aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/m32r/m32r.h
blob: 425b83cb20b88d228db18dd931a7a356c3af4792 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
/* Definitions of target machine for GNU compiler, Mitsubishi M32R cpu.
   Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* Things to do:
- longlong.h?
*/

/* ??? Create elf.h and have svr4.h include it.  */
#include "svr4.h"

#undef SWITCH_TAKES_ARG
#undef WORD_SWITCH_TAKES_ARG
#undef HANDLE_SYSV_PRAGMA
#undef SIZE_TYPE
#undef PTRDIFF_TYPE
#undef WCHAR_TYPE
#undef WCHAR_TYPE_SIZE
#undef ASM_FILE_START
#undef ASM_OUTPUT_EXTERNAL_LIBCALL

/* Print subsidiary information on the compiler version in use.  */
#define TARGET_VERSION fprintf (stderr, " (m32r)")


/* Switch  Recognition by gcc.c.  Add -G xx support */

#undef SWITCH_TAKES_ARG
#define SWITCH_TAKES_ARG(CHAR) \
(DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')

/* Names to predefine in the preprocessor for this target machine.  */
/* __M32R__ is defined by the existing compiler so we use that.  */
#define CPP_PREDEFINES "-Acpu(m32r) -Amachine(m32r) -D__M32R__"


#define CC1_SPEC "%{G*}"

/* Options to pass on to the assembler.  */
#undef  ASM_SPEC
#define ASM_SPEC "%{v}"

#if 0 /* not supported yet */
#undef  ASM_SPEC
#define ASM_SPEC "%{v} %{mrelax:-relax}"
#endif
     

#undef ASM_FINAL_SPEC

#undef LINK_SPEC
#if 0 /* not supported yet */
#define LINK_SPEC "%{v} %{mrelax:-relax}"
#else
#define LINK_SPEC "%{v}"
#endif

#undef STARTFILE_SPEC
#define STARTFILE_SPEC "%{!shared:crt0.o%s} crtinit.o%s"


#undef ENDFILE_SPEC
#define ENDFILE_SPEC "-lgloss crtfini.o%s"

     
#undef LIB_SPEC

/* Run-time compilation parameters selecting different hardware subsets.  */

extern int target_flags;

/* If non-zero, tell the linker to do relaxing.
   We don't do anything with the option, other than recognize it.
   LINK_SPEC handles passing -relax to the linker.
   This can cause incorrect debugging information as line numbers may
   turn out wrong.  This shouldn't be specified unless accompanied with -O2
   [where the user expects debugging information to be less accurate].  */
#define TARGET_RELAX_MASK 1

/* For miscellaneous debugging purposes.  */
#define TARGET_DEBUG_MASK 2
#define TARGET_DEBUG (target_flags & TARGET_DEBUG_MASK)

/* Align loops to 32 byte boundaries (cache line size).  */
/* ??? This option is experimental and is not documented.  */
#define TARGET_ALIGN_LOOPS_MASK 4
#define TARGET_ALIGN_LOOPS (target_flags & TARGET_ALIGN_LOOPS_MASK)

/* Use old compare/branch support (kept around for awhile for
   comparison and backoff purposes).  */
/* ??? This option is experimental and is not documented.
   Eventually it will be deleted.  */
#define TARGET_OLD_COMPARE_MASK 8
#define TARGET_OLD_COMPARE (target_flags & TARGET_OLD_COMPARE_MASK)

/* Target machine to compile for.  */
#define TARGET_M32R 1


/* Macro to define tables used to set the flags.
   This is a list in braces of pairs in braces,
   each pair being { "NAME", VALUE }
   where VALUE is the bits to set or minus the bits to clear.
   An empty string NAME is used to identify the default VALUE.  */

#define TARGET_SWITCHES \
{ \
/*  { "relax",			TARGET_RELAX_MASK },			\
    { "no-relax",		-TARGET_RELAX_MASK },*/			\
    { "debug",			TARGET_DEBUG_MASK },			\
    { "align-loops",		TARGET_ALIGN_LOOPS_MASK },		\
    { "no-align-loops",		-TARGET_ALIGN_LOOPS_MASK },		\
    { "old-compare",		TARGET_OLD_COMPARE_MASK },		\
    { "no-old-compare",		-TARGET_OLD_COMPARE_MASK },		\
    SUBTARGET_SWITCHES							\
    { "", TARGET_DEFAULT }						\
}

#define TARGET_DEFAULT (0)

#define SUBTARGET_SWITCHES

/* This macro is similar to `TARGET_SWITCHES' but defines names of
   command options that have values.  Its definition is an
   initializer with a subgrouping for each command option.

   Each subgrouping contains a string constant, that defines the
   fixed part of the option name, and the address of a variable. 
   The variable, type `char *', is set to the variable part of the
   given option if the fixed part matches.  The actual option name
   is made by appending `-m' to the specified name.

   Here is an example which defines `-mshort-data-NUMBER'.  If the
   given option is `-mshort-data-512', the variable `m88k_short_data'
   will be set to the string `"512"'.

	extern char *m88k_short_data;
	#define TARGET_OPTIONS { { "short-data-", &m88k_short_data } }  */

extern char *m32r_model_string;
extern char *m32r_sdata_string;


#define TARGET_OPTIONS \
{						\
  { "model=",	&m32r_model_string	},	\
  { "sdata=",	&m32r_sdata_string	},	\
}

/* Code Models

   Code models are used to select between two choices of two separate
   possibilities (address space size, call insn to use):

   small: addresses use 24 bits, use bl to make calls
   medium: addresses use 32 bits, use bl to make calls (*1)
   large: addresses use 32 bits, use seth/add3/jl to make calls (*2)

   The fourth is "addresses use 24 bits, use seth/add3/jl to make calls" but
   using this one doesn't make much sense.

   (*1) The linker may eventually be able to relax seth/add3 -> ld24.
   (*2) The linker may eventually be able to relax seth/add3/jl -> bl.

   Internally these are recorded as TARGET_ADDR{24,32} and
   TARGET_CALL{26,32}.

   The __model__ attribute can be used to select the code model to use when
   accessing particular objects.  */

enum m32r_model { M32R_MODEL_SMALL, M32R_MODEL_MEDIUM, M32R_MODEL_LARGE };

extern enum m32r_model m32r_model;
#define TARGET_MODEL_SMALL (m32r_model == M32R_MODEL_SMALL)
#define TARGET_MODEL_MEDIUM (m32r_model == M32R_MODEL_MEDIUM)
#define TARGET_MODEL_LARGE (m32r_model == M32R_MODEL_LARGE)
#define TARGET_ADDR24 (m32r_model == M32R_MODEL_SMALL)
#define TARGET_ADDR32 (! TARGET_ADDR24)
#define TARGET_CALL26 (! TARGET_CALL32)
#define TARGET_CALL32 (m32r_model == M32R_MODEL_LARGE)

/* The default is the small model.  */
#define M32R_MODEL_DEFAULT "small"

/* Small Data Area

   The SDA consists of sections .sdata, .sbss, and .scommon.
   .scommon isn't a real section, symbols in it have their section index
   set to SHN_M32R_SCOMMON, though support for it exists in the linker script.

   Two switches control the SDA:

   -G NNN        - specifies the maximum size of variable to go in the SDA

   -msdata=foo   - specifies how such variables are handled

        -msdata=none  - small data area is disabled

        -msdata=sdata - small data goes in the SDA, special code isn't
                        generated to use it, and special relocs aren't
                        generated

        -msdata=use   - small data goes in the SDA, special code is generated
                        to use the SDA and special relocs are generated

   The SDA is not multilib'd, it isn't necessary.
   MULTILIB_EXTRA_OPTS is set in tmake_file to -msdata=sdata so multilib'd
   libraries have small data in .sdata/SHN_M32R_SCOMMON so programs that use
   -msdata=use will successfully link with them (references in header files
   will cause the compiler to emit code that refers to library objects in
   .data).  ??? There can be a problem if the user passes a -G value greater
   than the default and a library object in a header file is that size.
   The default is 8 so this should be rare - if it occurs the user
   is required to rebuild the libraries or use a smaller value for -G.
*/

/* Maximum size of variables that go in .sdata/.sbss.
   The -msdata=foo switch also controls how small variables are handled.  */
#define SDATA_DEFAULT_SIZE 8

extern int g_switch_value;		/* value of the -G xx switch */
extern int g_switch_set;		/* whether -G xx was passed.  */

enum m32r_sdata { M32R_SDATA_NONE, M32R_SDATA_SDATA, M32R_SDATA_USE };

extern enum m32r_sdata m32r_sdata;
#define TARGET_SDATA_NONE (m32r_sdata == M32R_SDATA_NONE)
#define TARGET_SDATA_SDATA (m32r_sdata == M32R_SDATA_SDATA)
#define TARGET_SDATA_USE (m32r_sdata == M32R_SDATA_USE)

/* Default is to disable the SDA
   [for upward compatibility with previous toolchains].  */
#define M32R_SDATA_DEFAULT "none"

/* Define this macro as a C expression for the initializer of an array of
   strings to tell the driver program which options are defaults for this
   target and thus do not need to be handled specially when using
   `MULTILIB_OPTIONS'.  */
#define MULTILIB_DEFAULTS { "mmodel=small", "m32r" }

/* Sometimes certain combinations of command options do not make
   sense on a particular target machine.  You can define a macro
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
   defined, is executed once just after all the command options have
   been parsed.

   Don't use this macro to turn on various extra optimizations for
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */

#define OVERRIDE_OPTIONS \
do {				\
  /* These need to be done at start up.  It's convenient to do them here.  */ \
  m32r_init ();			\
} while (0)

/* Define this macro if debugging can be performed even without a
   frame pointer.  If this macro is defined, GNU CC will turn on the
   `-fomit-frame-pointer' option whenever `-O' is specified.  */
#define CAN_DEBUG_WITHOUT_FP

/* Target machine storage layout.  */

/* Define to use software floating point emulator for REAL_ARITHMETIC and
   decimal <-> binary conversion.  */
#define REAL_ARITHMETIC

/* Define this if most significant bit is lowest numbered
   in instructions that operate on numbered bit-fields.  */
#define BITS_BIG_ENDIAN 1

/* Define this if most significant byte of a word is the lowest numbered.  */
#define BYTES_BIG_ENDIAN 1

/* Define this if most significant word of a multiword number is the lowest
   numbered.  */
#define WORDS_BIG_ENDIAN 1

/* Define this macro if WORDS_BIG_ENDIAN is not constant.  This must
   be a constant value with the same meaning as WORDS_BIG_ENDIAN,
   which will be used only when compiling libgcc2.c.  Typically the
   value will be set based on preprocessor defines.  */
/*#define LIBGCC2_WORDS_BIG_ENDIAN 1*/

/* Number of bits in an addressable storage unit.  */
#define BITS_PER_UNIT 8

/* Width in bits of a "word", which is the contents of a machine register.
   Note that this is not necessarily the width of data type `int';
   if using 16-bit ints on a 68000, this would still be 32.
   But on a machine with 16-bit registers, this would be 16.  */
#define BITS_PER_WORD 32

/* Width of a word, in units (bytes).  */
#define UNITS_PER_WORD 4

/* Define this macro if it is advisable to hold scalars in registers
   in a wider mode than that declared by the program.  In such cases, 
   the value is constrained to be within the bounds of the declared
   type, but kept valid in the wider mode.  The signedness of the
   extension may differ from that of the type.  */
#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
if (GET_MODE_CLASS (MODE) == MODE_INT		\
    && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)	\
{						\
  (MODE) = SImode;				\
}

/* Define this macro if the promotion described by `PROMOTE_MODE'
   should also be done for outgoing function arguments.  */
/*#define PROMOTE_FUNCTION_ARGS*/

/* Likewise, if the function return value is promoted.
   If defined, FUNCTION_VALUE must perform the same promotions done by
   PROMOTE_MODE.  */
/*#define PROMOTE_FUNCTION_RETURN*/

/* Width in bits of a pointer.
   See also the macro `Pmode' defined below.  */
#define POINTER_SIZE 32

/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
#define PARM_BOUNDARY 32

/* Boundary (in *bits*) on which stack pointer should be aligned.  */
#define STACK_BOUNDARY 32

/* ALIGN FRAMES on word boundaries */
#define M32R_STACK_ALIGN(LOC) (((LOC)+3) & ~3)

/* Allocation boundary (in *bits*) for the code of a function.  */
#define FUNCTION_BOUNDARY 32

/* Alignment of field after `int : 0' in a structure.  */
#define EMPTY_FIELD_BOUNDARY 32

/* Every structure's size must be a multiple of this.  */
#define STRUCTURE_SIZE_BOUNDARY 8

/* A bitfield declared as `int' forces `int' alignment for the struct.  */
#define PCC_BITFIELD_TYPE_MATTERS 1

/* No data type wants to be aligned rounder than this.  */
#define BIGGEST_ALIGNMENT 32

/* The best alignment to use in cases where we have a choice.  */
#define FASTEST_ALIGNMENT 32

/* Make strings word-aligned so strcpy from constants will be faster.  */
#define CONSTANT_ALIGNMENT(EXP, ALIGN)  \
  ((TREE_CODE (EXP) == STRING_CST	\
    && (ALIGN) < FASTEST_ALIGNMENT)	\
   ? FASTEST_ALIGNMENT : (ALIGN))

/* Make arrays of chars word-aligned for the same reasons.  */
#define DATA_ALIGNMENT(TYPE, ALIGN)		\
  (TREE_CODE (TYPE) == ARRAY_TYPE		\
   && TYPE_MODE (TREE_TYPE (TYPE)) == QImode	\
   && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))

/* Set this nonzero if move instructions will actually fail to work
   when given unaligned data.  */
#define STRICT_ALIGNMENT 1

/* Layout of source language data types.  */

#define SHORT_TYPE_SIZE		16
#define INT_TYPE_SIZE		32
#define LONG_TYPE_SIZE		32
#define LONG_LONG_TYPE_SIZE	64
#define FLOAT_TYPE_SIZE		32
#define DOUBLE_TYPE_SIZE	64
#define LONG_DOUBLE_TYPE_SIZE	64

/* Define this as 1 if `char' should by default be signed; else as 0.  */
#define DEFAULT_SIGNED_CHAR 1

#define SIZE_TYPE "long unsigned int"
#define PTRDIFF_TYPE "long int"
#define WCHAR_TYPE "short unsigned int"
#define WCHAR_TYPE_SIZE 16

/* Define results of standard character escape sequences.  */
#define TARGET_BELL 007
#define TARGET_BS 010
#define TARGET_TAB 011
#define TARGET_NEWLINE 012
#define TARGET_VT 013
#define TARGET_FF 014
#define TARGET_CR 015

/* Standard register usage.  */

/* Number of actual hardware registers.
   The hardware registers are assigned numbers for the compiler
   from 0 to just below FIRST_PSEUDO_REGISTER.
   All registers that the compiler knows about must be given numbers,
   even those that are not normally considered general registers.  */
#define FIRST_PSEUDO_REGISTER 18
	
/* 1 for registers that have pervasive standard uses
   and are not available for the register allocator.

   0-3   - arguments/results
   4-5   - call used [4 is used as a tmp during prologue/epilogue generation]
   6     - call used, gptmp
   7     - call used, static chain pointer
   8-11  - call saved
   12    - call saved [reserved for global pointer]
   13    - frame pointer
   14    - subroutine link register
   15    - stack pointer
   16    - arg pointer
   17    - carry flag

   
   By default, the extension registers are not available.  */

#define FIXED_REGISTERS \
{ 0, 0, 0, 0, 0, 0, 0, 0,	\
  0, 0, 0, 0, 0, 0, 0, 1,	\
  1, 1 }


/* 1 for registers not available across function calls.
   These must include the FIXED_REGISTERS and also any
   registers that can be used without being saved.
   The latter must include the registers where values are returned
   and the register where structure-value addresses are passed.
   Aside from that, you can include as many other registers as you like.  */

#define CALL_USED_REGISTERS \
{ 1, 1, 1, 1, 1, 1, 1, 1,	\
  0, 0, 0, 0, 0, 0, 1, 1,	\
  1, 1 }


/* Zero or more C statements that may conditionally modify two variables
   `fixed_regs' and `call_used_regs' (both of type `char []') after they
   have been initialized from the two preceding macros.

   This is necessary in case the fixed or call-clobbered registers depend
   on target flags.

   You need not define this macro if it has no work to do.  */

/*#define CONDITIONAL_REGISTER_USAGE*/

/* If defined, an initializer for a vector of integers, containing the
   numbers of hard registers in the order in which GNU CC should
   prefer to use them (from most preferred to least).  */
#if 1 /* better for int code */
#define REG_ALLOC_ORDER \
{ 4, 5, 6, 7, 2, 3, 8, 9, 10, 11, 12, 13, 14, 0, 1, 15, 16, 17 }
#else /* better for fp code at expense of int code */
#define REG_ALLOC_ORDER \
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 }
#endif

/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.
   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers.  */
#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.  */
extern unsigned int m32r_hard_regno_mode_ok[];
extern unsigned int m32r_mode_class[];
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
((m32r_hard_regno_mode_ok[REGNO] & m32r_mode_class[MODE]) != 0)

/* A C expression that is nonzero if it is desirable to choose
   register allocation so as to avoid move instructions between a
   value of mode MODE1 and a value of mode MODE2.

   If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
   MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
   MODE2)' must be zero.  */

/* Tie QI/HI/SI modes together.  */
#define MODES_TIEABLE_P(MODE1, MODE2) \
(GET_MODE_CLASS (MODE1) == MODE_INT		\
 && GET_MODE_CLASS (MODE2) == MODE_INT		\
 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD	\
 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD)

/* Register classes and constants.  */

/* Define the classes of registers for register constraints in the
   machine description.  Also define ranges of constants.

   One of the classes must always be named ALL_REGS and include all hard regs.
   If there is more than one class, another class must be named NO_REGS
   and contain no registers.

   The name GENERAL_REGS must be the name of a class (or an alias for
   another name such as ALL_REGS).  This is the class of registers
   that is allowed by "g" or "r" in a register constraint.
   Also, registers outside this class are allocated only when
   instructions express preferences for them.

   The classes must be numbered in nondecreasing order; that is,
   a larger-numbered class must never be contained completely
   in a smaller-numbered class.

   For any two classes, it is very desirable that there be another
   class that represents their union.

   It is important that any condition codes have class NO_REGS.
   See `register_operand'.  */

enum reg_class {
  NO_REGS, CARRY_REG, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
};

#define N_REG_CLASSES (int) LIM_REG_CLASSES

/* Give names of register classes as strings for dump file.   */
#define REG_CLASS_NAMES \
{ "NO_REGS", "CARRY_REG", "GENERAL_REGS", "ALL_REGS" }

/* Define which registers fit in which classes.
   This is an initializer for a vector of HARD_REG_SET
   of length N_REG_CLASSES.  */

#define REG_CLASS_CONTENTS \
{ {0}, {0x20000}, {0x1ffff}, {0x3ffff} }


/* The same information, inverted:
   Return the class number of the smallest class containing
   reg number REGNO.  This could be a conditional expression
   or could index an array.  */
extern enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
#define REGNO_REG_CLASS(REGNO) \
(m32r_regno_reg_class[REGNO])

/* The class value for index registers, and the one for base regs.  */
#define INDEX_REG_CLASS GENERAL_REGS
#define BASE_REG_CLASS GENERAL_REGS

/* Get reg_class from a letter such as appears in the machine description.  */
#define REG_CLASS_FROM_LETTER(C) NO_REGS

/* These assume that REGNO is a hard or pseudo reg number.
   They give nonzero only if REGNO is a hard reg of the suitable class
   or a pseudo reg currently allocated to a suitable hard reg.
   Since they use reg_renumber, they are safe only once reg_renumber
   has been allocated, which happens in local-alloc.c.  */
#define REGNO_OK_FOR_BASE_P(REGNO) \
((REGNO) < FIRST_PSEUDO_REGISTER			\
 ? GPR_P (REGNO) || (REGNO) == ARG_POINTER_REGNUM	\
 : GPR_P (reg_renumber[REGNO]))
#define REGNO_OK_FOR_INDEX_P(REGNO) REGNO_OK_FOR_BASE_P(REGNO)

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.  */
#define PREFERRED_RELOAD_CLASS(X,CLASS) \
(CLASS)

/* Return the maximum number of consecutive registers
   needed to represent mode MODE in a register of class CLASS.  */
#define CLASS_MAX_NREGS(CLASS, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* The letters I, J, K, L, M, N, O, P in a register constraint string
   can be used to stand for particular ranges of immediate operands.
   This macro defines what the ranges are.
   C is the letter, and VALUE is a constant value.
   Return 1 if VALUE is in the range specified by C.  */
/* 'I' is used for 8 bit signed immediates.
   'J' is used for 16 bit signed immediates.
   'K' is used for 16 bit unsigned immediates.
   'L' is used for 16 bit immediates left shifted by 16 (sign ???).
   'M' is used for 24 bit unsigned immediates.
   'N' is used for any 32 bit non-symbolic value.
   'O' is used for 5 bit unsigned immediates (shift count).
   'P' is used for 16 bit signed immediates for compares
       (values in the range -32767 to +32768).  */

/* local to this file */
#define INT8_P(X) ((unsigned) ((X) + 0x80) < 0x100)
#define INT16_P(X) ((unsigned) ((X) + 0x8000) < 0x10000)
#define CMP_INT16_P(X) ((unsigned) ((X) - 1 + 0x8000) < 0x10000)
#define UINT16_P(X) ((unsigned) (X) < 0x10000)
#define UPPER16_P(X) (((X) & ~0xffff0000) == 0)
#define UINT24_P(X) ((unsigned) (X) < 0x1000000)
#define INT32_P(X) ((X) >= (-(HOST_WIDE_INT) 0x7fffffff - 1) \
		    && (X) <= (unsigned HOST_WIDE_INT) 0xffffffff)
#define UINT5_P(X) ((unsigned) (X) < 32)
#define INVERTED_SIGNED_8BIT(VAL) ((VAL) >= -127 && (VAL) <= 128)

#define CONST_OK_FOR_LETTER_P(VALUE, C)					\
((C) == 'I' ? INT8_P (VALUE)						\
 : (C) == 'J' ? INT16_P (VALUE)						\
 : (C) == 'K' ? UINT16_P (VALUE)					\
 : (C) == 'L' ? UPPER16_P (VALUE)					\
 : (C) == 'M' ? UINT24_P (VALUE)					\
 : (C) == 'N' ? INVERTED_SIGNED_8BIT (VALUE)				\
 : (C) == 'O' ? UINT5_P (VALUE)						\
 : (C) == 'P' ? CMP_INT16_P (VALUE)					\
 : 0)

/* Similar, but for floating constants, and defining letters G and H.
   Here VALUE is the CONST_DOUBLE rtx itself.
   For the m32r, handle a few constants inline.
   ??? We needn't treat DI and DF modes differently, but for now we do.  */
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
((C) == 'G' ? easy_di_const (VALUE)					\
 : (C) == 'H' ? easy_df_const (VALUE)					\
 : 0)

/* A C expression that defines the optional machine-dependent constraint
   letters that can be used to segregate specific types of operands,
   usually memory references, for the target machine.  It should return 1 if
   VALUE corresponds to the operand type represented by the constraint letter
   C.  If C is not defined as an extra constraint, the value returned should
   be 0 regardless of VALUE.  */
/* Q is for symbolic addresses loadable with ld24.
   R is for symbolic addresses when ld24 can't be used.
   S is unused.
   T is for indirect of a pointer.
   U is for pushes and pops of the stack pointer.  */

#define EXTRA_CONSTRAINT(VALUE, C)					\
((C) == 'Q'								\
 ? ((TARGET_ADDR24 && GET_CODE (VALUE) == LABEL_REF)			\
    || addr24_operand (VALUE, VOIDmode))				\
 : (C) == 'R'								\
 ? ((TARGET_ADDR32 && GET_CODE (VALUE) == LABEL_REF)			\
    || addr32_operand (VALUE, VOIDmode))				\
 : (C) == 'S'								\
 ? 0									\
 : (C) == 'T'								\
 ?  (GET_CODE (VALUE) == MEM						\
     && memreg_operand (VALUE, GET_MODE (VALUE)))			\
 : (C) == 'U'								\
 ?  (GET_CODE (VALUE) == MEM						\
     && PUSH_POP_P (GET_MODE (VALUE), XEXP (VALUE, 0)))			\
 : 0)

/* Stack layout and stack pointer usage.  */

/* Define this macro if pushing a word onto the stack moves the stack
   pointer to a smaller address.  */
#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
   is at the high-address end of the local variables;
   that is, each additional local variable allocated
   goes at a more negative offset from the frame pointer.  */
/*#define FRAME_GROWS_DOWNWARD*/

/* Offset from frame pointer to start allocating local variables at.
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
   first local allocated.  Otherwise, it is the offset to the BEGINNING
   of the first local allocated.  */
/* The frame pointer points at the same place as the stack pointer, except if
   alloca has been called.  */
#define STARTING_FRAME_OFFSET \
M32R_STACK_ALIGN (current_function_outgoing_args_size)

/* Offset from the stack pointer register to the first location at which
   outgoing arguments are placed.  */
#define STACK_POINTER_OFFSET 0

/* Offset of first parameter from the argument pointer register value.  */
#define FIRST_PARM_OFFSET(FNDECL) 0

/* A C expression whose value is RTL representing the address in a
   stack frame where the pointer to the caller's frame is stored.
   Assume that FRAMEADDR is an RTL expression for the address of the
   stack frame itself.

   If you don't define this macro, the default is to return the value
   of FRAMEADDR--that is, the stack frame address is also the address
   of the stack word that points to the previous frame.  */
/*define DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)*/

/* A C expression whose value is RTL representing the value of the
   return address for the frame COUNT steps up from the current frame.
   FRAMEADDR is the frame pointer of the COUNT frame, or the frame
   pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME'
   is defined.  */
/* The current return address is in r14.  */
#if 0 /* The default value should work.  */
#define RETURN_ADDR_RTX(COUNT, FRAME) \
(((COUNT) == -1)				\
 ? gen_rtx (REG, Pmode, 14)			\
 : copy_to_reg (gen_rtx (MEM, Pmode,		\
			 memory_address (Pmode, plus_constant ((FRAME), UNITS_PER_WORD)))))
#endif

/* Register to use for pushing function arguments.  */
#define STACK_POINTER_REGNUM 15

/* Base register for access to local variables of the function.  */
#define FRAME_POINTER_REGNUM 13

/* Base register for access to arguments of the function.  */
#define ARG_POINTER_REGNUM 16

/* The register number of the return address pointer register, which
   is used to access the current function's return address from the
   stack.  On some machines, the return address is not at a fixed
   offset from the frame pointer or stack pointer or argument
   pointer.  This register can be defined to point to the return
   address on the stack, and then be converted by `ELIMINABLE_REGS'
   into either the frame pointer or stack pointer.

   Do not define this macro unless there is no other way to get the
   return address from the stack.  */
/* ??? revisit */
/* #define RETURN_ADDRESS_POINTER_REGNUM */

/* Register in which static-chain is passed to a function.  This must
   not be a register used by the prologue.  */
#define STATIC_CHAIN_REGNUM 7

/* These aren't official macros.  */
#define PROLOGUE_TMP_REGNUM 4
#define RETURN_ADDR_REGNUM 14
/* #define GP_REGNUM 12 */
#define CARRY_REGNUM 17
#define M32R_MAX_INT_REGS 16

     
#define GPR_P(REGNO) ((unsigned) (REGNO) < M32R_MAX_INT_REGS)

/* Eliminating the frame and arg pointers.  */

/* A C expression which is nonzero if a function must have and use a
   frame pointer.  This expression is evaluated in the reload pass.
   If its value is nonzero the function will have a frame pointer.  */
#define FRAME_POINTER_REQUIRED \
(current_function_calls_alloca)

#if 0
/* C statement to store the difference between the frame pointer
   and the stack pointer values immediately after the function prologue.
   If `ELIMINABLE_REGS' is defined, this macro will be not be used and
   need not be defined.  */
#define INITIAL_FRAME_POINTER_OFFSET(VAR) \
((VAR) = m32r_compute_frame_size (get_frame_size ()))
#endif

/* If defined, this macro specifies a table of register pairs used to
   eliminate unneeded registers that point into the stack frame.  If
   it is not defined, the only elimination attempted by the compiler
   is to replace references to the frame pointer with references to
   the stack pointer.

   Note that the elimination of the argument pointer with the stack
   pointer is specified first since that is the preferred elimination.  */

#define ELIMINABLE_REGS \
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },			\
 { ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM },			\
 { ARG_POINTER_REGNUM,   FRAME_POINTER_REGNUM }}			\

/* A C expression that returns non-zero if the compiler is allowed to
   try to replace register number FROM-REG with register number
   TO-REG.  This macro need only be defined if `ELIMINABLE_REGS' is
   defined, and will usually be the constant 1, since most of the
   cases preventing register elimination are things that the compiler
   already knows about.  */

#define CAN_ELIMINATE(FROM, TO) \
((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM		\
 ? ! frame_pointer_needed						\
 : 1)

/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
   specifies the initial difference between the specified pair of
   registers.  This macro must be defined if `ELIMINABLE_REGS' is
   defined.  */

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
{									\
  int size = m32r_compute_frame_size (get_frame_size ());		\
									\
 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
   (OFFSET) = 0;							\
 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM)	\
   (OFFSET) = size - current_function_pretend_args_size;		\
 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM)	\
   (OFFSET) = size - current_function_pretend_args_size;		\
  else									\
    abort ();								\
}

/* Function argument passing.  */

/* When a prototype says `char' or `short', really pass an `int'.  */
#define PROMOTE_PROTOTYPES

/* If defined, the maximum amount of space required for outgoing
   arguments will be computed and placed into the variable
   `current_function_outgoing_args_size'.  No space will be pushed
   onto the stack for each call; instead, the function prologue should
   increase the stack frame size by this amount.  */
#define ACCUMULATE_OUTGOING_ARGS

/* Define this macro if functions should assume that stack space has
   been allocated for arguments even when their values are passed in
   registers.

   The value of this macro is the size, in bytes, of the area
   reserved for arguments passed in registers for the function
   represented by FNDECL.

   This space can be allocated by the caller, or be a part of the
   machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
   which.  */
#if 0
#define REG_PARM_STACK_SPACE(FNDECL) \
(M32R_MAX_PARM_REGS * UNITS_PER_WORD)
#endif

/* Value is the number of bytes of arguments automatically
   popped when returning from a subroutine call.
   FUNDECL is the declaration node of the function (as a tree),
   FUNTYPE is the data type of the function (as a tree),
   or for a library call it is an identifier node for the subroutine name.
   SIZE is the number of bytes of arguments passed on the stack.  */
#define RETURN_POPS_ARGS(DECL, FUNTYPE, SIZE) 0

/* Nonzero if we do not know how to pass TYPE solely in registers. */
#define MUST_PASS_IN_STACK(MODE,TYPE)			\
  ((TYPE) != 0						\
   && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST	\
       || TREE_ADDRESSABLE (TYPE)))

/* Define a data type for recording info about an argument list
   during the scan of that argument list.  This data type should
   hold all necessary information about the function itself
   and about the args processed so far, enough to enable macros
   such as FUNCTION_ARG to determine where the next arg should go.  */
#define CUMULATIVE_ARGS int

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.  */
#define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
((CUM) = 0)

/* The number of registers used for parameter passing.  Local to this file.  */
#define M32R_MAX_PARM_REGS 4

/* 1 if N is a possible register number for function argument passing.  */
#define FUNCTION_ARG_REGNO_P(N) \
((unsigned) (N) < M32R_MAX_PARM_REGS)

/* The ROUND_ADVANCE* macros are local to this file.  */
/* Round SIZE up to a word boundary.  */
#define ROUND_ADVANCE(SIZE) \
(((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Round arg MODE/TYPE up to the next word boundary.  */
#define ROUND_ADVANCE_ARG(MODE, TYPE) \
((MODE) == BLKmode				\
 ? ROUND_ADVANCE (int_size_in_bytes (TYPE))	\
 : ROUND_ADVANCE (GET_MODE_SIZE (MODE)))

/* Round CUM up to the necessary point for argument MODE/TYPE.  */
#if 0
#define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) \
((((MODE) == BLKmode ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) \
  > BITS_PER_WORD)	\
 ? ((CUM) + 1 & ~1)	\
 : (CUM))
#else
#define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) (CUM)
#endif

/* Return boolean indicating arg of type TYPE and mode MODE will be passed in
   a reg.  This includes arguments that have to be passed by reference as the
   pointer to them is passed in a reg if one is available (and that is what
   we're given).
   This macro is only used in this file.  */
#define PASS_IN_REG_P(CUM, MODE, TYPE, NAMED) \
(ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < M32R_MAX_PARM_REGS)

/* Determine where to put an argument to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */
/* On the M32R the first M32R_MAX_PARM_REGS args are normally in registers
   and the rest are pushed.  */
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
(PASS_IN_REG_P ((CUM), (MODE), (TYPE), (NAMED))				\
 ? gen_rtx (REG, (MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)))	\
 : 0)

/* ??? Quick hack to try to get varargs working the normal way.  */
#define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
(((! current_function_varargs || (NAMED))				\
  && PASS_IN_REG_P ((CUM), (MODE), (TYPE), (NAMED)))			\
 ? gen_rtx (REG, (MODE), ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)))	\
 : 0)

/* A C expression for the number of words, at the beginning of an
   argument, must be put in registers.  The value must be zero for
   arguments that are passed entirely in registers or that are entirely
   pushed on the stack.

   On some machines, certain arguments must be passed partially in
   registers and partially in memory.  On these machines, typically the
   first @var{n} words of arguments are passed in registers, and the rest
   on the stack.  If a multi-word argument (a @code{double} or a
   structure) crosses that boundary, its first few words must be passed
   in registers and the rest must be pushed.  This macro tells the
   compiler when this occurs, and how many of the words should go in
   registers.  */
#define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
  function_arg_partial_nregs (&CUM, (int)MODE, TYPE, NAMED)

/* A C expression that indicates when an argument must be passed by
   reference.  If nonzero for an argument, a copy of that argument is
   made in memory and a pointer to the argument is passed instead of
   the argument itself.  The pointer is passed in whatever way is
   appropriate for passing a pointer to that type.  */
/* All arguments greater than 8 bytes are passed this way.  */
#define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
((TYPE) && int_size_in_bytes (TYPE) > 8)

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
((CUM) = (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) \
	  + ROUND_ADVANCE_ARG ((MODE), (TYPE))))

/* If defined, a C expression that gives the alignment boundary, in bits,
   of an argument with the specified mode and type.  If it is not defined, 
   PARM_BOUNDARY is used for all arguments.  */
#if 0
/* We assume PARM_BOUNDARY == UNITS_PER_WORD here.  */
#define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
(((TYPE) ? TYPE_ALIGN (TYPE) : GET_MODE_BITSIZE (MODE)) <= PARM_BOUNDARY \
 ? PARM_BOUNDARY \
 : 2 * PARM_BOUNDARY)
#endif

#if 0
/* If defined, is a C expression that produces the machine-specific
   code for a call to `__builtin_saveregs'.  This code will be moved
   to the very beginning of the function, before any parameter access
   are made.  The return value of this function should be an RTX that
   contains the value to use as the return of `__builtin_saveregs'.

   The argument ARGS is a `tree_list' containing the arguments that
   were passed to `__builtin_saveregs'.

   If this macro is not defined, the compiler will output an ordinary
   call to the library function `__builtin_saveregs'.  */
extern struct rtx *m32r_expand_builtin_savergs ();
#define EXPAND_BUILTIN_SAVEREGS(ARGS) m32r_expand_builtin_saveregs (ARGS)
#endif

/* This macro offers an alternative
   to using `__builtin_saveregs' and defining the macro
   `EXPAND_BUILTIN_SAVEREGS'.  Use it to store the anonymous register
   arguments into the stack so that all the arguments appear to have
   been passed consecutively on the stack.  Once this is done, you
   can use the standard implementation of varargs that works for
   machines that pass all their arguments on the stack.

   The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
   containing the values that obtain after processing of the named
   arguments.  The arguments MODE and TYPE describe the last named
   argument--its machine mode and its data type as a tree node.

   The macro implementation should do two things: first, push onto the
   stack all the argument registers *not* used for the named
   arguments, and second, store the size of the data thus pushed into
   the `int'-valued variable whose name is supplied as the argument
   PRETEND_SIZE.  The value that you store here will serve as
   additional offset for setting up the stack frame.

   If the argument NO_RTL is nonzero, it means that the
   arguments of the function are being analyzed for the second time.
   This happens for an inline function, which is not actually
   compiled until the end of the source file.  The macro
   `SETUP_INCOMING_VARARGS' should not generate any instructions in
   this case.  */

#define SETUP_INCOMING_VARARGS(ARGS_SO_FAR, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
m32r_setup_incoming_varargs (&ARGS_SO_FAR, MODE, TYPE, &PRETEND_SIZE, NO_RTL)

/* Function results.  */

/* Define how to find the value returned by a function.
   VALTYPE is the data type of the value (as a tree).
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
   otherwise, FUNC is 0.  */
#define FUNCTION_VALUE(VALTYPE, FUNC) gen_rtx (REG, TYPE_MODE (VALTYPE), 0)

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  */
#define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)

/* 1 if N is a possible register number for a function value
   as seen by the caller.  */
/* ??? What about r1 in DI/DF values.  */
#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

/* A C expression which can inhibit the returning of certain function
   values in registers, based on the type of value.  A nonzero value says
   to return the function value in memory, just as large structures are
   always returned.  Here TYPE will be a C expression of type `tree',
   representing the data type of the value.  */
#define RETURN_IN_MEMORY(TYPE) \
(int_size_in_bytes (TYPE) > 8)

/* Tell GCC to use RETURN_IN_MEMORY.  */
#define DEFAULT_PCC_STRUCT_RETURN 0

/* Register in which address to store a structure value
   is passed to a function, or 0 to use `invisible' first argument.  */
#define STRUCT_VALUE 0

/* Function entry and exit.  */

/* Initialize data used by insn expanders.  This is called from
   init_emit, once for each function, before code is generated.  */
#define INIT_EXPANDERS m32r_init_expanders ()

/* This macro generates the assembly code for function entry.
   FILE is a stdio stream to output the code to.
   SIZE is an int: how many units of temporary storage to allocate.
   Refer to the array `regs_ever_live' to determine which registers
   to save; `regs_ever_live[I]' is nonzero if register number I
   is ever used in the function.  This macro is responsible for
   knowing which registers should not be saved even if used.  */
#define FUNCTION_PROLOGUE(FILE, SIZE) \
m32r_output_function_prologue (FILE, SIZE)

/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in
   functions that have frame pointers.
   No definition is equivalent to always zero.  */
#define EXIT_IGNORE_STACK 1

/* This macro generates the assembly code for function exit,
   on machines that need it.  If FUNCTION_EPILOGUE is not defined
   then individual return instructions are generated for each
   return statement.  Args are same as for FUNCTION_PROLOGUE.

   The function epilogue should not depend on the current stack pointer!
   It should use the frame pointer only.  This is mandatory because
   of alloca; we also take advantage of it to omit stack adjustments
   before returning.  */
#define FUNCTION_EPILOGUE(FILE, SIZE) \
m32r_output_function_epilogue (FILE, SIZE)

/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  */
#define FUNCTION_PROFILER(FILE, LABELNO) abort ()

/* Trampolines.  */

/* On the M32R, the trampoline is

	ld24 r7,STATIC
	ld24 r6,FUNCTION
	jmp r6
	nop

   ??? Need addr32 support.
*/

/* Length in bytes of the trampoline for entering a nested function.  */
#define TRAMPOLINE_SIZE 12

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
do { \
  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 0)), \
		  plus_constant ((CXT), 0xe7000000)); \
  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 4)), \
		  plus_constant ((FNADDR), 0xe6000000)); \
  emit_move_insn (gen_rtx (MEM, SImode, plus_constant (TRAMP, 8)), \
		  GEN_INT (0x1fc67000)); \
  emit_insn (gen_flush_icache (validize_mem (gen_rtx (MEM, SImode, TRAMP)))); \
} while (0)

/* Library calls.  */

/* Generate calls to memcpy, memcmp and memset.  */
#define TARGET_MEM_FUNCTIONS

/* Addressing modes, and classification of registers for them.  */

/* Maximum number of registers that can appear in a valid memory address.  */
#define MAX_REGS_PER_ADDRESS 1

/* We have post-inc load and pre-dec,pre-inc store,
   but only for 4 byte vals.  */
#if 0
#define HAVE_PRE_DECREMENT 1
#define HAVE_PRE_INCREMENT 1
#define HAVE_POST_INCREMENT 1
#endif

/* Recognize any constant value that is a valid address.  */
#define CONSTANT_ADDRESS_P(X) \
(GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF	\
 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST)

/* Nonzero if the constant value X is a legitimate general operand.
   We don't allow (plus symbol large-constant) as the relocations can't
   describe it.  INTVAL > 32767 handles both 16 bit and 24 bit relocations.
   We allow all CONST_DOUBLE's as the md file patterns will force the
   constant to memory if they can't handle them.  */

#define LEGITIMATE_CONSTANT_P(X) \
(! (GET_CODE (X) == CONST \
    && GET_CODE (XEXP (X, 0)) == PLUS \
    && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
    && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
    && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (X, 0), 1)) > 32767))

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
   and check its validity for a certain class.
   We have two alternate definitions for each of them.
   The usual definition accepts all pseudo regs; the other rejects
   them unless they have been allocated suitable hard regs.
   The symbol REG_OK_STRICT causes the latter definition to be used.

   Most source files want to accept pseudo regs in the hope that
   they will get allocated to the class that the insn wants them to be in.
   Source files for reload pass need to be strict.
   After reload, it makes no difference, since pseudo regs have
   been eliminated by then.  */

#ifdef REG_OK_STRICT

/* Nonzero if X is a hard reg that can be used as a base reg.  */
#define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
/* Nonzero if X is a hard reg that can be used as an index.  */
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)

#else

/* Nonzero if X is a hard reg that can be used as a base reg
   or if it is a pseudo reg.  */
#define REG_OK_FOR_BASE_P(X) \
(GPR_P (REGNO (X))			\
 || (REGNO (X)) == ARG_POINTER_REGNUM	\
 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
/* Nonzero if X is a hard reg that can be used as an index
   or if it is a pseudo reg.  */
#define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)

#endif

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.  */

/* local to this file */
#define RTX_OK_FOR_BASE_P(X) \
(REG_P (X) && REG_OK_FOR_BASE_P (X))

/* local to this file */
#define RTX_OK_FOR_OFFSET_P(X) \
(GET_CODE (X) == CONST_INT && INT16_P (INTVAL (X)))

/* local to this file */
#define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X)				\
(GET_CODE (X) == PLUS							\
 && RTX_OK_FOR_BASE_P (XEXP (X, 0))					\
 && RTX_OK_FOR_OFFSET_P (XEXP (X, 1)))

/* local to this file */
/* For LO_SUM addresses, do not allow them if the MODE is > 1 word,
   since more than one instruction will be required.  */
#define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X)				\
(GET_CODE (X) == LO_SUM							\
 && (MODE != BLKmode && GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)		\
 && RTX_OK_FOR_BASE_P (XEXP (X, 0))					\
 && CONSTANT_P (XEXP (X, 1)))

/* local to this file */
/* Memory address that is a push/pop of the stack pointer.  */
#define PUSH_POP_P(MODE, X)						\
((MODE) == SImode							\
 && (GET_CODE (X) == POST_INC						\
     || GET_CODE (X) == PRE_INC						\
     || GET_CODE (X) == PRE_DEC))

#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
{ if (RTX_OK_FOR_BASE_P (X))						\
    goto ADDR;								\
  if (LEGITIMATE_OFFSET_ADDRESS_P ((MODE), (X)))			\
    goto ADDR;								\
  if (LEGITIMATE_LO_SUM_ADDRESS_P ((MODE), (X)))			\
    goto ADDR;								\
  if (PUSH_POP_P ((MODE), (X)))						\
    goto ADDR;								\
}

/* Try machine-dependent ways of modifying an illegitimate address
   to be legitimate.  If we find one, return the new, valid address.
   This macro is used in only one place: `memory_address' in explow.c.

   OLDX is the address as it was before break_out_memory_refs was called.
   In some cases it is useful to look at this to decide what needs to be done.

   MODE and WIN are passed so that this macro can use
   GO_IF_LEGITIMATE_ADDRESS.

   It is always safe for this macro to do nothing.  It exists to recognize
   opportunities to optimize the output.

   ??? Is there anything useful we can do here for the M32R?  */

#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN)

/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.  */
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)			\
do {									\
  if (GET_CODE (ADDR) == PRE_DEC					\
      || GET_CODE (ADDR) == PRE_INC					\
      || GET_CODE (ADDR) == POST_INC					\
      || GET_CODE (ADDR) == LO_SUM)					\
    goto LABEL;								\
} while (0)

/* Condition code usage.  */

/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
   return the mode to be used for the comparison.  */
#define SELECT_CC_MODE(OP, X, Y) \
((enum machine_mode)m32r_select_cc_mode ((int)OP, X, Y))

/* Return non-zero if SELECT_CC_MODE will never return MODE for a
   floating point inequality comparison.  */
#define REVERSIBLE_CC_MODE(MODE) 1 /*???*/

/* Costs.  */

/* ??? I'm quite sure I don't understand enough of the subtleties involved
   in choosing the right numbers to use here, but there doesn't seem to be
   enough documentation on this.  What I've done is define an insn to cost
   4 "units" and work from there.  COSTS_N_INSNS (N) is defined as (N) * 4 - 2
   so that seems reasonable.  Some values are supposed to be defined relative
   to each other and thus aren't necessarily related to COSTS_N_INSNS.  */

/* Compute the cost of computing a constant rtl expression RTX
   whose rtx-code is CODE.  The body of this macro is a portion
   of a switch statement.  If the code is computed here,
   return it with a return statement.  Otherwise, break from the switch.  */
/* Small integers are as cheap as registers.  4 byte values can be fetched
   as immediate constants - let's give that the cost of an extra insn.  */
#define CONST_COSTS(X, CODE, OUTER_CODE) \
  case CONST_INT :						\
    if (INT16_P (INTVAL (X)))					\
      return 0;							\
    /* fall through */						\
  case CONST :							\
  case LABEL_REF :						\
  case SYMBOL_REF :						\
    return 4;							\
  case CONST_DOUBLE :						\
    {								\
      rtx high, low;						\
      split_double (X, &high, &low);				\
      return 4 * (!INT16_P (INTVAL (high))			\
		  + !INT16_P (INTVAL (low)));			\
    }

/* Compute the cost of an address.  */
#define ADDRESS_COST(ADDR) m32r_address_cost (ADDR)

/* Compute extra cost of moving data between one register class
   and another.  */
#define REGISTER_MOVE_COST(CLASS1, CLASS2) 2

/* Compute the cost of moving data between registers and memory.  */
/* Memory is 3 times as expensive as registers.
   ??? Is that the right way to look at it?  */
#define MEMORY_MOVE_COST(MODE,CLASS,IN_P) \
(GET_MODE_SIZE (MODE) <= UNITS_PER_WORD ? 6 : 12)

/* The cost of a branch insn.  */
/* A value of 2 here causes GCC to avoid using branches in comparisons like
   while (a < N && a).  Branches aren't that expensive on the M32R so
   we define this as 1.  Defining it as 2 had a heavy hit in fp-bit.c.  */
#define BRANCH_COST 1

/* Provide the costs of a rtl expression.  This is in the body of a
   switch on CODE.  The purpose for the cost of MULT is to encourage
   `synth_mult' to find a synthetic multiply when reasonable.

   If we need more than 12 insns to do a multiply, then go out-of-line,
   since the call overhead will be < 10% of the cost of the multiply.  */
#define RTX_COSTS(X, CODE, OUTER_CODE) \
  case MULT :						\
    return COSTS_N_INSNS (3);				\
  case DIV :						\
  case UDIV :						\
  case MOD :						\
  case UMOD :						\
    return COSTS_N_INSNS (10);				\

/* Nonzero if access to memory by bytes is slow and undesirable.
   For RISC chips, it means that access to memory by bytes is no
   better than access by words when possible, so grab a whole word
   and maybe make use of that.  */
#define SLOW_BYTE_ACCESS 1

/* Define this macro if it is as good or better to call a constant
   function address than to call an address kept in a register.  */
#define NO_FUNCTION_CSE

/* Define this macro if it is as good or better for a function to call
   itself with an explicit address than to call an address kept in a
   register.  */
#define NO_RECURSIVE_FUNCTION_CSE

/* Enable the register move pass.
   This is useful for machines with only 2 address instructions.
   It's not currently enabled by default because on the stanford benchmarks
   the improvement wasn't significant and in a couple of cases caused a
   significant de-optimization.  */
/* #define ENABLE_REGMOVE_PASS */

/* A C statement (sans semicolon) to update the integer variable COST based on
   the relationship between INSN that is dependent on DEP_INSN through the
   dependence LINK.  The default is to make no adjustment to COST.  This can be
   used for example to specify to the scheduler that an output- or
   anti-dependence does not incur the same cost as a data-dependence.  */

/* #define ADJUST_COST(INSN,LINK,DEP_INSN,COST)				\
  (COST) = m32r_adjust_cost (INSN, LINK, DEP_INSN, COST) */

/* A C statement (sans semicolon) to update the integer scheduling
   priority `INSN_PRIORITY(INSN)'.  Reduce the priority to execute
   the INSN earlier, increase the priority to execute INSN later.
   Do not define this macro if you do not need to adjust the
   scheduling priorities of insns.  */
/* #define ADJUST_PRIORITY (INSN) */

/* Macro to determine whether the Haifa scheduler is used.  */
#ifdef HAIFA
#define HAIFA_P 1
#else
#define HAIFA_P 0
#endif

/* Indicate how many instructions can be issued at the same time.
   This is 1/2 of a lie.  The m32r can issue only 1 long insn at
   once, but 2.  However doing so allows the scheduler to group
   the two short insns together.  */
#define ISSUE_RATE 2

/* When the `length' insn attribute is used, this macro specifies the
   value to be assigned to the address of the first insn in a
   function.  If not specified, 0 is used.  */
#define FIRST_INSN_ADDRESS m32r_first_insn_address ()


/* Section selection.  */

#define TEXT_SECTION_ASM_OP	"\t.section .text"
#define DATA_SECTION_ASM_OP	"\t.section .data"
#define RODATA_SECTION_ASM_OP	"\t.section .rodata"
#define BSS_SECTION_ASM_OP	"\t.section .bss"
#define SDATA_SECTION_ASM_OP	"\t.section .sdata"
#define SBSS_SECTION_ASM_OP	"\t.section .sbss"
/* This one is for svr4.h.  */
#undef CONST_SECTION_ASM_OP
#define CONST_SECTION_ASM_OP	"\t.section .rodata"

/* A list of names for sections other than the standard two, which are
   `in_text' and `in_data'.  You need not define this macro
   on a system with no other sections (that GCC needs to use).  */
#undef EXTRA_SECTIONS
#define EXTRA_SECTIONS in_sdata, in_sbss, in_const, in_ctors, in_dtors

/* One or more functions to be defined in "varasm.c".  These
   functions should do jobs analogous to those of `text_section' and
   `data_section', for your additional sections.  Do not define this
   macro if you do not define `EXTRA_SECTIONS'.  */
#undef EXTRA_SECTION_FUNCTIONS
#define EXTRA_SECTION_FUNCTIONS \
CONST_SECTION_FUNCTION \
CTORS_SECTION_FUNCTION \
DTORS_SECTION_FUNCTION \
SDATA_SECTION_FUNCTION \
SBSS_SECTION_FUNCTION

#define SDATA_SECTION_FUNCTION						\
void									\
sdata_section ()							\
{									\
  if (in_section != in_sdata)						\
    {									\
      fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP);		\
      in_section = in_sdata;						\
    }									\
}									\

#define SBSS_SECTION_FUNCTION						\
void									\
sbss_section ()								\
{									\
  if (in_section != in_sbss)						\
    {									\
      fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP);		\
      in_section = in_sbss;						\
    }									\
}									\

/* A C statement or statements to switch to the appropriate section for
   output of EXP.  You can assume that EXP is either a `VAR_DECL' node
   or a constant of some sort.  RELOC indicates whether the initial value
   of EXP requires link-time relocations.  */
extern void m32r_select_section ();
#undef SELECT_SECTION
#define SELECT_SECTION(EXP, RELOC) m32r_select_section ((EXP), (RELOC))

/* A C statement or statements to switch to the appropriate section for
   output of RTX in mode MODE.  You can assume that RTX
   is some kind of constant in RTL.  The argument MODE is redundant
   except in the case of a `const_int' rtx.  Select the section by
   calling `text_section' or one of the alternatives for other
   sections.

   Do not define this macro if you put all constants in the read-only
   data section.  */

#undef SELECT_RTX_SECTION

/* Define this macro if jump tables (for tablejump insns) should be
   output in the text section, along with the assembler instructions.
   Otherwise, the readonly data section is used.
   This macro is irrelevant if there is no separate readonly data section.  */
/*#define JUMP_TABLES_IN_TEXT_SECTION*/

/* Define this macro if references to a symbol must be treated
   differently depending on something about the variable or
   function named by the symbol (such as what section it is in).

   The macro definition, if any, is executed immediately after the
   rtl for DECL or other node is created.
   The value of the rtl will be a `mem' whose address is a
   `symbol_ref'.

   The usual thing for this macro to do is to store a flag in the
   `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
   name string in the `symbol_ref' (if one bit is not enough
   information).  */

#define SDATA_FLAG_CHAR '@'
/* Small objects are recorded with no prefix for space efficiency since
   they'll be the most common.  This isn't the case if the user passes
   -mmodel={medium|large} and one could choose to not mark symbols that
   are the default, but that complicates things.  */
/*#define SMALL_FLAG_CHAR '#'*/
#define MEDIUM_FLAG_CHAR '%'
#define LARGE_FLAG_CHAR '&'

#define SDATA_NAME_P(NAME) (*(NAME) == SDATA_FLAG_CHAR)
/*#define SMALL_NAME_P(NAME) (*(NAME) == SMALL_FLAG_CHAR)*/
#define SMALL_NAME_P(NAME) (! ENCODED_NAME_P (NAME) && ! LIT_NAME_P (NAME))
#define MEDIUM_NAME_P(NAME) (*(NAME) == MEDIUM_FLAG_CHAR)
#define LARGE_NAME_P(NAME) (*(NAME) == LARGE_FLAG_CHAR)
/* For string literals, etc.  */
#define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')

#define ENCODED_NAME_P(SYMBOL_NAME) \
(SDATA_NAME_P (SYMBOL_NAME) \
 /*|| SMALL_NAME_P (SYMBOL_NAME)*/ \
 || MEDIUM_NAME_P (SYMBOL_NAME) \
 || LARGE_NAME_P (SYMBOL_NAME))

#define ENCODE_SECTION_INFO(DECL) m32r_encode_section_info (DECL)

/* Decode SYM_NAME and store the real name part in VAR, sans
   the characters that encode section info.  Define this macro if
   ENCODE_SECTION_INFO alters the symbol's name string.  */
/* Note that we have to handle symbols like "%*start".  */
#define STRIP_NAME_ENCODING(VAR, SYMBOL_NAME) \
do {							\
  (VAR) = (SYMBOL_NAME) + ENCODED_NAME_P (SYMBOL_NAME);	\
  (VAR) += *(VAR) == '*';				\
} while (0)

/* PIC */

/* The register number of the register used to address a table of static
   data addresses in memory.  In some cases this register is defined by a
   processor's ``application binary interface'' (ABI).  When this macro
   is defined, RTL is generated for this register once, as with the stack
   pointer and frame pointer registers.  If this macro is not defined, it
   is up to the machine-dependent files to allocate such a register (if
   necessary).  */
/*#define PIC_OFFSET_TABLE_REGNUM 12*/

/* Define this macro if the register defined by PIC_OFFSET_TABLE_REGNUM is
   clobbered by calls.  Do not define this macro if PIC_OFFSET_TABLE_REGNUM
   is not defined.  */
/* This register is call-saved on the M32R.  */
/*#define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED*/

/* By generating position-independent code, when two different programs (A
   and B) share a common library (libC.a), the text of the library can be
   shared whether or not the library is linked at the same address for both
   programs.  In some of these environments, position-independent code
   requires not only the use of different addressing modes, but also
   special code to enable the use of these addressing modes.

   The FINALIZE_PIC macro serves as a hook to emit these special
   codes once the function is being compiled into assembly code, but not
   before.  (It is not done before, because in the case of compiling an
   inline function, it would lead to multiple PIC prologues being
   included in functions which used inline functions and were compiled to
   assembly language.)  */

/*#define FINALIZE_PIC m32r_finalize_pic ()*/

/* A C expression that is nonzero if X is a legitimate immediate
   operand on the target machine when generating position independent code.
   You can assume that X satisfies CONSTANT_P, so you need not
   check this.  You can also assume `flag_pic' is true, so you need not
   check it either.  You need not define this macro if all constants
   (including SYMBOL_REF) can be immediate operands when generating
   position independent code.  */
/*#define LEGITIMATE_PIC_OPERAND_P(X)*/

/* Control the assembler format that we output.  */

/* Output at beginning of assembler file.  */
#define ASM_FILE_START(FILE) m32r_asm_file_start (FILE)

/* A C string constant describing how to begin a comment in the target
   assembler language.  The compiler assumes that the comment will
   end at the end of the line.  */
#define ASM_COMMENT_START ";"

/* Output to assembler file text saying following lines
   may contain character constants, extra white space, comments, etc.  */
#define ASM_APP_ON ""

/* Output to assembler file text saying following lines
   no longer contain unusual constructs.  */
#define ASM_APP_OFF ""

/* This is how to output an assembler line defining a `char' constant.  */
#define ASM_OUTPUT_CHAR(FILE, VALUE) \
do {						\
  fprintf (FILE, "\t.byte\t");			\
  output_addr_const (FILE, (VALUE));		\
  fprintf (FILE, "\n");				\
} while (0)

/* This is how to output an assembler line defining a `short' constant.  */
#define ASM_OUTPUT_SHORT(FILE, VALUE) \
do {						\
  fprintf (FILE, "\t.hword\t");			\
  output_addr_const (FILE, (VALUE));		\
  fprintf (FILE, "\n");				\
} while (0)

/* This is how to output an assembler line defining an `int' constant.
   We also handle symbol output here.  */
#define ASM_OUTPUT_INT(FILE, VALUE) \
do {							\
  fprintf (FILE, "\t.word\t");				\
  output_addr_const (FILE, (VALUE));			\
  fprintf (FILE, "\n");					\
} while (0)

/* This is how to output an assembler line defining a `float' constant.  */
#define ASM_OUTPUT_FLOAT(FILE, VALUE) \
do {							\
  long t;						\
  char str[30];						\
  REAL_VALUE_TO_TARGET_SINGLE ((VALUE), t);		\
  REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
  fprintf (FILE, "\t.word\t0x%lx %s %s\n",		\
	   t, ASM_COMMENT_START, str);			\
} while (0)

/* This is how to output an assembler line defining a `double' constant.  */
#define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
do {							\
  long t[2];						\
  char str[30];						\
  REAL_VALUE_TO_TARGET_DOUBLE ((VALUE), t);		\
  REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", str);	\
  fprintf (FILE, "\t.word\t0x%lx %s %s\n\t.word\t0x%lx\n", \
	   t[0], ASM_COMMENT_START, str, t[1]);		\
} while (0)

/* This is how to output an assembler line for a numeric constant byte.  */
#define ASM_OUTPUT_BYTE(FILE, VALUE)  \
  fprintf (FILE, "\t%s\t0x%x\n", ASM_BYTE_OP, (VALUE))

/* The assembler's parentheses characters.  */
#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

/* This is how to output the definition of a user-level label named NAME,
   such as the label on a static function or variable NAME.  */
/* On the M32R we need to ensure the next instruction starts on a 32 bit
   boundary [the previous insn must either be 2 16 bit insns or 1 32 bit].  */
#define ASM_OUTPUT_LABEL(FILE, NAME) \
do {					\
  assemble_name (FILE, NAME);		\
  fputs (":\n", FILE);			\
} while (0)

/* This is how to output a command to make the user-level label named NAME
   defined for reference from other files.  */
#define ASM_GLOBALIZE_LABEL(FILE, NAME) \
do {				\
  fputs ("\t.global\t", FILE);	\
  assemble_name (FILE, NAME);	\
  fputs ("\n", FILE);		\
} while (0)

/* This is how to output a reference to a user-level label named NAME.
   `assemble_name' uses this.  */
#undef ASM_OUTPUT_LABELREF
#define ASM_OUTPUT_LABELREF(FILE, NAME) \
do {							\
  char * real_name;					\
  STRIP_NAME_ENCODING (real_name, (NAME));		\
  asm_fprintf (FILE, "%U%s", real_name);		\
} while (0)           

/* If -Os, don't force line number labels to begin at the beginning of
   the word; we still want the assembler to try to put things in parallel,
   should that be possible.
   For m32r/d, instructions are never in parallel (other than with a nop)
   and the simulator and stub both handle a breakpoint in the middle of
   a word so don't ever force line number labels to begin at the beginning
   of a word.  */

#undef	ASM_OUTPUT_SOURCE_LINE
#define ASM_OUTPUT_SOURCE_LINE(file, line)				\
do									\
  {									\
    static int sym_lineno = 1;						\
    fprintf (file, ".stabn 68,0,%d,.LM%d-",				\
	     line, sym_lineno);						\
    assemble_name (file,						\
		   XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));\
    fprintf (file,							\
	     (optimize_size || TARGET_M32R)				\
	     ? "\n\t.debugsym .LM%d\n"					\
	     : "\n.LM%d:\n",						\
	     sym_lineno);						\
    sym_lineno += 1;							\
  }									\
while (0)

/* Store in OUTPUT a string (made with alloca) containing
   an assembler-name for a local static variable named NAME.
   LABELNO is an integer which is different for each call.  */
#define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
do {							\
  (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10);	\
  sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO));	\
} while (0)

/* How to refer to registers in assembler output.
   This sequence is indexed by compiler's hard-register-number (see above).  */
#define REGISTER_NAMES \
{							\
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",	\
  "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",	\
  "ap", "cbit"						\
}

/* If defined, a C initializer for an array of structures containing
   a name and a register number.  This macro defines additional names
   for hard registers, thus allowing the `asm' option in declarations
   to refer to registers using alternate names.  */
#define ADDITIONAL_REGISTER_NAMES \
{					\
  /*{ "gp", GP_REGNUM },*/		\
  { "r13", FRAME_POINTER_REGNUM },	\
  { "r14", RETURN_ADDR_REGNUM },	\
  { "r15", STACK_POINTER_REGNUM },	\
}

/* A C expression which evaluates to true if CODE is a valid
   punctuation character for use in the `PRINT_OPERAND' macro.  */
extern char m32r_punct_chars[];
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
m32r_punct_chars[(unsigned char) (CHAR)]

/* Print operand X (an rtx) in assembler syntax to file FILE.
   CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
   For `%' followed by punctuation, CODE is the punctuation and X is null.  */
#define PRINT_OPERAND(FILE, X, CODE) \
m32r_print_operand (FILE, X, CODE)

/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand that is a memory
   reference whose address is ADDR.  ADDR is an RTL expression.

   On some machines, the syntax for a symbolic address depends on
   the section that the address refers to.  On these machines,
   define the macro `ENCODE_SECTION_INFO' to store the information
   into the `symbol_ref', and then check for it here.  */
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
m32r_print_operand_address (FILE, ADDR)

/* If defined, C string expressions to be used for the `%R', `%L',
   `%U', and `%I' options of `asm_fprintf' (see `final.c').  These
   are useful when a single `md' file must support multiple assembler
   formats.  In that case, the various `tm.h' files can define these
   macros differently.  */
#define REGISTER_PREFIX ""
#define LOCAL_LABEL_PREFIX ".L"
#define USER_LABEL_PREFIX ""
#define IMMEDIATE_PREFIX "#"

/* This is how to output an element of a case-vector that is absolute.  */
#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE)  \
do {							\
  char label[30];					\
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);	\
  fprintf (FILE, "\t.word\t");				\
  assemble_name (FILE, label);				\
  fprintf (FILE, "\n");					\
} while (0)

/* This is how to output an element of a case-vector that is relative.  */
#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
do {							\
  char label[30];					\
  ASM_GENERATE_INTERNAL_LABEL (label, "L", VALUE);	\
  fprintf (FILE, "\t.word\t");				\
  assemble_name (FILE, label);				\
  fprintf (FILE, "-");					\
  ASM_GENERATE_INTERNAL_LABEL (label, "L", REL);	\
  assemble_name (FILE, label);				\
  fprintf (FILE, ")\n");				\
} while (0)

/* The desired alignment for the location counter at the beginning
   of a loop.  */
/* On the M32R, align loops to 32 byte boundaries (cache line size)
   if -malign-loops.  */
#define LOOP_ALIGN(LABEL) (TARGET_ALIGN_LOOPS ? 5 : 0)

/* This is how to output an assembler line
   that says to advance the location counter
   to a multiple of 2**LOG bytes.  */
/* .balign is used to avoid confusion.  */
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
do { if ((LOG) != 0) fprintf (FILE, "\t.balign %d\n", 1 << (LOG)); } while (0)

/* Like `ASM_OUTPUT_COMMON' except takes the required alignment as a
   separate, explicit argument.  If you define this macro, it is used in
   place of `ASM_OUTPUT_COMMON', and gives you more flexibility in
   handling the required alignment of the variable.  The alignment is
   specified as the number of bits.  */

#define SCOMMON_ASM_OP ".scomm"

#undef ASM_OUTPUT_ALIGNED_COMMON
#define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
do {									\
  if (! TARGET_SDATA_NONE						\
      && (SIZE) > 0 && (SIZE) <= g_switch_value)			\
    fprintf ((FILE), "\t%s\t", SCOMMON_ASM_OP);				\
  else									\
    fprintf ((FILE), "\t%s\t", COMMON_ASM_OP);				\
  assemble_name ((FILE), (NAME));					\
  fprintf ((FILE), ",%u,%u\n", (SIZE), (ALIGN) / BITS_PER_UNIT);	\
} while (0)

#if 0 /* not needed, delete later */
/* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a
   separate, explicit argument.  If you define this macro, it is used in
   place of `ASM_OUTPUT_LOCAL', and gives you more flexibility in
   handling the required alignment of the variable.  The alignment is
   specified as the number of bits.  */

#undef ASM_OUTPUT_ALIGNED_LOCAL
#define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
do {									\
  if ((SIZE) > 0 && (SIZE) <= g_switch_value)				\
    {									\
      sbss_section ();							\
      ASM_OUTPUT_ALIGN (FILE, exact_log2 (ALIGN / BITS_PER_UNIT));	\
      ASM_OUTPUT_LABEL (FILE, NAME);					\
      ASM_OUTPUT_SKIP (FILE, SIZE);					\
      if (!flag_inhibit_size_directive)					\
	{								\
	  fprintf (FILE, "\t%s\t ", SIZE_ASM_OP);			\
	  assemble_name (FILE, NAME);					\
	  fprintf (FILE, ",%d\n",  SIZE);				\
	}								\
    }									\
  else									\
    {									\
      /* This is copied from svr4.h.  */				\
      fprintf ((FILE), "\t%s\t", LOCAL_ASM_OP);				\
      assemble_name ((FILE), (NAME));					\
      fprintf ((FILE), "\n");						\
      ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN);		\
    }									\
} while (0)
#endif

/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
   separate, explicit argument.  If you define this macro, it is used in
   place of `ASM_OUTPUT_BSS', and gives you more flexibility in
   handling the required alignment of the variable.  The alignment is
   specified as the number of bits.

   For the M32R we need sbss support.  */

#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
do {									\
  ASM_GLOBALIZE_LABEL (FILE, NAME);					\
  ASM_OUTPUT_ALIGNED_COMMON (FILE, NAME, SIZE, ALIGN);			\
} while (0)

/* Debugging information.  */

/* Generate DBX and DWARF debugging information.  */
#define DBX_DEBUGGING_INFO
#define DWARF_DEBUGGING_INFO

/* Prefer STABS (for now).  */
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG

/* How to renumber registers for dbx and gdb.  */
#define DBX_REGISTER_NUMBER(REGNO) (REGNO)

/* Turn off splitting of long stabs.  */
#define DBX_CONTIN_LENGTH 0

/* Miscellaneous.  */

/* Specify the machine mode that this machine uses
   for the index in the tablejump instruction.  */
#define CASE_VECTOR_MODE Pmode

/* Define as C expression which evaluates to nonzero if the tablejump
   instruction expects the table to contain offsets from the address of the
   table.
   Do not define this if the table should contain absolute addresses. */
/* It's not clear what PIC will look like or whether we want to use -fpic
   for the embedded form currently being talked about.  For now require -fpic
   to get pc relative switch tables.  */
/*#define CASE_VECTOR_PC_RELATIVE 1 */

/* Define if operations between registers always perform the operation
   on the full register even if a narrower mode is specified.  */
#define WORD_REGISTER_OPERATIONS

/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
   will either zero-extend or sign-extend.  The value of this macro should
   be the code that says which one of the two operations is implicitly
   done, NIL if none.  */
#define LOAD_EXTEND_OP(MODE) ZERO_EXTEND

/* Specify the tree operation to be used to convert reals to integers.  */
#define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR

/* This is the kind of divide that is easiest to do in the general case.  */
#define EASY_DIV_EXPR TRUNC_DIV_EXPR

/* Max number of bytes we can move from memory to memory
   in one reasonably fast instruction.  */
#define MOVE_MAX 4

/* Define this to be nonzero if shift instructions ignore all but the low-order
   few bits.  */
#define SHIFT_COUNT_TRUNCATED 1

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1

/* We assume that the store-condition-codes instructions store 0 for false
   and some other value for true.  This is the value stored for true.  */
#define STORE_FLAG_VALUE 1

/* Specify the machine mode that pointers have.
   After generation of rtl, the compiler makes no further distinction
   between pointers and any other objects of this machine mode.  */
/* ??? The M32R doesn't have full 32 bit pointers, but making this PSImode has
   its own problems (you have to add extendpsisi2 and truncsipsi2).
   Try to avoid it.  */
#define Pmode SImode

/* A function address in a call instruction.  */
#define FUNCTION_MODE SImode

/* A C expression whose value is nonzero if IDENTIFIER with arguments ARGS
   is a valid machine specific attribute for DECL.
   The attributes in ATTRIBUTES have previously been assigned to TYPE.  */
#define VALID_MACHINE_DECL_ATTRIBUTE(DECL, ATTRIBUTES, IDENTIFIER, ARGS) \
m32r_valid_machine_decl_attribute (DECL, ATTRIBUTES, IDENTIFIER, ARGS)

/* A C expression that returns zero if the attributes on TYPE1 and TYPE2 are
   incompatible, one if they are compatible, and two if they are
   nearly compatible (which causes a warning to be generated).  */
#define COMP_TYPE_ATTRIBUTES(TYPE1, TYPE2) \
m32r_comp_type_attributes (TYPE1, TYPE2)

/* Give newly defined TYPE some default attributes.  */
#define SET_DEFAULT_TYPE_ATTRIBUTES(TYPE) \
m32r_set_default_type_attributes (TYPE)

/* Define the information needed to generate branch and scc insns.  This is
   stored from the compare operation.  Note that we can't use "rtx" here
   since it hasn't been defined!  */
extern struct rtx_def * m32r_compare_op0;
extern struct rtx_def * m32r_compare_op1;

/* M32R function types.   */
enum m32r_function_type
{
  M32R_FUNCTION_UNKNOWN, M32R_FUNCTION_NORMAL, M32R_FUNCTION_INTERRUPT
};
#define M32R_INTERRUPT_P(TYPE) \
((TYPE) == M32R_FUNCTION_INTERRUPT)

/* Define this if you have defined special-purpose predicates in the
   file `MACHINE.c'.  This macro is called within an initializer of an
   array of structures.  The first field in the structure is the name
   of a predicate and the second field is an array of rtl codes.  For
   each predicate, list all rtl codes that can be in expressions
   matched by the predicate.  The list should have a trailing comma.  */

#define PREDICATE_CODES							\
{ "conditional_move_operand",	{ REG, SUBREG, CONST_INT }},		\
{ "carry_compare_operand",	{ EQ, NE }},				\
{ "eqne_comparison_operator",	{ EQ, NE }},				\
{ "signed_comparison_operator", { EQ, NE, LT, LE, GT, GE }},		\
{ "move_dest_operand",		{ REG, SUBREG, MEM }},			\
{ "move_src_operand",		{ REG, SUBREG, MEM, CONST_INT,		\
				  CONST_DOUBLE, LABEL_REF, CONST,	\
				  SYMBOL_REF }},			\
{ "move_double_src_operand",	{ REG, SUBREG, MEM, CONST_INT,		\
				  CONST_DOUBLE }},			\
{ "two_insn_const_operand",	{ CONST_INT }},				\
{ "symbolic_operand",		{ SYMBOL_REF, LABEL_REF, CONST }},	\
{ "reg_or_int16_operand",	{ REG, SUBREG, CONST_INT }},		\
{ "reg_or_uint16_operand",	{ REG, SUBREG, CONST_INT }},		\
{ "reg_or_cmp_int16_operand",	{ REG, SUBREG, CONST_INT }},		\
{ "reg_or_zero_operand",	{ REG, SUBREG, CONST_INT }},		\
{ "cmp_int16_operand",		{ CONST_INT }},				\
{ "call_address_operand",	{ SYMBOL_REF, LABEL_REF, CONST }},	\
{ "small_insn_p",		{ INSN, CALL_INSN, JUMP_INSN }},	\
{ "m32r_block_immediate_operand",{ CONST_INT }},			\
{ "large_insn_p",		{ INSN, CALL_INSN, JUMP_INSN }},

/* Functions declared in m32r.c */
#ifndef PROTO
#if defined (USE_PROTOTYPES) ? USE_PROTOTYPES : defined (__STDC__)
#define PROTO(ARGS) ARGS
#else
#define PROTO(ARGS) ()
#endif
#endif

#ifdef BUFSIZ		/* stdio.h has been included, ok to use FILE * */
#define STDIO_PROTO(ARGS) PROTO(ARGS)
#else
#define STDIO_PROTO(ARGS) ()
#endif

#ifndef TREE_CODE
union tree_node;
#define Tree union tree_node *
#else
#define Tree tree
#endif

#ifndef RTX_CODE
struct rtx_def;
#define Rtx struct rtx_def *
#else
#define Rtx rtx
#endif

extern void sbss_section			PROTO((void));
extern void sdata_section			PROTO((void));
extern void m32r_init				PROTO((void));
extern int  m32r_valid_machine_decl_attribute	PROTO((Tree, Tree, Tree, Tree));
extern int  m32r_comp_type_attributes		PROTO((Tree, Tree));
extern void m32r_select_section			PROTO((Tree, int));
extern void m32r_encode_section_info		PROTO((Tree));
extern void m32r_init_expanders			PROTO((void));
extern int  call_address_operand		PROTO((Rtx, int));
extern int  call_operand			PROTO((Rtx, int));
extern int  symbolic_operand			PROTO((Rtx, int));
extern int  small_data_operand			PROTO((Rtx, int));
extern int  addr24_operand			PROTO((Rtx, int));
extern int  addr32_operand			PROTO((Rtx, int));
extern int  call26_operand			PROTO((Rtx, int));
extern int  seth_add3_operand			PROTO((Rtx, int));
extern int  cmp_int16_operand			PROTO((Rtx, int));
extern int  uint16_operand			PROTO((Rtx, int));
extern int  reg_or_int16_operand		PROTO((Rtx, int));
extern int  reg_or_uint16_operand		PROTO((Rtx, int));
extern int  reg_or_cmp_nt16_operand		PROTO((Rtx, int));
extern int  two_insn_const_operand		PROTO((Rtx, int));
extern int  move_src_operand			PROTO((Rtx, int));
extern int  move_double_src_operand		PROTO((Rtx, int));
extern int  move_dest_operand			PROTO((Rtx, int));
extern int  easy_di_const			PROTO((Rtx));
extern int  easy_df_const			PROTO((Rtx));
extern int  eqne_comparison_operator		PROTO((Rtx, int));
extern int  signed_comparison_operator		PROTO((Rtx, int));
extern int  memreg_operand			PROTO((Rtx, int));
extern int  small_insn_p			PROTO((Rtx, int));
extern int  large_insn_p			PROTO((Rtx, int));
extern int  m32r_select_cc_mode			PROTO((int, Rtx, Rtx));
extern Rtx  gen_compare				PROTO((int, Rtx, Rtx, int));
extern Rtx  gen_split_move_double		PROTO((Rtx *));
extern int  function_arg_partial_nregs		PROTO((CUMULATIVE_ARGS *,
						       int, Tree, int));
extern void m32r_setup_incoming_varargs		PROTO((CUMULATIVE_ARGS *,
						       int, Tree, int *,
						       int));
extern int  m32r_address_code			PROTO((Rtx));
extern enum m32r_function_type m32r_compute_function_type
						PROTO((Tree));
extern unsigned m32r_compute_frame_size		PROTO((int));
extern int  m32r_first_insn_address		PROTO((void));
extern void m32r_expand_prologue		PROTO((void));
extern void m32r_output_function_prologue	STDIO_PROTO((FILE *, int));
extern void m32r_output_function_epilogue	STDIO_PROTO((FILE *, int));
extern void m32r_finalize_pic			PROTO((void));
extern void m32r_initialize_trampoline		PROTO((Rtx, Rtx, Rtx));
extern void m32r_asm_file_start			STDIO_PROTO((FILE *));
extern void m32r_print_operand			STDIO_PROTO((FILE *, Rtx, int));
extern void m32r_print_operand_address		STDIO_PROTO((FILE *, Rtx));
extern int  zero_and_one			PROTO((Rtx, Rtx));
extern int  conditional_move_operand		PROTO((Rtx, int));
extern int  carry_compare_operand		PROTO((Rtx, int));
extern char *emit_cond_move			PROTO((Rtx *, Rtx));

extern char * m32r_output_block_move PROTO((Rtx, Rtx *));
extern int    m32r_block_immediate_operand PROTO((Rtx, int));
extern void   m32r_expand_block_move PROTO((Rtx *));