aboutsummaryrefslogtreecommitdiff
path: root/gcc/testsuite/gcc.dg/tree-ssa-chrec/ssa-chrec-44.c
blob: 1a3099a90a601ccb5784d12293e90fceb54456f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/* { dg-do compile } */ 
/* { dg-options "-O1 -fscalar-evolutions -fdump-tree-scev-details" } */

/* That's a reduced testcase of one of my favourite simulation programs.
   This is also known under the name: "Newton's falling apple".
   The general version is known under the name: "the N-body simulation problem".  
   
   The physics terminology is the best to describe the scalar evolution algorithm:
   - first determine the initial conditions of the system,
   - then analyze its evolution.
*/

double Newton_s_apple ()
{
  /* Initial conditions.  */
  double g = -10.0;
  double speed_z = 0;
  double altitude = 3000;
  double delta_t = 0.1;
  double total_time = 0;
  
  /* Laws of evolution.  */
  while (altitude > 0.0)
    {
      speed_z += g * delta_t;
      altitude += speed_z * delta_t;
      total_time += delta_t;
    }
  
  return total_time;
}

/*
  speed_z  ->  {0.0, +, -1.0e+0}_1
  altitude  ->  {3.0e+3, +, {(0.0 + -1.0e+0) * 1.00000000000000005551115123125782702118158340454e-1, +, -1.0e+0 * 1.00000000000000005551115123125782702118158340454e-1}_1}_1
*/

/* FIXME. */