aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/h8300/h8300.h
blob: f159174980d42fadc6ac504d7afef78935632c99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
/* Definitions of target machine for GNU compiler. 
   Hitachi H8/300 version generating coff 
   Copyright (C) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
   Contributed by Steve Chamberlain (sac@cygnus.com),
   Jim Wilson (wilson@cygnus.com), and Doug Evans (dje@cygnus.com).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Which cpu to compile for.
   We use int for CPU_TYPE to avoid lots of casts.  */
#if 0 /* defined in insn-attr.h, here for documentation */
enum attr_cpu { CPU_H8300, CPU_H8300H };
#endif
extern int cpu_type;

/* Various globals defined in h8300.c.  */

extern char *h8_push_op,*h8_pop_op,*h8_mov_op;
extern char **h8_reg_names;

/* Names to predefine in the preprocessor for this target machine.  */

#define CPP_PREDEFINES \
"-D__LONG_MAX__=2147483647L -D__LONG_LONG_MAX__=2147483647L"

#define CPP_SPEC \
  "%{!mh:%{!ms:-D__H8300__}} %{mh:-D__H8300H__} %{ms:-D__H8300S__} \
   %{!mh:%{!ms:-D__SIZE_TYPE__=unsigned\\ int -D__PTRDIFF_TYPE__=int}} \
   %{mh:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
   %{ms:-D__SIZE_TYPE__=unsigned\\ long -D__PTRDIFF_TYPE__=long} \
   %{!mh:%{!ms:-Acpu(h8300) -Amachine(h8300)}} \
   %{mh:-Acpu(h8300h) -Amachine(h8300h)} \
   %{ms:-Acpu(h8300s) -Amachine(h8300s)} \
   %{!mint32:-D__INT_MAX__=32767} %{mint32:-D__INT_MAX__=2147483647}"

#define LINK_SPEC "%{mh:-m h8300h} %{ms:-m h8300s}"

#define LIB_SPEC "%{mrelax:-relax} %{g:-lg} %{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"

/* Print subsidiary information on the compiler version in use.  */

#define TARGET_VERSION fprintf (stderr, " (Hitachi H8/300)");

/* Run-time compilation parameters selecting different hardware subsets.  */

extern int target_flags;

/* Macros used in the machine description to test the flags.  */

/* Make int's 32 bits.  */
#define TARGET_INT32 (target_flags & 8)

/* Dump recorded insn lengths into the output file.  This helps debug the
   md file.  */
#define TARGET_ADDRESSES (target_flags & 64)

/* Pass the first few arguments in registers.  */
#define TARGET_QUICKCALL (target_flags & 128)

/* Pretend byte accesses are slow.  */
#define TARGET_SLOWBYTE (target_flags & 256)

/* Dump each assembler insn's rtl into the output file.
   This is for debugging the compiler only.  */
#define TARGET_RTL_DUMP	(target_flags & 2048)

/* Select between the h8/300 and h8/300h cpus.  */
#define TARGET_H8300	(! TARGET_H8300H && ! TARGET_H8300S)
#define TARGET_H8300H	(target_flags & 4096)
#define TARGET_H8300S	(target_flags & 1)

/* Align all values on the h8/300h the same way as the h8/300.  Specifically,
   32 bit and larger values are aligned on 16 bit boundaries.
   This is all the hardware requires, but the default is 32 bits for the 300h.
   ??? Now watch someone add hardware floating point requiring 32 bit
   alignment.  */
#define TARGET_ALIGN_300 (target_flags & 8192)

/* Macro to define tables used to set the flags.
   This is a list in braces of pairs in braces,
   each pair being { "NAME", VALUE }
   where VALUE is the bits to set or minus the bits to clear.
   An empty string NAME is used to identify the default VALUE.  */

#define TARGET_SWITCHES  \
  { {"s",1 },			\
    {"no-s",-1},		\
    {"int32",8},		\
    {"addresses",64 },		\
    {"quickcall",128},  	\
    {"no-quickcall",-128},	\
    {"slowbyte",256},		\
    {"relax",1024},		\
    {"rtl-dump",2048},		\
    {"h",4096},			\
    {"no-h",-4096},		\
    {"align-300",8192},	\
    { "", TARGET_DEFAULT}}

/* Do things that must be done once at start up.  */

#define OVERRIDE_OPTIONS \
do {				\
  h8300_init_once ();		\
} while (0)

/* Default target_flags if no switches specified.  */

#ifndef TARGET_DEFAULT
#define TARGET_DEFAULT (128)	/* quickcall */
#endif

/* Show we can debug even without a frame pointer.  */
/* #define CAN_DEBUG_WITHOUT_FP */

/* Define this if addresses of constant functions
   shouldn't be put through pseudo regs where they can be cse'd.
   Desirable on machines where ordinary constants are expensive
   but a CALL with constant address is cheap. 

   Calls through a register are cheaper than calls to named
   functions; however, the register pressure this causes makes
   CSEing of function addresses generally a lose.  */
#define NO_FUNCTION_CSE 

/* Target machine storage layout */

/* Define to use software floating point emulator for REAL_ARITHMETIC and
   decimal <-> binary conversion. */
#define REAL_ARITHMETIC

/* Define this if most significant bit is lowest numbered
   in instructions that operate on numbered bit-fields.
   This is not true on the H8/300.  */
#define BITS_BIG_ENDIAN 0

/* Define this if most significant byte of a word is the lowest numbered.  */
/* That is true on the H8/300.  */
#define BYTES_BIG_ENDIAN 1

/* Define this if most significant word of a multiword number is lowest
   numbered.  
   This is true on an H8/300 (actually we can make it up, but we choose to
   be consistent).  */ 
#define WORDS_BIG_ENDIAN 1

/* Number of bits in an addressable storage unit */
#define BITS_PER_UNIT 8

/* Width in bits of a "word", which is the contents of a machine register.
   Note that this is not necessarily the width of data type `int';
   if using 16-bit ints on a 68000, this would still be 32.
   But on a machine with 16-bit registers, this would be 16.  */
#define BITS_PER_WORD		(TARGET_H8300H || TARGET_H8300S ? 32 : 16)
#define MAX_BITS_PER_WORD	32

/* Width of a word, in units (bytes).  */
#define UNITS_PER_WORD		(TARGET_H8300H || TARGET_H8300S ? 4 : 2)
#define MIN_UNITS_PER_WORD	2

/* Width in bits of a pointer.
   See also the macro `Pmode' defined below.  */
#define POINTER_SIZE (TARGET_H8300H || TARGET_H8300S ? 32 : 16)

#define SHORT_TYPE_SIZE 	16
#define INT_TYPE_SIZE 		(TARGET_INT32 ? 32 : 16)
#define LONG_TYPE_SIZE 		32
#define LONG_LONG_TYPE_SIZE	32
#define FLOAT_TYPE_SIZE 	32
#define DOUBLE_TYPE_SIZE 	32
#define LONG_DOUBLE_TYPE_SIZE 	DOUBLE_TYPE_SIZE

#define MAX_FIXED_MODE_SIZE 	32

/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
#define PARM_BOUNDARY (TARGET_H8300H || TARGET_H8300S ? 32 : 16)

/* Allocation boundary (in *bits*) for the code of a function.  */
#define FUNCTION_BOUNDARY 16

/* Alignment of field after `int : 0' in a structure.  */
/* One can argue this should be 32 for -mint32, but since 32 bit ints only
   need 16 bit alignment, this is left as is so that -mint32 doesn't change
   structure layouts.  */
#define EMPTY_FIELD_BOUNDARY 16

/* A bitfield declared as `int' forces `int' alignment for the struct.  */
#define PCC_BITFIELD_TYPE_MATTERS  0

/* No data type wants to be aligned rounder than this.
   32 bit values are aligned as such on the 300h for speed.  */
#define BIGGEST_ALIGNMENT \
(((TARGET_H8300H || TARGET_H8300S) && ! TARGET_ALIGN_300) ? 32 : 16)

/* The stack goes in 16/32 bit lumps.  */
#define STACK_BOUNDARY (TARGET_H8300 ? 16 : 32)

/* Define this if move instructions will actually fail to work
   when given unaligned data.  */
/* On the H8/300, longs can be aligned on halfword boundaries, but not
   byte boundaries.  */
#define STRICT_ALIGNMENT 1

/* Standard register usage.  */

/* Number of actual hardware registers.
   The hardware registers are assigned numbers for the compiler
   from 0 to just below FIRST_PSEUDO_REGISTER.

   All registers that the compiler knows about must be given numbers,
   even those that are not normally considered general registers.  

   Reg 9 does not correspond to any hardware register, but instead
   appears in the RTL as an argument pointer prior to reload, and is
   eliminated during reloading in favor of either the stack or frame
   pointer.  */

#define FIRST_PSEUDO_REGISTER 10

/* 1 for registers that have pervasive standard uses
   and are not available for the register allocator.  */

#define FIXED_REGISTERS \
  { 0, 0, 0, 0, 0, 0, 0, 1, 0, 1}

/* 1 for registers not available across function calls.
   These must include the FIXED_REGISTERS and also any
   registers that can be used without being saved.
   The latter must include the registers where values are returned
   and the register where structure-value addresses are passed.
   Aside from that, you can include as many other registers as you
   like.  

   h8 destroys r0,r1,r2,r3.  */

#define CALL_USED_REGISTERS \
  { 1, 1, 1, 1, 0, 0, 0, 1, 1, 1 }

#define REG_ALLOC_ORDER \
  { 2, 3, 0, 1, 4, 5, 6, 8, 7, 9}

#define CONDITIONAL_REGISTER_USAGE	\
{					\
  if (!TARGET_H8300S)			\
    fixed_regs[8] = call_used_regs[8] = 1;\
}

/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.

   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers. 

   We pretend the MAC register is 32bits -- we don't have any data
   types on the H8 series to handle more than 32bits.  */

#define HARD_REGNO_NREGS(REGNO, MODE)   \
   ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Value is 1 if hard register REGNO can hold a value of machine-mode
   MODE.

   H8/300: If an even reg, then anything goes. Otherwise the mode must be QI
           or HI.
   H8/300H: Anything goes.  */

#define HARD_REGNO_MODE_OK(REGNO, MODE) \
 (TARGET_H8300 ? (((REGNO)&1)==0) || (MODE==HImode) || (MODE==QImode) \
   : REGNO == 8 ? MODE == SImode : 1)

/* Value is 1 if it is a good idea to tie two pseudo registers
   when one has mode MODE1 and one has mode MODE2.
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
   for any hard reg, then this must be 0 for correct output.  */
#define MODES_TIEABLE_P(MODE1, MODE2)  ((MODE1) == (MODE2))

/* Specify the registers used for certain standard purposes.
   The values of these macros are register numbers.  */

/* H8/300 pc is not overloaded on a register.  */

/*#define PC_REGNUM 15*/

/* Register to use for pushing function arguments.  */
#define STACK_POINTER_REGNUM 7

/* Base register for access to local variables of the function.  */
#define FRAME_POINTER_REGNUM 6

/* Value should be nonzero if functions must have frame pointers.
   Zero means the frame pointer need not be set up (and parms
   may be accessed via the stack pointer) in functions that seem suitable.
   This is computed in `reload', in reload1.c.  */
#define FRAME_POINTER_REQUIRED 0

/* Base register for access to arguments of the function.  */
#define ARG_POINTER_REGNUM 9

/* Register in which static-chain is passed to a function.  */
#define STATIC_CHAIN_REGNUM 3

/* Define the classes of registers for register constraints in the
   machine description.  Also define ranges of constants.

   One of the classes must always be named ALL_REGS and include all hard regs.
   If there is more than one class, another class must be named NO_REGS
   and contain no registers.

   The name GENERAL_REGS must be the name of a class (or an alias for
   another name such as ALL_REGS).  This is the class of registers
   that is allowed by "g" or "r" in a register constraint.
   Also, registers outside this class are allocated only when
   instructions express preferences for them.

   The classes must be numbered in nondecreasing order; that is,
   a larger-numbered class must never be contained completely
   in a smaller-numbered class.

   For any two classes, it is very desirable that there be another
   class that represents their union.  */
   
enum reg_class {
  NO_REGS, GENERAL_REGS, MAC_REGS, ALL_REGS, LIM_REG_CLASSES
};

#define N_REG_CLASSES (int) LIM_REG_CLASSES

/* Give names of register classes as strings for dump file.   */

#define REG_CLASS_NAMES \
{ "NO_REGS", "GENERAL_REGS", "MAC_REGS", "ALL_REGS", "LIM_REGS" }

/* Define which registers fit in which classes.
   This is an initializer for a vector of HARD_REG_SET
   of length N_REG_CLASSES.  */

#define REG_CLASS_CONTENTS  			\
{      0,		/* No regs      */	\
   0x2ff,		/* GENERAL_REGS */    	\
   0x100,		/* MAC_REGS */    	\
   0x3ff,		/* ALL_REGS 	*/	\
}

/* The same information, inverted:
   Return the class number of the smallest class containing
   reg number REGNO.  This could be a conditional expression
   or could index an array.  */

#define REGNO_REG_CLASS(REGNO) (REGNO != 8 ? GENERAL_REGS : MAC_REGS)

/* The class value for index registers, and the one for base regs.  */

#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS  GENERAL_REGS

/* Get reg_class from a letter such as appears in the machine description. 

   'a' is the MAC register.  */

#define REG_CLASS_FROM_LETTER(C) ((C) == 'a' ? MAC_REGS : NO_REGS)

/* The letters I, J, K, L, M, N, O, P in a register constraint string
   can be used to stand for particular ranges of immediate operands.
   This macro defines what the ranges are.
   C is the letter, and VALUE is a constant value.
   Return 1 if VALUE is in the range specified by C.  */

#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) < 256)
#define CONST_OK_FOR_K(VALUE) (((VALUE) == 1) || (VALUE) == 2)
#define CONST_OK_FOR_L(VALUE) (((VALUE) == -1) || (VALUE) == -2)
#define CONST_OK_FOR_M(VALUE) (((VALUE) == 3) || (VALUE) == 4)
#define CONST_OK_FOR_N(VALUE) (((VALUE) == -3) || (VALUE) == -4)
#define CONST_OK_FOR_O(VALUE) (ok_for_bclr (VALUE))
#define CONST_OK_FOR_P(VALUE) (small_power_of_two (VALUE))

#define CONST_OK_FOR_LETTER_P(VALUE, C) \
  ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
   (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
   (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
   (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
   (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
   (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
   (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
   (C) == 'P' ? CONST_OK_FOR_P(VALUE) : \
   0)

/* Similar, but for floating constants, and defining letters G and H.
   Here VALUE is the CONST_DOUBLE rtx itself. 
     
  `G' is a floating-point zero.  */

#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
  ((C) == 'G' ? (VALUE) == CONST0_RTX (DFmode)	\
   : 0)

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.  */

#define PREFERRED_RELOAD_CLASS(X,CLASS)  (CLASS)

/* Return the maximum number of consecutive registers
   needed to represent mode MODE in a register of class CLASS.  */

/* On the H8, this is the size of MODE in words.  */

#define CLASS_MAX_NREGS(CLASS, MODE)	\
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Any SI register to register move may need to be reloaded, 
   so define REGISTER_MOVE_COST to be > 2 so that reload never
   shortcuts.  */

#define REGISTER_MOVE_COST(CLASS1, CLASS2)  \
  (CLASS1 == MAC_REGS || CLASS2 == MAC_REGS ? 6 : 3)

/* Stack layout; function entry, exit and calling.  */

/* Define this if pushing a word on the stack
   makes the stack pointer a smaller address.  */

#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
   is at the high-address end of the local variables;
   that is, each additional local variable allocated
   goes at a more negative offset in the frame.  */

#define FRAME_GROWS_DOWNWARD

/* Offset within stack frame to start allocating local variables at.
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
   first local allocated.  Otherwise, it is the offset to the BEGINNING
   of the first local allocated.  */

#define STARTING_FRAME_OFFSET 0

/* If we generate an insn to push BYTES bytes,
   this says how many the stack pointer really advances by.

   On the H8/300, @-sp really pushes a byte if you ask it to - but that's
   dangerous, so we claim that it always pushes a word, then we catch
   the mov.b rx,@-sp and turn it into a mov.w rx,@-sp on output.

   On the H8/300h, we simplify TARGET_QUICKCALL by setting this to 4 and doing
   a similar thing.  */

#define PUSH_ROUNDING(BYTES) \
  (((BYTES) + PARM_BOUNDARY/8 - 1) & -PARM_BOUNDARY/8)

/* Offset of first parameter from the argument pointer register value.  */
/* Is equal to the size of the saved fp + pc, even if an fp isn't
   saved since the value is used before we know.  */

#define FIRST_PARM_OFFSET(FNDECL) 0

/* Value is the number of bytes of arguments automatically
   popped when returning from a subroutine call.
   FUNDECL is the declaration node of the function (as a tree),
   FUNTYPE is the data type of the function (as a tree),
   or for a library call it is an identifier node for the subroutine name.
   SIZE is the number of bytes of arguments passed on the stack.

   On the H8 the return does not pop anything.  */

#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0

/* Definitions for register eliminations.

   This is an array of structures.  Each structure initializes one pair
   of eliminable registers.  The "from" register number is given first,
   followed by "to".  Eliminations of the same "from" register are listed
   in order of preference.

   We have two registers that can be eliminated on the h8300.  First, the
   frame pointer register can often be eliminated in favor of the stack
   pointer register.  Secondly, the argument pointer register can always be
   eliminated; it is replaced with either the stack or frame pointer. */

#define ELIMINABLE_REGS				\
{{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	\
 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM},   \
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

/* Given FROM and TO register numbers, say whether this elimination is allowed.
   Frame pointer elimination is automatically handled.

   For the h8300, if frame pointer elimination is being done, we would like to
   convert ap into sp, not fp.

   All other eliminations are valid.  */

#define CAN_ELIMINATE(FROM, TO)					\
 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM	\
  ? ! frame_pointer_needed					\
  : 1)

/* Define the offset between two registers, one to be eliminated, and the other
   its replacement, at the start of a routine.  */

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
  OFFSET = initial_offset (FROM, TO)

/* Define how to find the value returned by a function.
   VALTYPE is the data type of the value (as a tree).
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
   otherwise, FUNC is 0. 
   
   On the H8 the return value is in R0/R1.  */

#define FUNCTION_VALUE(VALTYPE, FUNC) \
  gen_rtx (REG, TYPE_MODE (VALTYPE), 0)

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  */

/* On the h8 the return value is in R0/R1 */

#define LIBCALL_VALUE(MODE) \
  gen_rtx (REG, MODE, 0)

/* 1 if N is a possible register number for a function value.
   On the H8, R0 is the only register thus used.  */

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

/* Define this if PCC uses the nonreentrant convention for returning
   structure and union values.  */

/*#define PCC_STATIC_STRUCT_RETURN*/

/* 1 if N is a possible register number for function argument passing.
   On the H8, no registers are used in this way.  */

#define FUNCTION_ARG_REGNO_P(N) (TARGET_QUICKCALL ? N < 3 : 0)

/* Register in which address to store a structure value
   is passed to a function.  */

#define STRUCT_VALUE 0

/* Return true if X should be returned in memory.  */
#define RETURN_IN_MEMORY(X) \
  (TYPE_MODE (X) == BLKmode || GET_MODE_SIZE (TYPE_MODE (X)) > 4)

/* When defined, the compiler allows registers explicitly used in the
   rtl to be used as spill registers but prevents the compiler from
   extending the lifetime of these registers. */

#define SMALL_REGISTER_CLASSES 1

/* Define a data type for recording info about an argument list
   during the scan of that argument list.  This data type should
   hold all necessary information about the function itself
   and about the args processed so far, enough to enable macros
   such as FUNCTION_ARG to determine where the next arg should go.

   On the H8/300, this is a two item struct, the first is the number of bytes
   scanned so far and the second is the rtx of the called library
   function if any.  */

#define CUMULATIVE_ARGS struct cum_arg
struct cum_arg { int nbytes; struct rtx_def * libcall; };

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.

   On the H8/300, the offset starts at 0.  */

#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT)	\
 ((CUM).nbytes = 0, (CUM).libcall = LIBNAME)

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
 ((CUM).nbytes += ((MODE) != BLKmode			\
  ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD	\
  : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))

/* Define where to put the arguments to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */

/* On the H8/300 all normal args are pushed, unless -mquickcall in which
   case the first 3 arguments are passed in registers.
   See function `function_arg'.  */

struct rtx_def *function_arg();
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
  function_arg (&CUM, MODE, TYPE, NAMED)

/* Generate assembly output for the start of a function.  */

#define FUNCTION_PROLOGUE(FILE, SIZE) \
  function_prologue (FILE, SIZE)

/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  */

#define FUNCTION_PROFILER(FILE, LABELNO)  \
  fprintf (FILE, "\t%s\t#LP%d,%s\n\tjsr @mcount\n", \
	   h8_mov_op, (LABELNO), h8_reg_names[0]);

/* Output assembler code to FILE to initialize this source file's
   basic block profiling info, if that has not already been done.  */
/* ??? @LPBX0 is moved into r0 twice.  */

#define FUNCTION_BLOCK_PROFILER(FILE, LABELNO)  \
  fprintf (FILE, "\t%s\t%s\n\t%s\t@LPBX0,%s\n\tbne LPI%d\n\t%s\t@LPBX0,%s\n\t%s\t%s\n\tjsr\t@__bb_init_func\nLPI%d:\t%s\t%s\n", \
	   h8_push_op, h8_reg_names[0],		\
	   h8_mov_op, h8_reg_names[0],		\
	   (LABELNO),				\
	   h8_mov_op, h8_reg_names[0],		\
	   h8_push_op, h8_reg_names[0],		\
	   (LABELNO),				\
	   h8_pop_op, h8_reg_names[0]);

/* Output assembler code to FILE to increment the entry-count for
   the BLOCKNO'th basic block in this source file.  This is a real pain in the
   sphincter on a VAX, since we do not want to change any of the bits in the
   processor status word.  The way it is done here, it is pushed onto the stack
   before any flags have changed, and then the stack is fixed up to account for
   the fact that the instruction to restore the flags only reads a word.
   It may seem a bit clumsy, but at least it works.  */
/* ??? This one needs work.  */

#define BLOCK_PROFILER(FILE, BLOCKNO)	\
  fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
	   4 * BLOCKNO)

/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in
   functions that have frame pointers.
   No definition is equivalent to always zero.  */

#define EXIT_IGNORE_STACK 0

/* This macro generates the assembly code for function exit,
   on machines that need it.  If FUNCTION_EPILOGUE is not defined
   then individual return instructions are generated for each
   return statement.  Args are same as for FUNCTION_PROLOGUE.  */

#define FUNCTION_EPILOGUE(FILE, SIZE) \
  function_epilogue (FILE, SIZE)

/* Output assembler code for a block containing the constant parts
   of a trampoline, leaving space for the variable parts.  

   H8/300
	      vvvv context
   1 0000 7900xxxx 		mov.w	#0x1234,r3
   2 0004 5A00xxxx 		jmp	@0x1234
	      ^^^^ function

   H8/300H
	      vvvvvvvv context
   2 0000 7A00xxxxxxxx 		mov.l	#0x12345678,er3
   3 0006 5Axxxxxx 		jmp	@0x123456
	    ^^^^^^ function
*/

#define TRAMPOLINE_TEMPLATE(FILE)			\
  do {							\
    if (TARGET_H8300)					\
      {							\
	fprintf (FILE, "\tmov.w	#0x1234,r3\n");		\
	fprintf (FILE, "\tjmp	@0x1234\n");		\
      }							\
    else						\
      {							\
	fprintf (FILE, "\tmov.l	#0x12345678,er3\n");	\
	fprintf (FILE, "\tjmp	@0x123456\n");	\
      }							\
  } while (0)

/* Length in units of the trampoline for entering a nested function.  */

#define TRAMPOLINE_SIZE (TARGET_H8300 ? 8 : 12)

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */

#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)				\
{										\
  enum machine_mode mode = TARGET_H8300H || TARGET_H8300S? SImode : HImode; \
  emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 2)), CXT);    \
  emit_move_insn (gen_rtx (MEM, mode, plus_constant ((TRAMP), 6)), FNADDR); \
  if (TARGET_H8300H || TARGET_H8300S)					    \
    emit_move_insn (gen_rtx (MEM, QImode, plus_constant ((TRAMP), 6)), GEN_INT (0x5A)); \
}

/* Addressing modes, and classification of registers for them.  */

#define HAVE_POST_INCREMENT
/*#define HAVE_POST_DECREMENT */

#define HAVE_PRE_DECREMENT
/*#define HAVE_PRE_INCREMENT */

/* Macros to check register numbers against specific register classes.  */

/* These assume that REGNO is a hard or pseudo reg number.
   They give nonzero only if REGNO is a hard reg of the suitable class
   or a pseudo reg currently allocated to a suitable hard reg.
   Since they use reg_renumber, they are safe only once reg_renumber
   has been allocated, which happens in local-alloc.c.  */
 
#define REGNO_OK_FOR_INDEX_P(regno) 0

#define REGNO_OK_FOR_BASE_P(regno) \
  (((regno) < FIRST_PSEUDO_REGISTER && regno != 8) || reg_renumber[regno] >= 0)

/* Maximum number of registers that can appear in a valid memory address.  */

#define MAX_REGS_PER_ADDRESS 1

/* 1 if X is an rtx for a constant that is a valid address.  */

#define CONSTANT_ADDRESS_P(X)   \
  (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
   || (GET_CODE (X) == CONST_INT				\
       /* We handle signed and unsigned offsets here.  */	\
       && INTVAL (X) > (TARGET_H8300 ? -0x10000 : -0x1000000)	\
       && INTVAL (X) < (TARGET_H8300 ? 0x10000 : 0x1000000))	\
   || ((GET_CODE (X) == HIGH || GET_CODE (X) == CONST)		\
       && TARGET_H8300))

/* Nonzero if the constant value X is a legitimate general operand.
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */

#define LEGITIMATE_CONSTANT_P(X) (GET_CODE (X) != CONST_DOUBLE)

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
   and check its validity for a certain class.
   We have two alternate definitions for each of them.
   The usual definition accepts all pseudo regs; the other rejects
   them unless they have been allocated suitable hard regs.
   The symbol REG_OK_STRICT causes the latter definition to be used.

   Most source files want to accept pseudo regs in the hope that
   they will get allocated to the class that the insn wants them to be in.
   Source files for reload pass need to be strict.
   After reload, it makes no difference, since pseudo regs have
   been eliminated by then.  */

#ifndef REG_OK_STRICT

/* Nonzero if X is a hard reg that can be used as an index
   or if it is a pseudo reg.  */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg
   or if it is a pseudo reg.  */
/* Don't use REGNO_OK_FOR_BASE_P here because it uses reg_renumber.  */
#define REG_OK_FOR_BASE_P(X) \
	(REGNO (X) >= FIRST_PSEUDO_REGISTER || REGNO (X) != 8)
#define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 0

#else

/* Nonzero if X is a hard reg that can be used as an index.  */
#define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as a base reg.  */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 1

#endif

/* Extra constraints - 'U' if for an operand valid for a bset
   destination; i.e. a register, register indirect, or the
   eightbit memory region (a SYMBOL_REF with an SYMBOL_REF_FLAG set). 

   On the H8/S 'U' can also be a 16bit or 32bit absolute.  */
#define OK_FOR_U(OP) \
  ((GET_CODE (OP) == REG && REG_OK_FOR_BASE_P (OP)) \
   || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
       && REG_OK_FOR_BASE_P (XEXP (OP, 0)))  \
   || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == SYMBOL_REF \
       && (TARGET_H8300S || SYMBOL_REF_FLAG (XEXP (OP, 0)))) \
   || (GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == CONST \
       && GET_CODE (XEXP (XEXP (OP, 0), 0)) == PLUS \
       && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 0)) == SYMBOL_REF \
       && GET_CODE (XEXP (XEXP (XEXP (OP, 0), 0), 1)) == CONST_INT) \
       && (TARGET_H8300S || SYMBOL_REF_FLAG (XEXP (XEXP (OP, 0), 0))))
 
#define EXTRA_CONSTRAINT(OP, C) \
 ((C) == 'U' ? OK_FOR_U (OP) : 0)

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.

   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
   except for CONSTANT_ADDRESS_P which is actually
   machine-independent.  

   On the H8/300, a legitimate address has the form
   REG, REG+CONSTANT_ADDRESS or CONSTANT_ADDRESS.  */

/* Accept either REG or SUBREG where a register is valid.  */
  
#define RTX_OK_FOR_BASE_P(X)					\
  ((REG_P (X) && REG_OK_FOR_BASE_P (X))				\
   || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))		\
       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))

#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)    	\
  if (RTX_OK_FOR_BASE_P (X)) goto ADDR;			\
  if (CONSTANT_ADDRESS_P (X)) goto ADDR;    		\
  if (GET_CODE (X) == PLUS				\
      && CONSTANT_ADDRESS_P (XEXP (X, 1))		\
      && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;

/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This macro is used in only one place: `memory_address' in explow.c.

   OLDX is the address as it was before break_out_memory_refs was called.
   In some cases it is useful to look at this to decide what needs to be done.

   MODE and WIN are passed so that this macro can use
   GO_IF_LEGITIMATE_ADDRESS.

   It is always safe for this macro to do nothing.  It exists to recognize
   opportunities to optimize the output. 

   For the H8/300, don't do anything.  */

#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)  {}

/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.

   On the H8/300, the predecrement and postincrement address depend thus
   (the amount of decrement or increment being the length of the operand).  */

#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
  if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) goto LABEL;

/* Specify the machine mode that this machine uses
   for the index in the tablejump instruction.  */
#define CASE_VECTOR_MODE Pmode

/* Define as C expression which evaluates to nonzero if the tablejump
   instruction expects the table to contain offsets from the address of the
   table.
   Do not define this if the table should contain absolute addresses. */
/*#define CASE_VECTOR_PC_RELATIVE 1 */

/* Define this if the case instruction drops through after the table
   when the index is out of range.  Don't define it if the case insn
   jumps to the default label instead.  */
#define CASE_DROPS_THROUGH

/* Specify the tree operation to be used to convert reals to integers.  */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR

/* This is the kind of divide that is easiest to do in the general case.  */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR

/* Define this as 1 if `char' should by default be signed; else as 0.

   On the H8/300, sign extension is expensive, so we'll say that chars
   are unsigned.  */
#define DEFAULT_SIGNED_CHAR 0

/* This flag, if defined, says the same insns that convert to a signed fixnum
   also convert validly to an unsigned one.  */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC

/* Max number of bytes we can move from memory to memory
   in one reasonably fast instruction.  */
#define MOVE_MAX	(TARGET_H8300H || TARGET_H8300S ? 4 : 2)
#define MAX_MOVE_MAX	4

/* Define this if zero-extension is slow (more than one real instruction).  */
/* #define SLOW_ZERO_EXTEND */

/* Nonzero if access to memory by bytes is slow and undesirable.  */
#define SLOW_BYTE_ACCESS TARGET_SLOWBYTE

/* Define if shifts truncate the shift count
   which implies one can omit a sign-extension or zero-extension
   of a shift count.  */
/* #define SHIFT_COUNT_TRUNCATED */

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1

/* Specify the machine mode that pointers have.
   After generation of rtl, the compiler makes no further distinction
   between pointers and any other objects of this machine mode.  */
#define Pmode (TARGET_H8300H || TARGET_H8300S ? SImode : HImode)

/* ANSI C types.
   We use longs for the 300h because ints can be 16 or 32.
   GCC requires SIZE_TYPE to be the same size as pointers.  */
#define NO_BUILTIN_SIZE_TYPE
#define NO_BUILTIN_PTRDIFF_TYPE
#define SIZE_TYPE (TARGET_H8300 ? "unsigned int" : "long unsigned int")
#define PTRDIFF_TYPE (TARGET_H8300 ? "int" : "long int")

#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16
#define MAX_WCHAR_TYPE_SIZE 16

/* A function address in a call instruction
   is a byte address (for indexing purposes)
   so give the MEM rtx a byte's mode.  */
#define FUNCTION_MODE QImode

/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
   is a valid machine specific attribute for DECL.
   The attributes in ATTRIBUTES have previously been assigned to DECL.  */
extern int h8300_valid_machine_decl_attribute ();
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
h8300_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)

#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
  LENGTH += h8300_adjust_insn_length (INSN, LENGTH);

/* Compute the cost of computing a constant rtl expression RTX
   whose rtx-code is CODE.  The body of this macro is a portion
   of a switch statement.  If the code is computed here,
   return it with a return statement.  Otherwise, break from the switch.  */

#define DEFAULT_RTX_COSTS(RTX,CODE,OUTER_CODE) \
  return (const_costs (RTX, CODE));

#define BRANCH_COST 0

/* We say that MOD and DIV are so cheap because otherwise we'll
   generate some really horrible code for division of a power of two.  */

/* Provide the costs of a rtl expression.  This is in the body of a
   switch on CODE.  */
/* ??? Shifts need to have a *much* higher cost than this.  */

#define RTX_COSTS(RTX,CODE,OUTER_CODE) \
  case MOD:		\
  case DIV:		\
    return 60;		\
  case MULT:		\
    return 20;		\
  case ASHIFT:		\
  case ASHIFTRT:	\
  case LSHIFTRT:	\
  case ROTATE:		\
  case ROTATERT:	\
    if (GET_MODE (RTX) == HImode) return 2; \
    return 8; 

/* Tell final.c how to eliminate redundant test instructions.  */

/* Here we define machine-dependent flags and fields in cc_status
   (see `conditions.h').  No extra ones are needed for the h8300.  */

/* Store in cc_status the expressions
   that the condition codes will describe
   after execution of an instruction whose pattern is EXP.
   Do not alter them if the instruction would not alter the cc's.  */

#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)

/* The add insns don't set overflow in a usable way.  */
#define CC_OVERFLOW_UNUSABLE 01000
/* The mov,and,or,xor insns don't set carry.  That's ok though as the
   Z bit is all we need when doing unsigned comparisons on the result of
   these insns (since they're always with 0).  However, conditions.h has
   CC_NO_OVERFLOW defined for this purpose.  Rename it to something more
   understandable.  */
#define CC_NO_CARRY CC_NO_OVERFLOW

/* Control the assembler format that we output.  */

#define ASM_IDENTIFY_GCC /* nothing */

/* Output at beginning/end of assembler file.  */

#define ASM_FILE_START(FILE) asm_file_start(FILE)

#define ASM_FILE_END(FILE) asm_file_end(FILE)

/* Output to assembler file text saying following lines
   may contain character constants, extra white space, comments, etc.  */

#define ASM_APP_ON "; #APP\n"

/* Output to assembler file text saying following lines
   no longer contain unusual constructs.  */

#define ASM_APP_OFF "; #NO_APP\n"

#define FILE_ASM_OP "\t.file\n"
#define IDENT_ASM_OP "\t.ident\n"

/* The assembler op to get a word, 2 bytes for the H8/300, 4 for H8/300H.  */
#define ASM_WORD_OP	(TARGET_H8300 ? ".word" : ".long")

/* We define a readonly data section solely to remove readonly data
   from the instruction stream.  This can improve relaxing in two significant
   ways.  First it's more likely that references to readonly data
   can be done with a 16bit absolute address since they'll be in low
   memory.  Second, it's more likely that jsr instructions can be
   turned into bsr instructions since read-only data is not in the
   instruction stream.  */
#define READONLY_DATA_SECTION readonly_data

#define TEXT_SECTION_ASM_OP "\t.section .text"
#define DATA_SECTION_ASM_OP "\t.section .data"
#define BSS_SECTION_ASM_OP "\t.section .bss"
#define INIT_SECTION_ASM_OP "\t.section .init"
#define CTORS_SECTION_ASM_OP "\t.section .ctors"
#define DTORS_SECTION_ASM_OP "\t.section .dtors"
#define READONLY_DATA_SECTION_ASM_OP "\t.section .rodata"

#define EXTRA_SECTIONS in_ctors, in_dtors, in_readonly_data

#define EXTRA_SECTION_FUNCTIONS					\
								\
void								\
ctors_section() 						\
{								\
  if (in_section != in_ctors)					\
    {								\
      fprintf (asm_out_file, "%s\n", CTORS_SECTION_ASM_OP);	\
      in_section = in_ctors;					\
    }								\
}								\
								\
void								\
dtors_section() 						\
{								\
  if (in_section != in_dtors)					\
    {								\
      fprintf (asm_out_file, "%s\n", DTORS_SECTION_ASM_OP);	\
      in_section = in_dtors;					\
    }								\
}								\
								\
void								\
readonly_data() 						\
{								\
  if (in_section != in_readonly_data)				\
    {								\
      fprintf (asm_out_file, "%s\n", READONLY_DATA_SECTION_ASM_OP);\
      in_section = in_readonly_data;				\
    }								\
}



#define ASM_OUTPUT_CONSTRUCTOR(FILE,NAME)	\
  do { ctors_section();				\
       fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)

#define ASM_OUTPUT_DESTRUCTOR(FILE,NAME)	\
  do { dtors_section();				\
       fprintf(FILE, "\t%s\t_%s\n", ASM_WORD_OP, NAME); } while (0)

#undef DO_GLOBAL_CTORS_BODY                     
#define DO_GLOBAL_CTORS_BODY			\
{						\
  typedef (*pfunc)();				\
  extern pfunc __ctors[];			\
  extern pfunc __ctors_end[];			\
  pfunc *p;					\
  for (p = __ctors_end; p > __ctors; )		\
    {						\
      (*--p)();					\
    }						\
}						

#undef DO_GLOBAL_DTORS_BODY			 
#define DO_GLOBAL_DTORS_BODY                    \
{						\
  typedef (*pfunc)();				\
  extern pfunc __dtors[];			\
  extern pfunc __dtors_end[];			\
  pfunc *p;					\
  for (p = __dtors; p < __dtors_end; p++)	\
    {						\
      (*p)();					\
    }						\
}						 

#define TINY_DATA_NAME_P(NAME) (*(NAME) == '&')

/* If we are referencing a function that is supposed to be called
   through the function vector, the SYMBOL_REF_FLAG in the rtl
   so the call patterns can generate the correct code.  */
#define ENCODE_SECTION_INFO(DECL)  \
  if (TREE_CODE (DECL) == FUNCTION_DECL \
       && h8300_funcvec_function_p (DECL)) \
    SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
  else if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
      && TREE_CODE (DECL) == VAR_DECL \
      && h8300_eightbit_data_p (DECL)) \
    SYMBOL_REF_FLAG (XEXP (DECL_RTL (DECL), 0)) = 1; \
  else if ((TREE_STATIC (DECL) || DECL_EXTERNAL (DECL)) \
      && TREE_CODE (DECL) == VAR_DECL \
      && h8300_tiny_data_p (DECL)) \
    h8300_encode_label (DECL);

/* Store the user-specified part of SYMBOL_NAME in VAR.
   This is sort of inverse to ENCODE_SECTION_INFO.  */
#define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
  (VAR) = (SYMBOL_NAME) + ((SYMBOL_NAME)[0] == '*' || (SYMBOL_NAME)[0] == '@' || (SYMBOL_NAME)[0] == '&') 

/* How to refer to registers in assembler output.
   This sequence is indexed by compiler's hard-register-number (see above).  */

#define REGISTER_NAMES \
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "sp", "mac", "ap"}

#define ADDITIONAL_REGISTER_NAMES \
{ {"er0", 0}, {"er1", 1}, {"er2", 2}, {"er3", 3}, {"er4", 4}, \
  {"er5", 5}, {"er6", 6}, {"er7", 7}, {"r7", 7} }

/* How to renumber registers for dbx and gdb.
   H8/300 needs no change in the numeration.  */

#define DBX_REGISTER_NUMBER(REGNO) (REGNO)

#define SDB_DEBUGGING_INFO
#define SDB_DELIM	"\n"

/* Support -gstabs.  */

#include "dbxcoff.h"

/* Override definition in dbxcoff.h.  */
/* Generate a blank trailing N_SO to mark the end of the .o file, since
   we can't depend upon the linker to mark .o file boundaries with
   embedded stabs.  */

#undef DBX_OUTPUT_MAIN_SOURCE_FILE_END
#define DBX_OUTPUT_MAIN_SOURCE_FILE_END(FILE, FILENAME)			\
  fprintf (FILE,							\
	   "\t.text\n.stabs \"\",%d,0,0,.Letext\n.Letext:\n", N_SO)

/* A C statement to output something to the assembler file to switch to section
   NAME for object DECL which is either a FUNCTION_DECL, a VAR_DECL or
   NULL_TREE.  Some target formats do not support arbitrary sections.  Do not
   define this macro in such cases.  */

#define ASM_OUTPUT_SECTION_NAME(FILE, DECL, NAME, RELOC) \
  fprintf (FILE, "\t.section %s\n", NAME)

/* This is how to output the definition of a user-level label named NAME,
   such as the label on a static function or variable NAME.  */

#define ASM_OUTPUT_LABEL(FILE, NAME)	\
  do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)

#define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) 

/* This is how to output a command to make the user-level label named NAME
   defined for reference from other files.  */

#define ASM_GLOBALIZE_LABEL(FILE, NAME)	\
  do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)

#define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
   ASM_OUTPUT_LABEL(FILE, NAME)

/* The prefix to add to user-visible assembler symbols. */

#define USER_LABEL_PREFIX "_"

/* This is how to output an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.

   N.B.: The h8300.md branch_true and branch_false patterns also know
   how to generate internal labels.  */

#define ASM_OUTPUT_INTERNAL_LABEL(FILE, PREFIX, NUM)	\
  fprintf (FILE, ".%s%d:\n", PREFIX, NUM)

/* This is how to store into the string LABEL
   the symbol_ref name of an internal numbered label where
   PREFIX is the class of label and NUM is the number within the class.
   This is suitable for output with `assemble_name'.  */

#define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM)	\
  sprintf (LABEL, "*.%s%d", PREFIX, NUM)

/* This is how to output an assembler line defining a `double' constant.
   It is .dfloat or .gfloat, depending.  */

#define ASM_OUTPUT_DOUBLE(FILE, VALUE)			\
do { char dstr[30];					\
     REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr);	\
     fprintf (FILE, "\t.double %s\n", dstr);		\
   } while (0)


/* This is how to output an assembler line defining a `float' constant.  */
#define ASM_OUTPUT_FLOAT(FILE, VALUE)			\
do { char dstr[30];					\
     REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr);	\
     fprintf (FILE, "\t.float %s\n", dstr);		\
   } while (0)

/* This is how to output an assembler line defining an `int' constant.  */

#define ASM_OUTPUT_INT(FILE, VALUE)		\
( fprintf (FILE, "\t.long "),			\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

/* Likewise for `char' and `short' constants.  */

#define ASM_OUTPUT_SHORT(FILE, VALUE)		\
( fprintf (FILE, "\t.word "),			\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

#define ASM_OUTPUT_CHAR(FILE, VALUE)		\
( fprintf (FILE, "\t.byte "),			\
  output_addr_const (FILE, (VALUE)),		\
  fprintf (FILE, "\n"))

/* This is how to output an assembler line for a numeric constant byte.  */
#define ASM_OUTPUT_BYTE(FILE, VALUE)  \
  fprintf (FILE, "\t.byte 0x%x\n", (VALUE))

/* This is how to output an insn to push a register on the stack.
   It need not be very fast code.  */

#define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
  fprintf (FILE, "\t%s\t%s\n", h8_push_op, h8_reg_names[REGNO])

/* This is how to output an insn to pop a register from the stack.
   It need not be very fast code.  */

#define ASM_OUTPUT_REG_POP(FILE,REGNO) \
  fprintf (FILE, "\t%s\t%s\n", h8_pop_op, h8_reg_names[REGNO])

/* This is how to output an element of a case-vector that is absolute.  */

#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
  asm_fprintf (FILE, "\t%s .L%d\n", ASM_WORD_OP, VALUE)

/* This is how to output an element of a case-vector that is relative.  */

#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
  fprintf (FILE, "\t%s .L%d-.L%d\n", ASM_WORD_OP, VALUE, REL)

/* This is how to output an assembler line
   that says to advance the location counter
   to a multiple of 2**LOG bytes.  */

#define ASM_OUTPUT_ALIGN(FILE,LOG)	\
  if ((LOG) != 0)			\
    fprintf (FILE, "\t.align %d\n", (LOG))

/* This is how to output an assembler line
   that says to advance the location counter by SIZE bytes.  */

#define ASM_OUTPUT_IDENT(FILE, NAME) \
  fprintf(FILE, "%s\t \"%s\"\n", IDENT_ASM_OP, NAME)

#define ASM_OUTPUT_SKIP(FILE, SIZE) \
  fprintf (FILE, "\t.space %d\n", (SIZE))

/* This says how to output an assembler line
   to define a global common symbol.  */

#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
( fputs ("\t.comm ", (FILE)),			\
  assemble_name ((FILE), (NAME)),		\
  fprintf ((FILE), ",%d\n", (SIZE)))

/* This says how to output the assembler to define a global
   uninitialized but not common symbol.
   Try to use asm_output_bss to implement this macro.  */

#define ASM_OUTPUT_BSS(FILE, DECL, NAME, SIZE, ROUNDED) \
  asm_output_bss ((FILE), (DECL), (NAME), (SIZE), (ROUNDED))

/* This says how to output an assembler line
   to define a local common symbol.  */

#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE,ROUNDED)	\
( fputs ("\t.lcomm ", (FILE)),				\
  assemble_name ((FILE), (NAME)),			\
  fprintf ((FILE), ",%d\n", (SIZE)))

/* Store in OUTPUT a string (made with alloca) containing
   an assembler-name for a local static variable named NAME.
   LABELNO is an integer which is different for each call.  */

#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO)	\
( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10),	\
  sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))

/* Define the parentheses used to group arithmetic operations
   in assembler code.  */

#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

/* Define results of standard character escape sequences.  */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015

/* Print an instruction operand X on file FILE.
   look in h8300.c for details */

#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
  ((CODE) == '#')

#define PRINT_OPERAND(FILE, X, CODE)  print_operand(FILE,X,CODE)

/* Print a memory operand whose address is X, on file FILE.
   This uses a function in h8300.c.  */

#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)

/* Define this macro if you want to implement any pragmas.  If defined, it
   should be a C expression to be executed when #pragma is seen.  The
   argument GETC is a function which will return the next character in the
   input stream, or EOF if no characters are left.  The argument UNGETC is
   a function which will push a character back into the input stream.  The
   argument NAME is the word following #pragma in the input stream.  The input
   stream pointer will be pointing just beyond the end of this word.  The
   expression should return true if it handled the pragma, false otherwise.
   The input stream should be left undistrubed if false is returned, otherwise
   it should be pointing at the last character after the end of the pragma
   (newline or end-of-file).  */
#define HANDLE_PRAGMA(GETC, UNGETC, NAME) handle_pragma (GETC, UNGETC, NAME)
extern int handle_pragma ();

#define FINAL_PRESCAN_INSN(insn, operand, nop) final_prescan_insn (insn, operand,nop)

/* Define this macro if GNU CC should generate calls to the System V
   (and ANSI C) library functions `memcpy' and `memset' rather than
   the BSD functions `bcopy' and `bzero'.  */

#define TARGET_MEM_FUNCTIONS 1

#define MULHI3_LIBCALL	"__mulhi3"
#define DIVHI3_LIBCALL	"__divhi3"
#define UDIVHI3_LIBCALL	"__udivhi3"
#define MODHI3_LIBCALL	"__modhi3"
#define UMODHI3_LIBCALL	"__umodhi3"

/* Perform target dependent optabs initialization.  */

#define INIT_TARGET_OPTABS \
  do { \
    smul_optab->handlers[(int) HImode].libfunc		\
      = gen_rtx (SYMBOL_REF, Pmode, MULHI3_LIBCALL);	\
    sdiv_optab->handlers[(int) HImode].libfunc		\
      = gen_rtx (SYMBOL_REF, Pmode, DIVHI3_LIBCALL);	\
    udiv_optab->handlers[(int) HImode].libfunc		\
      = gen_rtx (SYMBOL_REF, Pmode, UDIVHI3_LIBCALL);	\
    smod_optab->handlers[(int) HImode].libfunc		\
      = gen_rtx (SYMBOL_REF, Pmode, MODHI3_LIBCALL);	\
    umod_optab->handlers[(int) HImode].libfunc		\
      = gen_rtx (SYMBOL_REF, Pmode, UMODHI3_LIBCALL);	\
  } while (0)

#define MOVE_RATIO 3

/* Declarations for functions used in insn-output.c.  */
char *emit_a_shift ();
int h8300_funcvec_function_p ();
char *output_adds_subs ();
char * output_simode_bld ();