aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-dce.c
blob: effc148a844fb33e5d5d37934b9cbdbf8d954bab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
/* Dead code elimination pass for the GNU compiler.
   Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
   Contributed by Ben Elliston <bje@redhat.com>
   and Andrew MacLeod <amacleod@redhat.com>
   Adapted to use control dependence by Steven Bosscher, SUSE Labs.
 
This file is part of GCC.
   
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
   
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
   
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* Dead code elimination.

   References:

     Building an Optimizing Compiler,
     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.

     Advanced Compiler Design and Implementation,
     Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.

   Dead-code elimination is the removal of statements which have no
   impact on the program's output.  "Dead statements" have no impact
   on the program's output, while "necessary statements" may have
   impact on the output.

   The algorithm consists of three phases:
   1. Marking as necessary all statements known to be necessary,
      e.g. most function calls, writing a value to memory, etc;
   2. Propagating necessary statements, e.g., the statements
      giving values to operands in necessary statements; and
   3. Removing dead statements.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"

/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "basic-block.h"

#include "tree.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-simple.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "timevar.h"
#include "flags.h"

static struct stmt_stats
{
  int total;
  int total_phis;
  int removed;
  int removed_phis;
} stats;

static varray_type worklist;

/* Vector indicating an SSA name has already been processed and marked
   as necessary.  */
static sbitmap processed;

/* Vector indicating that last_stmt if a basic block has already been
   marked as necessary.  */
static sbitmap last_stmt_necessary;

/* Before we can determine whether a control branch is dead, we need to
   compute which blocks are control dependent on which edges.

   We expect each block to be control dependent on very few edges so we
   use a bitmap for each block recording its edges.  An array holds the
   bitmap.  The Ith bit in the bitmap is set if that block is dependent
   on the Ith edge.  */
bitmap *control_dependence_map;

/* Execute CODE for each edge (given number EDGE_NUMBER within the CODE)
   for which the block with index N is control dependent.  */
#define EXECUTE_IF_CONTROL_DEPENDENT(N, EDGE_NUMBER, CODE)		      \
  EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[N], 0, EDGE_NUMBER, CODE)

/* Local function prototypes.  */
static inline void set_control_dependence_map_bit (basic_block, int);
static inline void clear_control_dependence_bitmap (basic_block);
static void find_all_control_dependences (struct edge_list *);
static void find_control_dependence (struct edge_list *, int);
static inline basic_block find_pdom (basic_block);

static inline void mark_stmt_necessary (tree, bool);
static inline void mark_operand_necessary (tree);

static bool need_to_preserve_store (tree);
static void mark_stmt_if_obviously_necessary (tree, bool);
static void find_obviously_necessary_stmts (bool);

static void mark_control_dependent_edges_necessary (basic_block, struct edge_list *);
static void propagate_necessity (struct edge_list *);

static void eliminate_unnecessary_stmts (void);
static void remove_dead_phis (basic_block);
static void remove_dead_stmt (block_stmt_iterator *, basic_block);

static void print_stats (void);
static void tree_dce_init (bool);
static void tree_dce_done (bool);

/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
static inline void
set_control_dependence_map_bit (basic_block bb, int edge_index)
{
  if (bb == ENTRY_BLOCK_PTR)
    return;
  if (bb == EXIT_BLOCK_PTR)
    abort ();
  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
}

/* Clear all control dependences for block BB.  */
static inline
void clear_control_dependence_bitmap (basic_block bb)
{
  bitmap_clear (control_dependence_map[bb->index]);
}

/* Record all blocks' control dependences on all edges in the edge
   list EL, ala Morgan, Section 3.6.  */

static void
find_all_control_dependences (struct edge_list *el)
{
  int i;

  for (i = 0; i < NUM_EDGES (el); ++i)
    find_control_dependence (el, i);
}

/* Determine all blocks' control dependences on the given edge with edge_list
   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */

static void
find_control_dependence (struct edge_list *el, int edge_index)
{
  basic_block current_block;
  basic_block ending_block;

#ifdef ENABLE_CHECKING
  if (INDEX_EDGE_PRED_BB (el, edge_index) == EXIT_BLOCK_PTR)
    abort ();
#endif

  if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
    ending_block = ENTRY_BLOCK_PTR->next_bb;
  else
    ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));

  for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
       current_block != ending_block && current_block != EXIT_BLOCK_PTR;
       current_block = find_pdom (current_block))
    {
      edge e = INDEX_EDGE (el, edge_index);

      /* For abnormal edges, we don't make current_block control
	 dependent because instructions that throw are always necessary
	 anyway.  */
      if (e->flags & EDGE_ABNORMAL)
	continue;

      set_control_dependence_map_bit (current_block, edge_index);
    }
}

/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
   This function is necessary because some blocks have negative numbers.  */

static inline basic_block
find_pdom (basic_block block)
{
  if (block == ENTRY_BLOCK_PTR)
    abort ();
  else if (block == EXIT_BLOCK_PTR)
    return EXIT_BLOCK_PTR;
  else
    {
      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
      if (! bb)
	return EXIT_BLOCK_PTR;
      return bb;
    }
}

#define NECESSARY(stmt)		stmt->common.asm_written_flag

/* If STMT is not already marked necessary, mark it, and add it to the
   worklist if ADD_TO_WORKLIST is true.  */
static inline void
mark_stmt_necessary (tree stmt, bool add_to_worklist)
{
#ifdef ENABLE_CHECKING
  if (stmt == NULL
      || stmt == error_mark_node
      || (stmt && DECL_P (stmt)))
    abort ();
#endif

  if (NECESSARY (stmt))
    return;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Marking useful stmt: ");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  NECESSARY (stmt) = 1;
  if (add_to_worklist)
    VARRAY_PUSH_TREE (worklist, stmt);
}

/* Mark the statement defining operand OP as necessary.  */

static inline void
mark_operand_necessary (tree op)
{
  tree stmt;
  int ver;

#ifdef ENABLE_CHECKING
  if (op == NULL)
    abort ();
#endif

  ver = SSA_NAME_VERSION (op);
  if (TEST_BIT (processed, ver))
    return;
  SET_BIT (processed, ver);

  stmt = SSA_NAME_DEF_STMT (op);
#ifdef ENABLE_CHECKING
  if (stmt == NULL)
    abort ();
#endif

  if (NECESSARY (stmt)
      || IS_EMPTY_STMT (stmt))
    return;

  NECESSARY (stmt) = 1;
  VARRAY_PUSH_TREE (worklist, stmt);
}

/* Return true if a store to a variable needs to be preserved.  */

static inline bool
need_to_preserve_store (tree ssa_name)
{
  return (needs_to_live_in_memory (SSA_NAME_VAR (ssa_name)));
}


/* Mark STMT as necessary if it is obviously is.  Add it to the worklist if
   it can make other statements necessary.

   If AGGRESSIVE is false, control statements are conservatively marked as
   necessary.  */

static void
mark_stmt_if_obviously_necessary (tree stmt, bool aggressive)
{
  def_optype defs;
  vdef_optype vdefs;
  stmt_ann_t ann;
  size_t i;

  /* Statements that are implicitly live.  Most function calls, asm and return
     statements are required.  Labels and BIND_EXPR nodes are kept because
     they are control flow, and we have no way of knowing whether they can be
     removed.  DCE can eliminate all the other statements in a block, and CFG
     can then remove the block and labels.  */
  switch (TREE_CODE (stmt))
    {
    case BIND_EXPR:
    case LABEL_EXPR:
    case CASE_LABEL_EXPR:
      mark_stmt_necessary (stmt, false);
      return;

    case ASM_EXPR:
    case RESX_EXPR:
    case RETURN_EXPR:
      mark_stmt_necessary (stmt, true);
      return;

    case CALL_EXPR:
      /* Most, but not all function calls are required.  Function calls that
	 produce no result and have no side effects (i.e. const pure
	 functions) are unnecessary.  */
      if (TREE_SIDE_EFFECTS (stmt))
	mark_stmt_necessary (stmt, true);
      return;

    case MODIFY_EXPR:
      if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR
	  && TREE_SIDE_EFFECTS (TREE_OPERAND (stmt, 1)))
	{
	  mark_stmt_necessary (stmt, true);
	  return;
	}

      /* These values are mildly magic bits of the EH runtime.  We can't
	 see the entire lifetime of these values until landing pads are
	 generated.  */
      if (TREE_CODE (TREE_OPERAND (stmt, 0)) == EXC_PTR_EXPR
	  || TREE_CODE (TREE_OPERAND (stmt, 0)) == FILTER_EXPR)
	{
	  mark_stmt_necessary (stmt, true);
	  return;
	}
      break;

    case GOTO_EXPR:
      if (! simple_goto_p (stmt))
	mark_stmt_necessary (stmt, true);
      return;

    case COND_EXPR:
      if (GOTO_DESTINATION (COND_EXPR_THEN (stmt))
	  == GOTO_DESTINATION (COND_EXPR_ELSE (stmt)))
	{
	  /* A COND_EXPR is obviously dead if the target labels are the same.
	     We cannot kill the statement at this point, so to prevent the
	     statement from being marked necessary, we replace the condition
	     with a constant.  The stmt is killed later on in cfg_cleanup.  */
	  COND_EXPR_COND (stmt) = integer_zero_node;
	  modify_stmt (stmt);
	  return;
	}
      /* Fall through.  */

    case SWITCH_EXPR:
      if (! aggressive)
	mark_stmt_necessary (stmt, true);
      break;

    default:
      break;
    }

  ann = stmt_ann (stmt);
  /* If the statement has volatile operands, it needs to be preserved.  Same
     for statements that can alter control flow in unpredictable ways.  */
  if (ann->has_volatile_ops
      || is_ctrl_altering_stmt (stmt))
    {
      mark_stmt_necessary (stmt, true);
      return;
    }

  get_stmt_operands (stmt);

  defs = DEF_OPS (ann);
  for (i = 0; i < NUM_DEFS (defs); i++)
    {
      tree def = DEF_OP (defs, i);
      if (need_to_preserve_store (def))
	{
	  mark_stmt_necessary (stmt, true);
	  return;
        }
    }

  vdefs = VDEF_OPS (ann);
  for (i = 0; i < NUM_VDEFS (vdefs); i++)
    {
      tree vdef = VDEF_RESULT (vdefs, i);
      if (need_to_preserve_store (vdef))
	{
	  mark_stmt_necessary (stmt, true);
	  return;
        }
    }

  return;
}

/* Find obviously necessary statements.  These are things like most function
   calls, and stores to file level variables.

   If AGGRESSIVE is false, control statements are conservatively marked as
   necessary.  */

static void
find_obviously_necessary_stmts (bool aggressive)
{
  basic_block bb;
  block_stmt_iterator i;

  FOR_EACH_BB (bb)
    {
      tree phi;

      /* Check any PHI nodes in the block.  */
      for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
	{
	  NECESSARY (phi) = 0;

	  /* PHIs for virtual variables do not directly affect code
	     generation and need not be considered inherently necessary
	     regardless of the bits set in their decl.

	     Thus, we only need to mark PHIs for real variables which
	     need their result preserved as being inherently necessary.  */
	  if (is_gimple_reg (PHI_RESULT (phi))
	      && need_to_preserve_store (PHI_RESULT (phi)))
	    mark_stmt_necessary (phi, true);
        }

      /* Check all statements in the block.  */
      for (i = bsi_start (bb); ! bsi_end_p (i); bsi_next (&i))
	{
	  tree stmt = bsi_stmt (i);
	  NECESSARY (stmt) = 0;
	  mark_stmt_if_obviously_necessary (stmt, aggressive);
	}

      /* Mark this basic block as `not visited'.  A block will be marked
	 visited when the edges that it is control dependent on have been
	 marked.  */
      bb->flags &= ~BB_VISITED;
    }
}

/* Make corresponding control dependent edges necessary.  We only
   have to do this once for each basic block, so we clear the bitmap
   after we're done.  */
static void
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
{
  int edge_number;

  EXECUTE_IF_CONTROL_DEPENDENT (bb->index, edge_number,
    {
      tree t;
      basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);

      if (TEST_BIT (last_stmt_necessary, cd_bb->index))
	continue;
      SET_BIT (last_stmt_necessary, cd_bb->index);

      t = last_stmt (cd_bb);
      if (is_ctrl_stmt (t))
	mark_stmt_necessary (t, true);
    });
}

/* Propagate necessity using the operands of necessary statements.  Process
   the uses on each statement in the worklist, and add all feeding statements
   which contribute to the calculation of this value to the worklist.

   In conservative mode, EL is NULL.  */

static void
propagate_necessity (struct edge_list *el)
{
  tree i;
  bool aggressive = (el ? true : false); 

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nProcessing worklist:\n");

  while (VARRAY_ACTIVE_SIZE (worklist) > 0)
    {
      /* Take `i' from worklist.  */
      i = VARRAY_TOP_TREE (worklist);
      VARRAY_POP (worklist);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "processing: ");
	  print_generic_stmt (dump_file, i, TDF_SLIM);
	  fprintf (dump_file, "\n");
	}

      if (aggressive)
	{
	  /* Mark the last statements of the basic blocks that the block
	     containing `i' is control dependent on, but only if we haven't
	     already done so.  */
	  basic_block bb = bb_for_stmt (i);
	  if (! (bb->flags & BB_VISITED))
	    {
	      bb->flags |= BB_VISITED;
	      mark_control_dependent_edges_necessary (bb, el);
	    }
	}

      if (TREE_CODE (i) == PHI_NODE)
	{
	  /* PHI nodes are somewhat special in that each PHI alternative has
	     data and control dependencies.  All the statements feeding the
	     PHI node's arguments are always necessary.  In aggressive mode,
	     we also consider the control dependent edges leading to the
	     predecessor block associated with each PHI alternative as
	     necessary.  */
	  int k;
	  for (k = 0; k < PHI_NUM_ARGS (i); k++)
            {
	      tree arg = PHI_ARG_DEF (i, k);
	      if (TREE_CODE (arg) == SSA_NAME)
		mark_operand_necessary (arg);
	    }

	  if (aggressive)
	    {
	      for (k = 0; k < PHI_NUM_ARGS (i); k++)
		{
		  basic_block arg_bb = PHI_ARG_EDGE (i, k)->src;
		  if (! (arg_bb->flags & BB_VISITED))
		    {
		      arg_bb->flags |= BB_VISITED;
		      mark_control_dependent_edges_necessary (arg_bb, el);
		    }
		}
	    }
	}
      else
	{
	  /* Propagate through the operands.  Examine all the USE, VUSE and
	     VDEF operands in this statement.  Mark all the statements which
	     feed this statement's uses as necessary.  */
	  vuse_optype vuses;
	  vdef_optype vdefs;
	  use_optype uses;
	  stmt_ann_t ann;
	  size_t k;

	  get_stmt_operands (i);
	  ann = stmt_ann (i);

	  uses = USE_OPS (ann);
	  for (k = 0; k < NUM_USES (uses); k++)
	    mark_operand_necessary (USE_OP (uses, k));

	  vuses = VUSE_OPS (ann);
	  for (k = 0; k < NUM_VUSES (vuses); k++)
	    mark_operand_necessary (VUSE_OP (vuses, k));

	  /* The operands of VDEF expressions are also needed as they
	     represent potential definitions that may reach this
	     statement (VDEF operands allow us to follow def-def links).  */
	  vdefs = VDEF_OPS (ann);
	  for (k = 0; k < NUM_VDEFS (vdefs); k++)
	    mark_operand_necessary (VDEF_OP (vdefs, k));
	}
    }
}

/* Eliminate unnecessary statements. Any instruction not marked as necessary
   contributes nothing to the program, and can be deleted.  */

static void
eliminate_unnecessary_stmts (void)
{
  basic_block bb;
  block_stmt_iterator i;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nEliminating unnecessary statements:\n");

  clear_special_calls ();
  FOR_EACH_BB (bb)
    {
      /* Remove dead PHI nodes.  */
      remove_dead_phis (bb);

      /* Remove dead statements.  */
      for (i = bsi_start (bb); ! bsi_end_p (i) ; )
	{
	  tree t = bsi_stmt (i);

	  stats.total++;

	  /* If `i' is not necessary then remove it.  */
	  if (! NECESSARY (t))
	    remove_dead_stmt (&i, bb);
	  else
	    {
	      if (TREE_CODE (t) == CALL_EXPR)
		notice_special_calls (t);
	      else if (TREE_CODE (t) == MODIFY_EXPR
		       && TREE_CODE (TREE_OPERAND (t, 1)) == CALL_EXPR)
		notice_special_calls (TREE_OPERAND (t, 1));
	      bsi_next (&i);
	    }
	}
    }
}

/* Remove dead PHI nodes from block BB.  */

static void
remove_dead_phis (basic_block bb)
{
  tree prev, phi;

  prev = NULL_TREE;
  phi = phi_nodes (bb);
  while (phi)
    {
      stats.total_phis++;

      if (! NECESSARY (phi))
	{
	  tree next = TREE_CHAIN (phi);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Deleting : ");
	      print_generic_stmt (dump_file, phi, TDF_SLIM);
	      fprintf (dump_file, "\n");
	    }

	  remove_phi_node (phi, prev, bb);
	  stats.removed_phis++;
	  phi = next;
	}
      else
	{
	  prev = phi;
	  phi = TREE_CHAIN (phi);
	}
    }
}

/* Remove dead statement pointed by iterator I.  Receives the basic block BB
   containing I so that we don't have to look it up.  */

static void
remove_dead_stmt (block_stmt_iterator *i, basic_block bb)
{
  tree t = bsi_stmt (*i);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Deleting : ");
      print_generic_stmt (dump_file, t, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  stats.removed++;

  /* If we have determined that a conditional branch statement contributes
     nothing to the program, then we not only remove it, but we also change
     the flow graph so that the current block will simply fall-thru to its
     immediate post-dominator.  The blocks we are circumventing will be
     removed by cleaup_cfg if this change in the flow graph makes them
     unreachable.  */
  if (is_ctrl_stmt (t))
    {
      basic_block post_dom_bb;
      edge e;
#ifdef ENABLE_CHECKING
      /* The post dominance info has to be up-to-date.  */
      if (dom_computed[CDI_POST_DOMINATORS] != DOM_OK)
	abort ();
#endif
      /* Get the immediate post dominator of bb.  */
      post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
      /* Some blocks don't have an immediate post dominator.  This can happen
	 for example with infinite loops.  Removing an infinite loop is an
	 inappropriate transformation anyway...  */
      if (! post_dom_bb)
	{
	  bsi_next (i);
	  return;
	}

      /* Redirect the first edge out of BB to reach POST_DOM_BB.  */
      redirect_edge_and_branch (bb->succ, post_dom_bb);
      PENDING_STMT (bb->succ) = NULL;

      /* The edge is no longer associated with a conditional, so it does
	 not have TRUE/FALSE flags.  */
      bb->succ->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);

      /* If the edge reaches any block other than the exit, then it is a
	 fallthru edge; if it reaches the exit, then it is not a fallthru
	 edge.  */
      if (post_dom_bb != EXIT_BLOCK_PTR)
	bb->succ->flags |= EDGE_FALLTHRU;
      else
	bb->succ->flags &= ~EDGE_FALLTHRU;

      /* Remove the remaining the outgoing edges.  */
      for (e = bb->succ->succ_next; e != NULL;)
	{
	  edge tmp = e;
	  e = e->succ_next;
	  remove_edge (tmp);
	}
    }

  bsi_remove (i);
}

/* Print out removed statement statistics.  */

static void
print_stats (void)
{
  if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
    {
      float percg;

      percg = ((float) stats.removed / (float) stats.total) * 100;
      fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
	       stats.removed, stats.total, (int) percg);

      if (stats.total_phis == 0)
	percg = 0;
      else
	percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;

      fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
	       stats.removed_phis, stats.total_phis, (int) percg);
    }
}

/* Initialization for this pass.  Set up the used data structures.  */

static void
tree_dce_init (bool aggressive)
{
  memset ((void *) &stats, 0, sizeof (stats));

  if (aggressive)
    {
      int i;

      control_dependence_map 
	= xmalloc (last_basic_block * sizeof (bitmap));
      for (i = 0; i < last_basic_block; ++i)
	control_dependence_map[i] = BITMAP_XMALLOC ();

      last_stmt_necessary = sbitmap_alloc (last_basic_block);
      sbitmap_zero (last_stmt_necessary);
    }

  processed = sbitmap_alloc (highest_ssa_version + 1);
  sbitmap_zero (processed);

  VARRAY_TREE_INIT (worklist, 64, "work list");
}

/* Cleanup after this pass.  */

static void
tree_dce_done (bool aggressive)
{
  if (aggressive)
    {
      int i;

      for (i = 0; i < last_basic_block; ++i)
	BITMAP_XFREE (control_dependence_map[i]);
      free (control_dependence_map);

      sbitmap_free (last_stmt_necessary);
    }

  sbitmap_free (processed);
}

/* Main routine to eliminate dead code.

   AGGRESSIVE controls the aggressiveness of the algorithm.
   In conservative mode, we ignore control dependence and simply declare
   all but the most trivially dead branches necessary.  This mode is fast.
   In aggressive mode, control dependences are taken into account, which
   results in more dead code elimination, but at the cost of some time.

   FIXME: Aggressive mode before PRE doesn't work currently because
	  the dominance info is not invalidated after DCE1.  This is
	  not an issue right now because we only run aggressive DCE
	  as the last tree SSA pass, but keep this in mind when you
	  start experimenting with pass ordering.  */

static void
perform_tree_ssa_dce (bool aggressive)
{
  struct edge_list *el = NULL;

  tree_dce_init (aggressive);

  if (aggressive)
    {
      /* Compute control dependence.  */
      timevar_push (TV_CONTROL_DEPENDENCES);
      calculate_dominance_info (CDI_POST_DOMINATORS);
      el = create_edge_list ();
      find_all_control_dependences (el);
      timevar_pop (TV_CONTROL_DEPENDENCES);
    }

  find_obviously_necessary_stmts (aggressive);

  propagate_necessity (el);

  eliminate_unnecessary_stmts ();

  if (aggressive)
    free_dominance_info (CDI_POST_DOMINATORS);

  cleanup_tree_cfg ();

  /* Debugging dumps.  */
  if (dump_file)
    {
      dump_function_to_file (current_function_decl, dump_file, dump_flags);
      print_stats ();
    }

  tree_dce_done (aggressive);
}

/* Pass entry points.  */
static void
tree_ssa_dce (void)
{
  perform_tree_ssa_dce (/*aggressive=*/false);
}

static void
tree_ssa_cd_dce (void)
{
  perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
}

static bool
gate_dce (void)
{
  return flag_tree_dce != 0;
}

struct tree_opt_pass pass_dce =
{
  "dce",				/* name */
  gate_dce,				/* gate */
  tree_ssa_dce,				/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_DCE,				/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_ggc_collect | TODO_verify_ssa	/* todo_flags_finish */
};

struct tree_opt_pass pass_cd_dce =
{
  "cddce",				/* name */
  gate_dce,				/* gate */
  tree_ssa_cd_dce,			/* execute */
  NULL,					/* sub */
  NULL,					/* next */
  0,					/* static_pass_number */
  TV_TREE_CD_DCE,			/* tv_id */
  PROP_cfg | PROP_ssa,			/* properties_required */
  0,					/* properties_provided */
  0,					/* properties_destroyed */
  0,					/* todo_flags_start */
  TODO_ggc_collect | TODO_verify_ssa | TODO_verify_flow
					/* todo_flags_finish */
};