name = duplicate_ssa_name (*op_p, NULL);
+
+ phi = create_phi_node (new_name, exit->dest);
+ SSA_NAME_DEF_STMT (new_name) = phi;
+ add_phi_arg (&phi, *op_p, exit);
+ }
+
+ *op_p = PHI_RESULT (phi);
+}
+
+/* Ensure that operands of STMT may be used at the end of EXIT without
+ violating loop closed ssa form. */
+
+static void
+protect_loop_closed_ssa_form (edge exit, tree stmt)
+{
+ use_optype uses;
+ vuse_optype vuses;
+ vdef_optype vdefs;
+ unsigned i;
+
+ get_stmt_operands (stmt);
+
+ uses = STMT_USE_OPS (stmt);
+ for (i = 0; i < NUM_USES (uses); i++)
+ protect_loop_closed_ssa_form_use (exit, USE_OP_PTR (uses, i));
+
+ vuses = STMT_VUSE_OPS (stmt);
+ for (i = 0; i < NUM_VUSES (vuses); i++)
+ protect_loop_closed_ssa_form_use (exit, VUSE_OP_PTR (vuses, i));
+
+ vdefs = STMT_VDEF_OPS (stmt);
+ for (i = 0; i < NUM_VDEFS (vdefs); i++)
+ protect_loop_closed_ssa_form_use (exit, VDEF_OP_PTR (vdefs, i));
+}
+
+/* STMTS compute a value of a phi argument OP on EXIT of a loop. Arrange things
+ so that they are emitted on the correct place, and so that the loop closed
+ ssa form is preserved. */
+
+void
+compute_phi_arg_on_exit (edge exit, tree stmts, tree op)
+{
+ tree_stmt_iterator tsi;
+ block_stmt_iterator bsi;
+ tree phi, stmt, def, next;
+
+ if (exit->dest->pred->pred_next)
+ split_loop_exit_edge (exit);
+
+ if (TREE_CODE (stmts) == STATEMENT_LIST)
+ {
+ for (tsi = tsi_start (stmts); !tsi_end_p (tsi); tsi_next (&tsi))
+ protect_loop_closed_ssa_form (exit, tsi_stmt (tsi));
+ }
+ else
+ protect_loop_closed_ssa_form (exit, stmts);
+
+ /* Ensure there is label in exit->dest, so that we can
+ insert after it. */
+ tree_block_label (exit->dest);
+ bsi = bsi_after_labels (exit->dest);
+ bsi_insert_after (&bsi, stmts, BSI_CONTINUE_LINKING);
+
+ if (!op)
+ return;
+
+ for (phi = phi_nodes (exit->dest); phi; phi = next)
+ {
+ next = TREE_CHAIN (phi);
+
+ if (phi_element_for_edge (phi, exit)->def == op)
+ {
+ def = PHI_RESULT (phi);
+ remove_statement (phi, false);
+ stmt = build (MODIFY_EXPR, TREE_TYPE (op),
+ def, op);
+ SSA_NAME_DEF_STMT (def) = stmt;
+ bsi_insert_after (&bsi, stmt, BSI_CONTINUE_LINKING);
+ }
+ }
+}
+
+/* Rewrites the final value of USE (that is only needed outside of the loop)
+ using candidate CAND. */
+
+static void
+rewrite_use_outer (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ edge exit;
+ tree value, op, stmts, tgt = *use->op_p;
+ tree phi;
+
+ exit = loop_data (data->current_loop)->single_exit;
+
+ if (exit)
+ {
+ if (!cand->iv)
+ {
+ if (!may_replace_final_value (data->current_loop, use, &value))
+ abort ();
+ }
+ else
+ value = get_computation_at (data->current_loop,
+ use, cand, last_stmt (exit->src));
+
+ op = force_gimple_operand (value, &stmts, true);
+
+ /* If we will preserve the iv anyway and we would need to perform
+ some computation to replace the final value, do nothing. */
+ if (stmts && name_info (data, tgt)->preserve_biv)
+ return;
+
+ for (phi = phi_nodes (exit->dest); phi; phi = TREE_CHAIN (phi))
+ {
+ tree *def_p = &phi_element_for_edge (phi, exit)->def;
+
+ if (*def_p == tgt)
+ *def_p = op;
+ }
+
+ if (stmts)
+ compute_phi_arg_on_exit (exit, stmts, op);
+
+ /* Enable removal of the statement. We cannot remove it directly,
+ since we may still need the aliasing information attached to the
+ ssa name defined by it. */
+ name_info (data, tgt)->iv->have_use_for = false;
+ return;
+ }
+
+ /* If the variable is going to be preserved anyway, there is nothing to
+ do. */
+ if (name_info (data, tgt)->preserve_biv)
+ return;
+
+ /* Otherwise we just need to compute the iv. */
+ rewrite_use_nonlinear_expr (data, use, cand);
+}
+
+/* Rewrites USE using candidate CAND. */
+
+static void
+rewrite_use (struct ivopts_data *data,
+ struct iv_use *use, struct iv_cand *cand)
+{
+ switch (use->type)
+ {
+ case USE_NONLINEAR_EXPR:
+ rewrite_use_nonlinear_expr (data, use, cand);
+ break;
+
+ case USE_OUTER:
+ rewrite_use_outer (data, use, cand);
+ break;
+
+ case USE_ADDRESS:
+ rewrite_use_address (data, use, cand);
+ break;
+
+ case USE_COMPARE:
+ rewrite_use_compare (data, use, cand);
+ break;
+
+ default:
+ abort ();
+ }
+ modify_stmt (use->stmt);
+}
+
+/* Rewrite the uses using the selected induction variables. */
+
+static void
+rewrite_uses (struct ivopts_data *data)
+{
+ unsigned i;
+ struct iv_cand *cand;
+ struct iv_use *use;
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ use = iv_use (data, i);
+ cand = use->selected;
+ if (!cand)
+ abort ();
+
+ rewrite_use (data, use, cand);
+ }
+}
+
+/* Removes the ivs that are not used after rewriting. */
+
+static void
+remove_unused_ivs (struct ivopts_data *data)
+{
+ unsigned j;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, j,
+ {
+ struct version_info *info;
+
+ info = ver_info (data, j);
+ if (info->iv
+ && !zero_p (info->iv->step)
+ && !info->inv_id
+ && !info->iv->have_use_for
+ && !info->preserve_biv)
+ remove_statement (SSA_NAME_DEF_STMT (info->iv->ssa_name), true);
+ });
+}
+
+/* Frees data allocated by the optimization of a single loop. */
+
+static void
+free_loop_data (struct ivopts_data *data)
+{
+ unsigned i, j;
+
+ EXECUTE_IF_SET_IN_BITMAP (data->relevant, 0, i,
+ {
+ struct version_info *info;
+
+ info = ver_info (data, i);
+ if (info->iv)
+ free (info->iv);
+ info->iv = NULL;
+ info->has_nonlin_use = false;
+ info->preserve_biv = false;
+ info->inv_id = 0;
+ });
+ bitmap_clear (data->relevant);
+
+ for (i = 0; i < n_iv_uses (data); i++)
+ {
+ struct iv_use *use = iv_use (data, i);
+
+ free (use->iv);
+ BITMAP_XFREE (use->related_cands);
+ for (j = 0; j < use->n_map_members; j++)
+ if (use->cost_map[j].depends_on)
+ BITMAP_XFREE (use->cost_map[j].depends_on);
+ free (use->cost_map);
+ free (use);
+ }
+ VARRAY_POP_ALL (data->iv_uses);
+
+ for (i = 0; i < n_iv_cands (data); i++)
+ {
+ struct iv_cand *cand = iv_cand (data, i);
+
+ if (cand->iv)
+ free (cand->iv);
+ free (cand);
+ }
+ VARRAY_POP_ALL (data->iv_candidates);
+
+ if (data->version_info_size < highest_ssa_version)
+ {
+ data->version_info_size = 2 * highest_ssa_version;
+ free (data->version_info);
+ data->version_info = xcalloc (data->version_info_size,
+ sizeof (struct version_info));
+ }
+
+ data->max_inv_id = 0;
+
+ for (i = 0; i < VARRAY_ACTIVE_SIZE (decl_rtl_to_reset); i++)
+ {
+ tree obj = VARRAY_GENERIC_PTR_NOGC (decl_rtl_to_reset, i);
+
+ SET_DECL_RTL (obj, NULL_RTX);
+ }
+ VARRAY_POP_ALL (decl_rtl_to_reset);
+}
+
+/* Finalizes data structures used by the iv optimization pass. LOOPS is the
+ loop tree. */
+
+static void
+tree_ssa_iv_optimize_finalize (struct loops *loops, struct ivopts_data *data)
+{
+ unsigned i;
+
+ for (i = 1; i < loops->num; i++)
+ if (loops->parray[i])
+ {
+ free (loops->parray[i]->aux);
+ loops->parray[i]->aux = NULL;
+ }
+
+ free_loop_data (data);
+ free (data->version_info);
+ BITMAP_XFREE (data->relevant);
+
+ VARRAY_FREE (decl_rtl_to_reset);
+ VARRAY_FREE (data->iv_uses);
+ VARRAY_FREE (data->iv_candidates);
+
+ scev_finalize ();
+}
+
+/* Optimizes the LOOP. Returns true if anything changed. */
+
+static bool
+tree_ssa_iv_optimize_loop (struct ivopts_data *data, struct loop *loop)
+{
+ bool changed = false;
+ bitmap iv_set;
+
+ data->current_loop = loop;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Processing loop %d\n", loop->num);
+ fprintf (dump_file, " %d exits\n", loop_data (loop)->n_exits);
+ if (loop_data (loop)->single_exit)
+ {
+ edge ex = loop_data (loop)->single_exit;
+
+ fprintf (dump_file, " single exit %d -> %d, exit condition ",
+ ex->src->index, ex->dest->index);
+ print_generic_expr (dump_file, last_stmt (ex->src), TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ fprintf (dump_file, "\n");
+ }
+
+ /* For each ssa name determines whether it behaves as an induction variable
+ in some loop. */
+ if (!find_induction_variables (data))
+ goto finish;
+
+ /* Finds interesting uses (item 1). */
+ find_interesting_uses (data);
+
+ /* Finds candidates for the induction variables (item 2). */
+ find_iv_candidates (data);
+
+ /* Calculates the costs (item 3, part 1). */
+ determine_use_iv_costs (data);
+ determine_iv_costs (data);
+ determine_set_costs (data);
+
+ /* Find the optimal set of induction variables (item 3, part 2). */
+ iv_set = find_optimal_iv_set (data);
+ if (!iv_set)
+ goto finish;
+ changed = true;
+
+ /* Create the new induction variables (item 4, part 1). */
+ create_new_ivs (data, iv_set);
+
+ /* Rewrite the uses (item 4, part 2). */
+ rewrite_uses (data);
+
+ /* Remove the ivs that are unused after rewriting. */
+ remove_unused_ivs (data);
+
+ loop_commit_inserts ();
+
+ BITMAP_XFREE (iv_set);
+finish:
+ free_loop_data (data);
+
+ return changed;
+}
+
+/* Main entry point. Optimizes induction variables in LOOPS. */
+
+void
+tree_ssa_iv_optimize (struct loops *loops)
+{
+ struct loop *loop;
+ struct ivopts_data data;
+
+ timevar_push (TV_TREE_LOOP_IVOPTS);
+ tree_ssa_iv_optimize_init (loops, &data);
+
+ /* Optimize the loops starting with the innermost ones. */
+ loop = loops->tree_root;
+ while (loop->inner)
+ loop = loop->inner;
+
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa ();
+#endif
+
+ /* Scan the loops, inner ones first. */
+ while (loop != loops->tree_root)
+ {
+ if (tree_ssa_iv_optimize_loop (&data, loop))
+ {
+#ifdef ENABLE_CHECKING
+ verify_loop_closed_ssa ();
+#endif
+ }
+
+ if (loop->next)
+ {
+ loop = loop->next;
+ while (loop->inner)
+ loop = loop->inner;
+ }
+ else
+ loop = loop->outer;
+ }
+
+ tree_ssa_iv_optimize_finalize (loops, &data);
+
+ timevar_pop (TV_TREE_LOOP_IVOPTS);
+}