aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vectorizer.c
blob: d01627223c89808a45930b1f5caa9caeb3f62567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
/* Loop Vectorization
   Copyright (C) 2003, 2004 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* Loop Vectorization Pass.

   This pass tries to vectorize loops. This first implementation focuses on
   simple inner-most loops, with no conditional control flow, and a set of
   simple operations which vector form can be expressed using existing
   tree codes (PLUS, MULT etc).

   For example, the vectorizer transforms the following simple loop:

	short a[N]; short b[N]; short c[N]; int i;

	for (i=0; i<N; i++){
	  a[i] = b[i] + c[i];
	}

   as if it was manually vectorized by rewriting the source code into:

	typedef int __attribute__((mode(V8HI))) v8hi;
	short a[N];  short b[N]; short c[N];   int i;
	v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
	v8hi va, vb, vc;

	for (i=0; i<N/8; i++){
	  vb = pb[i];
	  vc = pc[i];
	  va = vb + vc;
	  pa[i] = va;
	}

	The main entry to this pass is vectorize_loops(), in which for each
   the vectorizer applies a set of analyses on a given set of loops,
   followed by the actual vectorization transformation for the loops that
   had successfully passed the analysis phase.

	Throughout this pass we make a distinction between two types of
   data: scalars (which are represented by SSA_NAMES), and data-refs. These
   are handled separately both by the analyzer and the loop-transformer.
   Currently, the vectorizer only supports simple data-refs which are
   limited to ARRAY_REFS that represent one dimensional arrays which base is
   an array (not a pointer), and have a simple (consecutive) access pattern.

   Analysis phase:
   ===============
	The driver for the analysis phase is vect_analyze_loop_nest().
   which applies a set of loop analyses. Some of the analyses rely on the
   monotonic evolution analyzer developed by Sebastian Pop.

	During the analysis phase the vectorizer records some information
   per stmt in a stmt_vec_info which is attached to each stmt in the loop,
   as well as general information about the loop as a whole, which is
   recorded in a loop_vec_info struct attached to each loop.

   Transformation phase:
   =====================
	The loop transformation phase scans all the stmts in the loop, and
   creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
   the loop that needs to be vectorized. It insert the vector code sequence
   just before the scalar stmt S, and records a pointer to the vector code
   in STMT_VINFO_VEC_STMT (stmt_info) (where stmt_info is the stmt_vec_info
   struct that is attached to S). This pointer is used for the vectorization
   of following stmts which use the defs of stmt S. Stmt S is removed
   only if it has side effects (like changing memory). If stmt S does not
   have side effects, we currently rely on dead code elimination for
   removing it.

	For example, say stmt S1 was vectorized into stmt VS1:

   VS1: vb = px[i];
   S1:	b = x[i];    STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   S2:  a = b;

   To vectorize stmt S2, the vectorizer first finds the stmt that defines
   the operand 'b' (S1), and gets the relevant vector def 'vb' from the
   vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
   resulting sequence would be:

   VS1: vb = px[i];
   S1:	b = x[i];	STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   VS2: va = vb;
   S2:  a = b;          STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2

	Operands that are not SSA_NAMEs, are currently limited to array
   references appearing in load/store operations (like 'x[i]' in S1), and
   are handled differently.

   Target modelling:
   =================
	Currently the only target specific information that is used is the
   size of the vector (in bytes) - "UNITS_PER_SIMD_WORD", and a target hook
   "vectype_for_scalar_type" that for a given (scalar) machine mode returns
   the vector machine_mode to be used. Targets that can support different
   sizes of vectors, for now will need to specify one value for
   "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.

	Since we only vectorize operations which vector form can be
   expressed using existing tree codes, to verify that an operation is
   supported the vectorizer checks the relevant optab at the relevant
   machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code).  If
   the value found is CODE_FOR_nothing, then there's no target support, and
   we can't vectorize the stmt. Otherwise - the stmt is transformed.


   For additional information on this project see:
   http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"

#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-fold-const.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "tree-pass.h"

/* CHECKME: check for unnecessary include files.  */

/* Main analysis functions.  */
static loop_vec_info vect_analyze_loop (struct loop *);
static loop_vec_info vect_analyze_loop_form (struct loop *);
static bool vect_analyze_data_refs (loop_vec_info);
static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
static bool vect_analyze_scalar_cycles (loop_vec_info);
static bool vect_analyze_data_ref_dependences (loop_vec_info);
static bool vect_analyze_data_ref_accesses (loop_vec_info);
static bool vect_analyze_data_refs_alignment (loop_vec_info);
static void vect_compute_data_refs_alignment (loop_vec_info);
static bool vect_analyze_operations (loop_vec_info);

/* Main code transformation functions.  */
static void vect_transform_loop (loop_vec_info);
static void vect_transform_loop_bound (loop_vec_info);
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static tree vect_transform_load (tree, block_stmt_iterator *);
static tree vect_transform_store (tree, block_stmt_iterator *);
static tree vect_transform_op (tree, block_stmt_iterator *);
static tree vect_transform_assignment (tree, block_stmt_iterator *);
static void vect_align_data_ref (tree, tree);
static void vect_enhance_data_refs_alignment (loop_vec_info);

/* Utility functions for the analyses.  */
static bool vect_is_supportable_op (tree);
static bool vect_is_supportable_store (tree);
static bool vect_is_supportable_load (tree);
static bool vect_is_supportable_assignment (tree);
static bool vect_is_simple_use (tree , struct loop *);
static bool exist_non_indexing_operands_for_use_p (tree, tree);
static bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *, bool);
static void vect_mark_relevant (varray_type, tree);
static bool vect_stmt_relevant_p (tree, loop_vec_info);
static tree vect_get_loop_niters (struct loop *, int *);
static void vect_compute_data_ref_alignment 
  (struct data_reference *, loop_vec_info);
static bool vect_analyze_data_ref_access (struct data_reference *);
static bool vect_analyze_data_ref_dependence
  (struct data_reference *, struct data_reference *);
static bool vect_get_array_first_index (tree, int *);
static bool vect_force_dr_alignment_p (struct data_reference *);

/* Utility functions for the code transformation.  */
static tree vect_create_destination_var (tree, tree);
static tree vect_create_data_ref (tree, tree, block_stmt_iterator *);
static tree vect_create_index_for_array_ref (tree, block_stmt_iterator *);
static tree get_vectype_for_scalar_type (tree);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_vec_def_for_operand (tree, tree);
static tree vect_init_vector (tree, tree);

/* General untility functions (CHECKME: where do they belong).  */
static tree get_array_base (tree);

/* Utilities for creation and deletion of vec_info structs.  */
loop_vec_info new_loop_vec_info (struct loop *loop);
void destroy_loop_vec_info (loop_vec_info);
stmt_vec_info new_stmt_vec_info (tree stmt, struct loop *loop);

/* Define number of arguments for each tree code.  */

#define DEFTREECODE(SYM, STRING, TYPE, NARGS)   NARGS,

int tree_nargs[] = {
#include "tree.def"

};

#undef DEFTREECODE

/* Function new_stmt_vec_info.

   Create and initialize a new stmt_vec_info struct for STMT.  */

stmt_vec_info
new_stmt_vec_info (tree stmt, struct loop *loop)
{
  stmt_vec_info res;
  res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));

  STMT_VINFO_TYPE (res) = undef_vec_info_type;
  STMT_VINFO_STMT (res) = stmt;
  STMT_VINFO_LOOP (res) = loop;
  STMT_VINFO_RELEVANT_P (res) = 0;
  STMT_VINFO_VECTYPE (res) = NULL;
  STMT_VINFO_VEC_STMT (res) = NULL;
  STMT_VINFO_DATA_REF (res) = NULL;

  return res;
}


/* Function new_loop_vec_info.

   Create and initialize a new loop_vec_info struct for LOOP, as well as
   stmt_vec_info structs for all the stmts in LOOP.  */

loop_vec_info
new_loop_vec_info (struct loop *loop)
{
  loop_vec_info res;
  basic_block *bbs;
  block_stmt_iterator si;
  unsigned int i;

  res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));

  bbs = get_loop_body (loop);

  /* Create stmt_info for all stmts in the loop.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  stmt_ann_t ann;

	  get_stmt_operands (stmt);
	  ann = stmt_ann (stmt);
	  set_stmt_info (ann, new_stmt_vec_info (stmt, loop));
	}
    }

  LOOP_VINFO_LOOP (res) = loop;
  LOOP_VINFO_BBS (res) = bbs;
  LOOP_VINFO_EXIT_COND (res) = NULL;
  LOOP_VINFO_NITERS (res) = -1;
  LOOP_VINFO_VECTORIZABLE_P (res) = 0;
  LOOP_VINFO_VECT_FACTOR (res) = 0;
  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
			   "loop_write_datarefs");
  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
			   "loop_read_datarefs");
  return res;
}


/* Function destroy_loop_vec_info.  */

void
destroy_loop_vec_info (loop_vec_info loop_vinfo)
{
  struct loop *loop;
  basic_block *bbs;
  int nbbs;
  block_stmt_iterator si;
  int j;

  if (!loop_vinfo)
    return;

  loop = LOOP_VINFO_LOOP (loop_vinfo);

  bbs = LOOP_VINFO_BBS (loop_vinfo);
  nbbs = loop->num_nodes;

  for (j = 0; j < nbbs; j++)
    {
      basic_block bb = bbs[j];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  stmt_ann_t ann = stmt_ann (stmt);
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	  free (stmt_info);
	  set_stmt_info (ann, NULL);
	}
    }

  free (LOOP_VINFO_BBS (loop_vinfo));
  varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
  varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));

  free (loop_vinfo);
}


/* Function vect_force_dr_alignment_p

   Returned whether the alignment of a certain data structure can be forced. */

static bool
vect_force_dr_alignment_p (struct data_reference *dr)
{
  tree ref = DR_REF (dr);
  tree array_base;

  if (TREE_CODE (ref) != ARRAY_REF)
    return false;

  array_base = get_array_base (ref);

  /* We want to make sure that we can force alignment of
     the data structure that is being accessed, because we do not
     handle misalignment yet.

     CHECKME: Is this a correct check for this purpose?
     CHECKME: This is a very strict check.
     CHECKME: Can we force the alignment of external decls?
   */

  if (TREE_CODE (TREE_TYPE (array_base)) != ARRAY_TYPE
      || TREE_CODE (array_base) != VAR_DECL
      || DECL_EXTERNAL (array_base))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "unhandled ptr-based array ref\n");
          if (TREE_CODE (array_base) == VAR_DECL && DECL_EXTERNAL (array_base))
            fprintf (dump_file,"\nextern decl.\n");
        }
      return false;
    }

  return true;
}


/* Function vect_get_new_vect_var.

   Return a name for a new variable.
   The current naming scheme appends the prefix "vect_" or "vect_p" to 
   vectorizer generated variables, and appends that to NAME if given. 

   CHECKME: naming scheme ok?  */

static tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
  const char *prefix;
  int prefix_len;
  char *vect_var_name;
  tree new_vect_var;

  if (var_kind == vect_simple_var)
    prefix = "vect_"; 
  else
    prefix = "vect_p";

  prefix_len = strlen (prefix);

  if (name)
    {
      vect_var_name = (char *) xmalloc (strlen (name) + prefix_len + 1);
      sprintf (vect_var_name, "%s%s", prefix, name);
    }
  else
    {
      vect_var_name = (char *) xmalloc (prefix_len + 1);
      sprintf (vect_var_name, "%s", prefix);
    }

  new_vect_var = create_tmp_var (type, vect_var_name);

  free (vect_var_name);
  return new_vect_var;
}


/* Function create_index_for_array_ref.

   Create an offset/index to be used to access a memory location.
   Input:

   STMT: The stmt that contains a data reference to the memory location.

   BSI: The block_stmt_iterator where STMT is. Any new stmts created by this
        function can be added here, or in the loop pre-header.

   Output:

   Return an index that will be used to index an array, using a pointer as 
   a base.

   FORNOW: we are not trying to be efficient, and just creating the code
   sequence each time from scratch, even if the same offset can be reused.
   TODO: record the index in the array_ref_info or the stmt info and reuse
   it.

   FORNOW: We are only handling array accesses with step 1.  */

static tree
vect_create_index_for_array_ref (tree stmt, block_stmt_iterator *bsi)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree expr = DR_REF (dr);
  varray_type access_fns = DR_ACCESS_FNS (dr);
  tree access_fn;
  tree scalar_indx; 
  int init_val, step_val;
  tree init, step;
  loop_vec_info loop_info = loop->aux;
  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_info);
  bool ok;
  int array_first_index;
  int vec_init_val;
  tree indx_before_incr, indx_after_incr;

  if (TREE_CODE (expr) != ARRAY_REF)
    abort ();

  /* FORNOW: handle only one dimensional arrays.
     This restriction will be relaxed in the future.  */ /* CHECKME */
  if (VARRAY_ACTIVE_SIZE (access_fns) != 1)
    abort ();

  access_fn = DR_ACCESS_FN (dr, 0);

  if (!vect_is_simple_iv_evolution (loop_num (loop), access_fn, &init, &step, 
	true))
    abort ();

  if (TREE_CODE (init) != INTEGER_CST || TREE_CODE (step) != INTEGER_CST)
    abort ();	

  if (TREE_INT_CST_HIGH (init) != 0 || TREE_INT_CST_HIGH (step) != 0)
    abort ();

  init_val = TREE_INT_CST_LOW (init); 
  step_val = TREE_INT_CST_LOW (step);


  /** Handle initialization.  **/

  scalar_indx =  TREE_OPERAND (expr, 1); 

  /* The actual index depends on the (mis)alignment of the access.
     FORNOW: we verify that both the array base and the access are
     aligned, so the index in the vectorized access is simply
     init_val/vectorization_factor.  */

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "creating update chain:\n");

  ok = vect_get_array_first_index (expr, &array_first_index);
  if (!ok)
    abort ();
  vec_init_val = array_first_index +
	(init_val - array_first_index)/vectorization_factor;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "vec_init_indx = %d\n", vec_init_val);

  init = build_int_2 (vec_init_val, 0);
  step = integer_one_node;

  /* CHECKME: assuming that bsi_insert is used with BSI_NEW_STMT */

  create_iv (init, step, NULL_TREE, loop, bsi, false, 
	&indx_before_incr, &indx_after_incr); 

  return indx_before_incr;
}


/* Function get_vectype_for_scalar_type.

   Return the vector type corresponding to SCALAR_TYPE as supported
   by the target.  */

static tree
get_vectype_for_scalar_type (tree scalar_type)
{
  enum machine_mode inner_mode;
  enum machine_mode vec_mode;
  int nbytes;
  int nunits;

  /* FORNOW: Only a single vector size per target is expected.  */

  inner_mode = TYPE_MODE (scalar_type);
  nbytes = GET_MODE_SIZE (inner_mode);

  if (nbytes == 0)
    return NULL_TREE;

  nunits = UNITS_PER_SIMD_WORD / nbytes;

  if (GET_MODE_CLASS (inner_mode) == MODE_FLOAT)
    vec_mode = MIN_MODE_VECTOR_FLOAT;
  else
    vec_mode = MIN_MODE_VECTOR_INT;

  /* CHECKME: This duplicates some of the functionality in build_vector_type;
     could have directly called build_vector_type_for_mode if exposed.  */

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nget vectype for scalar type:  ");
      print_generic_expr (dump_file, scalar_type, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  for (; vec_mode != VOIDmode ; vec_mode = GET_MODE_WIDER_MODE (vec_mode))
    if (GET_MODE_NUNITS (vec_mode) == nunits
	&& GET_MODE_INNER (vec_mode) == inner_mode
	&& VECTOR_MODE_SUPPORTED_P (vec_mode))
      return build_vector_type (scalar_type, nunits);

  return NULL_TREE;
}


/* Function vect_align_data_ref

   Handle alignment of a memory accesses.

   FORNOW: Make sure the array is properly aligned. The vectorizer
           currently does not handle unaligned memory accesses.
           This restriction will be relaxed in the future.

   FORNOW: data_ref is an array_ref which alignment can be forced; i.e.,
           the base of the ARRAY_REF is not a pointer but an array.
           This restriction will be relaxed in the future.

   FORNOW: The array is being accessed starting at location 'init';
           We limit vectorization to cases in which init % NUNITS == 0
           (where NUNITS = GET_MODE_NUNITS (TYPE_MODE (vectype))).
           This restriction will be relaxed in the future.  */

static void
vect_align_data_ref (tree ref, tree stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree array_base = get_array_base (ref);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);

  if (!aligned_access_p (dr))
    abort (); /* FORNOW, can't handle misliagned accesses.  */

  /* The access is aligned, but some accesses are marked alignd under the
     assumption that alignment of the base of the data structure will be 
     forced:  */ 

  if (vect_force_dr_alignment_p (dr))
    {
      if (DECL_ALIGN (array_base) < TYPE_ALIGN (vectype))
        {
          /* CHECKME:
	     - is this the way to force the alignment of an array base?
             - can it be made to also work for extern decls?  */

          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file,
                  "\nforce alignment. before: scalar/vec type_align = %d/%d\n",
                  DECL_ALIGN (array_base), TYPE_ALIGN (vectype));

          DECL_ALIGN (array_base) = TYPE_ALIGN (vectype);
        }
   }
}


/* Function vect_create_data_ref.

   Create a memory reference expression for vector access, to be used in a
   vector load/store stmt.

   Input:
   STMT: the stmt that references memory
         FORNOW: a load/store of the form 'var = a[i]'/'a[i] = var'.
   OP: the operand in STMT that is the memory reference
       FORNOW: an array_ref.
   BSI: the block_stmt_iterator where STMT is. Any new stmts created by this
        function can be added here.

   Output:
   1. Declare a new ptr to vector_type, and have it point to the array base.
      For example, for vector of type V8HI:
      v8hi *p0;
      p0 = (v8hi *)&a;

   3. Return the expression '(*p0)[idx]',
         where idx is the index used for the scalar expr.

   FORNOW: handle only simple array accesses (step 1).  */

static tree
vect_create_data_ref (tree ref, tree stmt, block_stmt_iterator *bsi)
{
  tree new_base;
  tree data_ref;
  tree idx;
  tree vec_stmt;
  tree new_temp;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree ptr_type;
  tree array_ptr;
  tree array_base;
  vdef_optype vdefs = STMT_VDEF_OPS (stmt);
  vuse_optype vuses = STMT_VUSE_OPS (stmt);
  int nvuses = 0, nvdefs = 0;
  int i;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "create array_ref of type:\n");
      print_generic_expr (dump_file, vectype, TDF_SLIM);
    }

  vect_align_data_ref (ref, stmt);
  array_base = get_array_base (ref);

  /*** create: vectype *p;  ***/
  ptr_type = build_pointer_type (vectype);
  array_ptr = vect_get_new_vect_var (ptr_type, vect_pointer_var, 
		get_name (array_base));
  add_referenced_tmp_var (array_ptr);
  if (TREE_CODE (array_base) == VAR_DECL)
    {
      get_var_ann (array_ptr)->type_mem_tag = array_base;
      bitmap_set_bit (vars_to_rename, var_ann (array_base)->uid);
    }
  else
    {
      /* FORNOW. This restriction will be relaxed in the future.  */
      abort ();
    }

  /* CHECKME: update name_mem_tag as well?  */

  /* Also mark for renaming all aliased variables:  */ /* CHECKME */
  if (vuses)
    nvuses = NUM_VUSES (vuses);
  if (vdefs)
    nvdefs = NUM_VDEFS (vdefs);
  for (i = 0; i < nvuses; i++)
    {
      tree use = VUSE_OP (vuses, i);;
      if (TREE_CODE (use) == SSA_NAME)
        bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (use))->uid);
    }
  for (i = 0; i < nvdefs; i++)
    {
      tree def = VDEF_RESULT (vdefs, i);
      if (TREE_CODE (def) == SSA_NAME)
        bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
    }

  /*** create: p = (vectype *)&a; ***/
  vec_stmt = build (MODIFY_EXPR, void_type_node, array_ptr,
    build1 (NOP_EXPR, ptr_type,
	  build1 (ADDR_EXPR, 
		build_pointer_type (TREE_TYPE (array_base)), array_base)));
  TREE_ADDRESSABLE (array_base) = 1;
  new_temp = make_ssa_name (array_ptr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  idx = vect_create_index_for_array_ref (stmt, bsi);

  /*** create data ref: '(*p)[idx]' ***/

  new_base = build1 (INDIRECT_REF, build_array_type (vectype, 0), 
		TREE_OPERAND (vec_stmt, 0)); 
  data_ref = build (ARRAY_REF, vectype, new_base, idx);

  if (dump_file && (dump_flags & TDF_DETAILS))
    print_generic_expr (dump_file, data_ref, TDF_SLIM);

  return data_ref;
}


/* Function vect_create_destination_var

   Create a new temporary of type VECTYPE.  */

static tree
vect_create_destination_var (tree scalar_dest, tree vectype)
{
  tree vec_dest;
  const char *new_name;

  if (TREE_CODE (scalar_dest) != SSA_NAME)
    abort ();

  new_name = get_name (scalar_dest);
  if (!new_name)
    new_name = "var_";
  vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, new_name);
  add_referenced_tmp_var (vec_dest);

  /* FIXME: introduce new type.   */
  TYPE_ALIAS_SET (TREE_TYPE (vec_dest)) =
    TYPE_ALIAS_SET (TREE_TYPE (scalar_dest));

  return vec_dest;
}


/* Function vect_init_vector.

   Insert a new stmt (INIT_STMT) that initializes a new vector veriable with
   the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
   used in the vectorization of STMT.  */

static tree
vect_init_vector (tree stmt, tree vector_var)
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
  block_stmt_iterator pre_header_bsi;
  tree new_var;
  tree init_stmt;
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); 
  tree vec_oprnd;
 
  new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
  add_referenced_tmp_var (new_var); 
  bitmap_set_bit (vars_to_rename, var_ann (new_var)->uid);
 
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      print_generic_expr (dump_file, vector_var, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  init_stmt = build (MODIFY_EXPR, vectype, new_var, vector_var);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      print_generic_expr (dump_file, init_stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  /* CHECKME: Is there a utility for inserting code at the end of a basic block?  */
  pre_header_bsi = bsi_last (loop->pre_header);
  if (!bsi_end_p (pre_header_bsi)
      && is_ctrl_stmt (bsi_stmt (pre_header_bsi)))
    bsi_insert_before (&pre_header_bsi, init_stmt, BSI_NEW_STMT);
  else
    bsi_insert_after (&pre_header_bsi, init_stmt, BSI_NEW_STMT);

  vec_oprnd = TREE_OPERAND (init_stmt, 0);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      print_generic_expr (dump_file, vec_oprnd, TDF_SLIM);
      fprintf (dump_file, "\n");
    }
 
  return vec_oprnd;
}

/* Function vect_get_vec_def_for_operand.

   OP is an operand in STMT. This function returns a (vector) def that will be
   used in the vectorized counterpart of STMT.

   In the case that OP is an SSA_NAME which is defined in the loop, then
   STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.

   In case OP is an invariant or constant, a new stmt that creates a vector def
   needs to be introduced.  */

static tree
vect_get_vec_def_for_operand (tree op, tree stmt)
{
  tree vec_oprnd;

  if (!op) 
    abort ();

  if (TREE_CODE (op) == SSA_NAME)
    {
      tree vec_stmt;
      tree def_stmt;
      stmt_vec_info def_stmt_info = NULL;

      def_stmt = SSA_NAME_DEF_STMT (op);
      def_stmt_info = vinfo_for_stmt (def_stmt);
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
	  fprintf (dump_file, "vect_get_vec_def_for_operand: def_stmt:\n");
	  print_generic_expr (dump_file, def_stmt, TDF_SLIM);
	}

      if (!def_stmt_info)
	{
	  /* op is defined outside the loop (it is loop invariant).
	     Create 'vec_inv = {inv,inv,..,inv}'  */
	  
	  tree vec_inv;
	  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
	  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
	  int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
	  basic_block bb = bb_for_stmt (def_stmt);
	  struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
	  tree t = NULL_TREE;
	  tree def;
	  int i;

	  /* Build a tree with vector elements.  */
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "\nCreate vector_inv.\n");

	  if (TREE_CODE (def_stmt) == PHI_NODE)
	    {
	      if (flow_bb_inside_loop_p (loop, bb))
		{
		  if (dump_file && (dump_flags & TDF_DETAILS))
           	    fprintf (dump_file, "\nUnsupported reduction.\n");
		  abort ();
		}
	      def = PHI_RESULT (def_stmt);
	    }
	  else if (TREE_CODE (def_stmt) == NOP_EXPR)
	    {
	      tree arg = TREE_OPERAND (def_stmt, 0);	
              if (TREE_CODE (arg) != INTEGER_CST && TREE_CODE (arg) != REAL_CST)
		{
		  if (dump_file && (dump_flags & TDF_DETAILS))
           	    fprintf (dump_file, "\nUnsupported NOP_EXPR.\n");
		  abort ();
		}
              def = op;
	    }
	  else
	    def = TREE_OPERAND (def_stmt, 0);

	  for (i = nunits - 1; i >= 0; --i)
	    {
	      t = tree_cons (NULL_TREE, def, t);
	    }

	  vec_inv = build_constructor (vectype, t); /* CHECKME */
	  return vect_init_vector (stmt, vec_inv);
	}


      /* op is defined inside the loop. Get the def from the vectorized stmt.
       */
      vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);

      if (!vec_stmt)
        abort ();

      /* CHECKME: any cases where the def we want is not TREE_OPERAND 0?  */
      vec_oprnd = TREE_OPERAND (vec_stmt, 0);

      return vec_oprnd;
    }

  if (TREE_CODE (op) == INTEGER_CST
      || TREE_CODE (op) == REAL_CST)
    {
      /* Create 'vect_cst_ = {cst,cst,...,cst}'  */

      tree vec_cst;
      stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
      tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
      int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
      tree t = NULL_TREE; 
      int i;

      /* Build a tree with vector elements.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "\nCreate vector_cst.\n");
      for (i = nunits - 1; i >= 0; --i)
        { 
	  t = tree_cons (NULL_TREE, op, t);
        }
      vec_cst = build_vector (vectype, t);
      return vect_init_vector (stmt, vec_cst);
    }

  return NULL_TREE;
}


/* Function vect_transfom_assignment.

   STMT performs an assignment (copy). Create a vectorized stmt to replace it,
   and insert it at BSI.  */

static tree
vect_transform_assignment (tree stmt, block_stmt_iterator *bsi)
{
  tree vec_stmt;
  tree vec_dest;
  tree scalar_dest;
  tree op;
  tree vec_oprnd;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree new_temp;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "transform assignment\n");

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    abort ();

  /** Handle def. **/

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    abort ();
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /** Handle use - get the vectorized def from the defining stmt.  **/

  op = TREE_OPERAND (stmt, 1);

  vec_oprnd = vect_get_vec_def_for_operand (op, stmt);
  if (! vec_oprnd)
    abort ();

  /** arguments are ready. create the new vector stmt.  **/

  vec_stmt = build (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
  new_temp = make_ssa_name (vec_dest, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "add new stmt\n");
      print_generic_stmt (dump_file, vec_stmt, TDF_SLIM);
    }
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  return vec_stmt;
}


/* Function vect_transfom_op.

   STMT performs a binary or unary operation. Create a vectorized stmt to
   replace it, and insert it at BSI.  */

static tree
vect_transform_op (tree stmt, block_stmt_iterator *bsi)
{
  tree vec_stmt;
  tree vec_dest;
  tree scalar_dest;
  tree operation;
  tree op0, op1=NULL;
  tree vec_oprnd0, vec_oprnd1=NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  enum tree_code code;
  tree new_temp;
  int op_type;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "transform op\n");

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    abort ();

  operation = TREE_OPERAND (stmt, 1);

  /** Handle def. **/

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    abort ();
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /** Handle uses - get the vectorized defs from the defining stmts.  **/

  /** Distinguish between binary and unary operations.  **/

  op_type = tree_nargs[TREE_CODE (operation)];
 
  if (op_type != unary_op && op_type != binary_op)
    abort ();

  op0 = TREE_OPERAND (operation, 0);
  if (op_type == binary_op)
    op1 = TREE_OPERAND (operation, 1);

  vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
  if (! vec_oprnd0)
    abort ();

  if(op_type == binary_op)
    {
      vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
      if (! vec_oprnd1)
	abort ();
    }

  /** arguments are ready. create the new vector stmt.  **/

  code = TREE_CODE (operation);
  if (op_type == binary_op)
      vec_stmt = build (MODIFY_EXPR, vectype, vec_dest,
			build (code, vectype, vec_oprnd0, vec_oprnd1));
  else
      vec_stmt = build (MODIFY_EXPR, vectype, vec_dest,
			build1 (code, vectype, vec_oprnd0));

  new_temp = make_ssa_name (vec_dest, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "add new stmt\n");
      print_generic_stmt (dump_file, vec_stmt, TDF_SLIM);
    }
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  return vec_stmt;
}


/* Function vect_transfom_store.

   STMT is a store to memory. Create a vectorized stmt to replace it,
   and insert it at BSI.  */

static tree
vect_transform_store (tree stmt, block_stmt_iterator *bsi)
{
  tree scalar_dest;
  tree vec_stmt;
  tree data_ref;
  tree op;
  tree vec_oprnd1;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "transform store\n");

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    abort ();

  /** Handle def.  **/

  scalar_dest = TREE_OPERAND (stmt, 0);

  if (TREE_CODE (scalar_dest) != ARRAY_REF)
    abort ();

  data_ref = vect_create_data_ref (scalar_dest, stmt, bsi);
  if (!data_ref)
    abort ();

  /** Handle use - get the vectorized def from the defining stmt.  **/

  op = TREE_OPERAND (stmt, 1);

  vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt);
  if (! vec_oprnd1)
    abort ();

  /** Arguments are ready. create the new vector stmt.  **/

  vec_stmt = build (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "add new stmt\n");
      print_generic_stmt (dump_file, vec_stmt, TDF_SLIM);
    }
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  if (stmt != bsi_stmt (*bsi))
    {
      /* This is expected when an update chain for a data-ref index has been
         created (by vect_create_index_for_array_ref). The current stmt 
	 sequence is as follows:

	 (i)   some stmt
	 (i+1) vec_stmt (with a data_ref that uses index)
	 (i+2) stmt_to_update_index    <-- bsi
	 (i+3) stmt

	 The iterator bsi should be bumped to point to stmt at location (i+3)
	 because this is what the driver vect_transform_loop expects.  */

      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "update chain:\n");
          print_generic_stmt (dump_file, bsi_stmt (*bsi), TDF_SLIM);
        }
      bsi_next (bsi);
    }

  /* The driver function vect_transform_loop expects bsi to point the last
     scalar stmt that was vectorized.  */
  if (stmt != bsi_stmt (*bsi))
    abort ();

  return vec_stmt;
}


/* Function vect_transform_load.

   STMT is a load from memory. Create a vectorized stmt to replace it,
   and insert it at BSI.  */

static tree
vect_transform_load (tree stmt, block_stmt_iterator *bsi)
{
  tree vec_stmt;
  tree scalar_dest;
  tree vec_dest = NULL;
  tree data_ref = NULL;
  tree op;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree new_temp;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "transform load\n");

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    abort ();

  /** Handle def.  **/

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    abort ();
  vec_dest = vect_create_destination_var (scalar_dest, vectype);
  if (!vec_dest)
    abort ();

  /** Handle use.  **/

  op = TREE_OPERAND (stmt, 1);

  if (TREE_CODE (op) != ARRAY_REF)
    abort ();

  data_ref = vect_create_data_ref (op, stmt, bsi);

  if (!data_ref)
    abort ();

  /** Arguments are ready. create the new vector stmt.  **/

  vec_stmt = build (MODIFY_EXPR, vectype, vec_dest, data_ref);
  new_temp = make_ssa_name (vec_dest, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "add new stmt\n");
      print_generic_stmt (dump_file, vec_stmt, TDF_SLIM);
    }
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  if (stmt != bsi_stmt (*bsi))
    {
      /* This is expected when an update chain for a data-ref index has been
         created (by vect_create_index_for_array_ref). The current stmt
         sequence is as follows:
  
         (i)   some stmt
         (i+1) vec_stmt (with a data_ref that uses index)
         (i+2) stmt_to_update_index    <-- bsi
         (i+3) stmt 
  
         The iterator bsi should be bumped to point to stmt at location (i+3)
         because this is what the driver vect_transform_loop expects.  */

      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "update chain:\n");
          print_generic_stmt (dump_file, bsi_stmt (*bsi), TDF_SLIM);
        }
      bsi_next (bsi);
    }

  /* The driver function vect_transform_loop expects bsi to point the last
     scalar stmt that was vectorized.  */
  if (stmt != bsi_stmt (*bsi))
    abort ();

  return vec_stmt;
}


/* Function vect_transform_stmt.

   Create a vectorized stmt to replace STMT, and insert it at BSI.  */

static bool
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
{
  bool is_store = false;
  tree vec_stmt = NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);

  switch (STMT_VINFO_TYPE (stmt_info))
    {
    case op_vec_info_type:
      vec_stmt = vect_transform_op (stmt, bsi);
      break;

    case assignment_vec_info_type:
      vec_stmt = vect_transform_assignment (stmt, bsi);
      break;

    case load_vec_info_type:
      vec_stmt = vect_transform_load (stmt, bsi);
      break;

    case store_vec_info_type:
      vec_stmt = vect_transform_store (stmt, bsi);
      is_store = true;
      break;

    default:
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "stmt not supported\n");
      abort ();
    }

  STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;

  return is_store;
}


/* Function vect_transform_loop_bound.

   Create a new exit condition for the loop.  */

static void
vect_transform_loop_bound (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  edge exit_edge = loop_exit_edge (loop, 0);
  block_stmt_iterator loop_exit_bsi = bsi_last (exit_edge->src);
  tree indx_before_incr, indx_after_incr;
  tree orig_cond_expr;
  int old_N, vf;
  tree cond_stmt;
  tree new_loop_bound;

  /* FORNOW: assuming the loop bound is known.  */
  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
    abort ();

  old_N = LOOP_VINFO_NITERS (loop_vinfo);
  vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);

  /* FORNOW:
     assuming number-of-iterations divides by the vectorization factor.  */
  if (old_N % vf)
    abort ();

  orig_cond_expr = LOOP_VINFO_EXIT_COND (loop_vinfo);
  if (!orig_cond_expr)
    abort ();
  if (orig_cond_expr != bsi_stmt (loop_exit_bsi))
    abort ();

  create_iv (integer_zero_node, integer_one_node, NULL_TREE, loop, 
	&loop_exit_bsi, false, &indx_before_incr, &indx_after_incr);

  /* CHECKME: bsi_insert is using BSI_NEW_STMT. We need to bump it back 
     to point to the exit condition. */
  bsi_next (&loop_exit_bsi);
  if (bsi_stmt (loop_exit_bsi) != orig_cond_expr)
    abort ();

  /* new loop exit test:  */
  new_loop_bound = build_int_2 (old_N/vf, 0);
  cond_stmt = 
	build (COND_EXPR, TREE_TYPE (orig_cond_expr),
	build (LT_EXPR, boolean_type_node, indx_after_incr, new_loop_bound),
	TREE_OPERAND (orig_cond_expr, 1), TREE_OPERAND (orig_cond_expr, 2));

  bsi_insert_before (&loop_exit_bsi, cond_stmt, BSI_SAME_STMT);   

  /* remove old loop exit test:  */
  bsi_remove (&loop_exit_bsi);

  if (dump_file && (dump_flags & TDF_DETAILS))
    print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
}


/* Function vect_transform_loop.

   The analysis phase has determined that the loop is vectorizable.
   Vectorize the loop - created vectorized stmts to replace the scalar
   stmts in the loop, and update the loop exit condition.  */

static void
vect_transform_loop (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  block_stmt_iterator si;
  int i;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vec_transform_loop>>\n");

  /* CHECKME: FORNOW the vectorizer supports only loops which body consist
     of one basic block + header. When the vectorizer will support more
     involved loop forms, the order by which the BBs are traversed need
     to be considered.  */

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];

      for (si = bsi_start (bb); !bsi_end_p (si);)
	{
	  tree stmt = bsi_stmt (si);
	  stmt_vec_info stmt_info;
	  tree vectype;
	  bool is_store;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\n-----\nvectorizing statement:\n");
	      print_generic_stmt (dump_file, stmt, TDF_SLIM);
	    }	

	  stmt_info = vinfo_for_stmt (stmt);
	  if (!stmt_info)
	    abort ();

	  if (!STMT_VINFO_RELEVANT_P (stmt_info))
	    {
	      bsi_next (&si);
	      continue;
	    }

	  /* FORNOW: Verify that all stmts operate on the same number of
	             units and no inner unrolling is necessary.  */
	  vectype = STMT_VINFO_VECTYPE (stmt_info);
	  if (GET_MODE_NUNITS (TYPE_MODE (vectype)) != vectorization_factor)
	    abort ();

	  /* -------- vectorize statement ------------ */
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "transform statement.\n");

	  is_store = vect_transform_stmt (stmt, &si);

	  if (is_store)
	    {
	      /* free the attched stmt_vec_info and remove the stmt.  */
	      stmt_ann_t ann = stmt_ann (stmt);
	      free (stmt_info);
	      set_stmt_info (ann, NULL);

	      bsi_remove (&si);
	      continue;
	    }

	  bsi_next (&si);

	}			/* stmts in BB */
    }				/* BBs in loop */


  vect_transform_loop_bound (loop_vinfo);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<Success! loop vectorized.>>\n");
}


/* Function vect_is_simple_use.

   Return whether the vectorization of a stmt, in LOOP, that uses OPERAND is
   supportable. OPERANDS that can't be vectorized yet are those defined
   by a reduction operation or some other form of recurrence. 
   Other OPERANDS - defined in the loop, constants and invariants - 
   are supported.  */

static bool
vect_is_simple_use (tree operand, struct loop *loop)
{ 
  tree def_stmt;
  basic_block bb;

  if (!operand)
    return false;

  if (TREE_CODE (operand) == SSA_NAME)
    {
      def_stmt = SSA_NAME_DEF_STMT (operand);

      if (def_stmt == NULL_TREE)
        return false;

      if (TREE_CODE (def_stmt) == NOP_EXPR)
	{
	  tree arg = TREE_OPERAND (def_stmt, 0);

	  if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
	    return true;

	  return false;  
	}

      bb = bb_for_stmt (def_stmt);
      if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, 
		"use defined in loop phi - some form of reduction.\n");
	  return false;
	}

      return true;  
    }

  if (TREE_CODE (operand) == INTEGER_CST
      || TREE_CODE (operand) == REAL_CST)
    {
      return true;
    }

  return false;
}


/* Function vect_is_supportable_op.

   Verify that STMT performs an operation that can be vectorized.  */

static bool
vect_is_supportable_op (tree stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree operation;
  enum tree_code code;
  tree op;
  enum machine_mode vec_mode;
  optab optab;
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  int i,op_type;

  /* Is op? */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
    return false;

  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);

  switch (code)
    {
    case PLUS_EXPR:
      optab = add_optab;
      break;
    case MULT_EXPR:
      optab = smul_optab;
      break;
    case MINUS_EXPR:
      optab = sub_optab;
      break;
    case BIT_AND_EXPR:
      optab = and_optab;
      break;
    case BIT_XOR_EXPR:
      optab = xor_optab;
      break;
    case BIT_IOR_EXPR:
      optab = ior_optab;
      break;
    case BIT_NOT_EXPR:
      optab = one_cmpl_optab;
      break;
    default:
      return false;
    }
  
  /* Support only unary or binary operations.  */

  op_type = tree_nargs[code];
  if (op_type != unary_op && op_type != binary_op)
    return false;
  
  for (i = 0; i < op_type; i++)
    {
      op = TREE_OPERAND (operation, i);
      if (!vect_is_simple_use (op, loop))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "use not simple.\n");
	  return false;
	}	
    } 

  /* Supportable by target?  */

  if (!optab)
    return false;

  vec_mode = TYPE_MODE (vectype);

  if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "op not supported by target\n");
      return false;
    }

  /* FORNOW: Not considering the cost.  */

  STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;

  return true;
}


/* Function vect_is_supportable_store.

   Verify that STMT performs a store to memory operation,
   and can be vectorized.  */

static bool
vect_is_supportable_store (tree stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree scalar_dest;
  tree op;
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);

  /* Is vectorizable store? */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);

  if (TREE_CODE (scalar_dest) != ARRAY_REF)
    return false;

  op = TREE_OPERAND (stmt, 1);

  if (!vect_is_simple_use (op, loop))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "use not simple.\n");
      return false;
    }

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  /* Previous analysis steps have already verified that the data ref is
     vectorizable (w.r.t data dependences, access pattern, etc).  */

  /* FORNOW: Not considering the cost.  */

  STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;

  return true;
}


/* Function vect_is_supportable_load.

   Verify that STMT performs a load from memory operation,
   and can be vectorized.  */

static bool
vect_is_supportable_load (tree stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree scalar_dest;
  tree op;

  /* Is vectorizable load? */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  op = TREE_OPERAND (stmt, 1);

  if (TREE_CODE (op) != ARRAY_REF)
    return false;

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  /* Previous analysis steps have already verified that the data ref is
     vectorizable (w.r.t data dependences, access pattern, etc).  */

  /* FORNOW: Not considering the cost.  */

  STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;

  return true;
}


/* Function vect_is_supportable_assignment.

   Verify that STMT performs an assignment, and can be vectorized.  */

static bool
vect_is_supportable_assignment (tree stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree scalar_dest;
  tree op;
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);

  /* Is vectorizable assignment? */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  op = TREE_OPERAND (stmt, 1);

  if (!vect_is_simple_use (op, loop))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "use not simple.\n");
      return false;
    }

  STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;

  return true;
}


/* Function vect_analyze_operations.

   Scan the loop stmts and make sure they are all vectorizable.  */

static bool
vect_analyze_operations (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  int vectorization_factor = 0;
  int i;
  bool ok;
  tree scalar_type;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vect_analyze_operations>>\n");

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];

      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  int nunits;
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	  tree vectype;
	  dataflow_t df;
	  int j, num_uses;
	  vdef_optype vdefs;

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\n-------\nexamining statement:\n");
	      print_generic_stmt (dump_file, stmt, TDF_SLIM);
	    }

	  if (!stmt_info)
	    abort ();

	  /* skip stmts which do not need to be vectorized.
	     this is expected to include:
	     - the COND_EXPR which is the loop exit condition
	     - any LABEL_EXPRs in the loop
	     - computations that are used only for array indexing or loop
	     control  */

	  if (!STMT_VINFO_RELEVANT_P (stmt_info))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
	        fprintf (dump_file, "irrelevant.\n");
	      continue;
	    }

	  /* FORNOW: Make sure that the def of this stmt is not used out
             side the loop. This restriction will be relaxed in the future.  */
          vdefs = STMT_VDEF_OPS (stmt);
          if (!vdefs)  /* CHECKME */
            {
              df = get_immediate_uses (stmt);
              num_uses = num_immediate_uses (df);
              for (j = 0; j < num_uses; j++)
                {
                  tree use = immediate_use (df, j);
                  basic_block bb = bb_for_stmt (use);
                  if (!flow_bb_inside_loop_p (loop, bb))
                    {
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        {
                          fprintf (dump_file, "def used out of loop:\n");
                          print_generic_stmt (dump_file, use, TDF_SLIM);
                        }
                      return false;
                    }
                }
            }

	  if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "vector stmt in loop!\n");
		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

          if (STMT_VINFO_DATA_REF (stmt_info))
            scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));    
          else
	    scalar_type = TREE_TYPE (stmt);
	  vectype = get_vectype_for_scalar_type (scalar_type);
	  if (!vectype)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "no vectype for stmt.\n");
		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }
	  STMT_VINFO_VECTYPE (stmt_info) = vectype;

	  ok = (vect_is_supportable_op (stmt)
		|| vect_is_supportable_assignment (stmt)
		|| vect_is_supportable_load (stmt)
		|| vect_is_supportable_store (stmt));

	  if (!ok)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "stmt not supported.\n");
		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "nunits = %d\n", nunits);

	  if (vectorization_factor)
	    {
	      /* FORNOW: don't allow mixed units.
	         This restriction will be relaxed in the future.  */
	      if (nunits != vectorization_factor)
		{
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file, "mixed types unsupported.\n");
		      print_generic_stmt (dump_file, stmt, TDF_SLIM);
		    }
		  return false;
		}
	    }
	  else
	    vectorization_factor = nunits;
	}
    }

  /* TODO: Analayze cost. Decide if worth while to vectorize.  */

  LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;

  /* FORNOW: handle only cases where the loop bound divides by the
     vectorization factor.  */

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "vectorization_factor = %d, niters = %d\n",
	vectorization_factor, LOOP_VINFO_NITERS (loop_vinfo));

  if (vectorization_factor == 0
      || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      || LOOP_VINFO_NITERS (loop_vinfo) % vectorization_factor != 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, 
		"loop bound unknown or doesn't divide by %d\n",
		 vectorization_factor);
      return false;
    }

  return true;
}


/* Function exist_non_indexing_operands_for_use_p 

   USE is one of the uses attached to STMT. Check if USE is 
   used in STMT for anything other than indexing an array.  */

static bool
exist_non_indexing_operands_for_use_p (tree use, tree stmt)
{
  tree operand;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
 
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "exist_non_indexing_operands_for_use_p?:\n");
      print_generic_stmt (dump_file, stmt, TDF_SLIM);
    }

  /* USE corresponds to some operand in STMT. If there is no data
     reference in STMT, then any operand that corresponds to USE
     is not indexing an array.  */
  if (!STMT_VINFO_DATA_REF (stmt_info))
    return true;
 
  /* STMT has a data_ref. FORNOW this means that its of one of
     the following forms:
     -1- ARRAY_REF = var
     -2- var = ARRAY_REF
     (This should have been verified in analyze_data_refs).

     'var' in the second case corresponds to a def, not a use,
     so USE cannot correspond to any operands that are not used 
     for array indexing.

     Therefore, all we need to check is if STMT falls into the
     first case, and whether var corresponds to USE.  */
 
  if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
    return false;

  operand = TREE_OPERAND (stmt, 1);

  if (TREE_CODE (operand) != SSA_NAME)
    return false;

  if (operand == use)
    return true;

  return false;
}


/* Function vect_is_simple_iv_evolution.

   FORNOW: A simple evolution of an induction variables in the loop is
   considered a polynomial evolution with step 1.  */

static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init, 
				tree * step, bool strict)
{
  tree init_expr;
  tree step_expr;
  
  tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);

  /* When there is no evolution in this loop, the evolution function
     is not "simple".  */  
  if (evolution_part == NULL_TREE)
    return false;
  
  /* When the evolution is a polynomial of degree >= 2 or
     exponential, the evolution function is not "simple".  */
  if (TREE_CODE (evolution_part) == POLYNOMIAL_CHREC
      || TREE_CODE (evolution_part) == EXPONENTIAL_CHREC)
    return false;
  
  step_expr = evolution_part;
  init_expr = initial_condition (access_fn);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nstep: ");
      print_generic_expr (dump_file, step_expr, TDF_SLIM);
      fprintf (dump_file, "\ninit: ");
      print_generic_expr (dump_file, init_expr, TDF_SLIM);
      fprintf (dump_file, "\n");
    }

  *init = init_expr;
  *step = step_expr;

  if (TREE_CODE (step_expr) != INTEGER_CST)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "\nstep unknown.\n");
      return false;
    }

  if (strict)
    if (!integer_onep (step_expr))
      {
        if (dump_file && (dump_flags & TDF_DETAILS))
	  print_generic_expr (dump_file, step_expr, TDF_SLIM);
        return false;
      }

  return true;
}


/* Function vect_analyze_scalar_cycles.

   Examine the cross iteration def-use cycles of scalar variables, by
   analyzing the loop (scalar) PHIs; verify that the cross iteration def-use
   cycles that they represent do not impede vectorization.

   FORNOW: Reduction as in the following loop, is not supported yet:
              loop1:
              for (i=0; i<N; i++)
                 sum += a[i];
	   The cross-iteration cycle corresponding to variable 'sum' will be
	   considered too complicated and will impede vectorization.

   FORNOW: Induction as in the following loop, is not supported yet:
              loop2:
              for (i=0; i<N; i++)
                 a[i] = i;

           However, the following loop *is* vectorizable:
              loop3:
              for (i=0; i<N; i++)
                 a[i] = b[i];

           In both loops there exists a def-use cycle for the variable i:
              loop: i_2 = PHI (i_0, i_1)
                    a[i_2] = ...;
                    i_1 = i_2 + 1;
                    GOTO loop;

           The evolution of the above cycle is considered simple enough,
	   however, we also check that the cycle does not need to be
	   vectorized, i.e - we check that the variable that this cycle
	   defines is only used for array indexing or in stmts that do not
	   need to be vectorized. This is not the case in loop2, but it
	   *is* the case in loop3.  */

static bool
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
  tree phi;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block bb = loop->header;
  tree dummy;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vect_analyze_scalar_evolutions>>\n");

  for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
    {
#if 0
      int i;
      int num_uses;
      dataflow_t df;
#endif
      tree access_fn = NULL;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
          fprintf (dump_file, "Analyze phi\n");
          print_generic_expr (dump_file, phi, TDF_SLIM);
	}

      /* Skip virtual phi's. The data dependences that are associated with
         virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.  */

      /* CHECKME: correct way to check for a virtual phi?  */

      if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "virtual phi. skip.\n");
	  continue;
	}

      /* Analyze the evolution function.  */

      /* FORNOW: The only scalar cross-iteration cycles that we allow are
         those of the loop induction variable;
         Furthermore, if that induction variable is used in an operation
         that needs to be vectorized (i.e, is not solely used to index
         arrays and check the exit condition) - we do not support its
         vectorization Yet.  */

      /* 1. Verify that it is an IV with a simple enough access pattern.  */

      if (dump_file && (dump_flags & TDF_DETAILS)) 
        fprintf (dump_file, "analyze cycles: call monev analyzer!\n");

      access_fn = instantiate_parameters
	(loop,
	 analyze_scalar_evolution (loop, PHI_RESULT (phi)));

      if (!access_fn)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "No Access function.");
	  return false;
	}

      if (dump_file && (dump_flags & TDF_DETAILS))
        {
           fprintf (dump_file, "Access function of PHI: ");
           print_generic_expr (dump_file, access_fn, TDF_SLIM);
        }

      if (!vect_is_simple_iv_evolution (loop_num (loop), access_fn, &dummy, 
					&dummy, false))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "unsupported cross iter cycle.\n");
	  return false;
	}

#if 0 /* following check is now performed in "vect_is_simple_use" */

      /* 2. Verify that this variable is only used in stmts that do not need
         to be vectorized.  
	 FIXME: the following checks should be applied to other defs in
	 this def-use cycle (not just to the phi result).  */

      df = get_immediate_uses (phi);
      num_uses = num_immediate_uses (df);
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "num uses = %d\n", num_uses);
      for (i = 0; i < num_uses; i++)
	{
	  tree use = immediate_use (df, i);
	  stmt_vec_info stmt_info = vinfo_for_stmt (use);

	  if (!stmt_info)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "\nused out side the loop??\n");
		  print_generic_expr (dump_file, use, TDF_SLIM);
		}
	      return false;
	    }

	  if (STMT_VINFO_RELEVANT_P (stmt_info)
	      && exist_non_indexing_operands_for_use_p (PHI_RESULT (phi), use))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file,
			   "\ninduction vectorization. Unsupported.\n");
		  print_generic_expr (dump_file, use, TDF_SLIM);
		}
	      return false;
	    }
	}

#endif

    }

  return true;
}


/* Function get_array_base.

   Return the base of the array_ref EXPR.  */

static tree
get_array_base (tree expr)
{
  tree expr1;
  if (TREE_CODE (expr) != ARRAY_REF)
    abort ();

  expr1 = TREE_OPERAND (expr, 0);
  while (TREE_CODE (expr1) == ARRAY_REF)
    expr1 = TREE_OPERAND (expr1, 0);

  return expr1;
}


/* Function vect_analyze_data_ref_dependence.

   Return TRUE if there (might) exist a dependence between a memory-reference
   DRA and a memory-reference DRB.  */

static bool
vect_analyze_data_ref_dependence (struct data_reference *dra,
				  struct data_reference *drb)
{
  /* FORNOW: use most trivial and conservative test.  */

  /* CHECKME: this test holds only if the array base is not a pointer.
     This had been verified by analyze_data_refs.
     This restriction will be relaxed in the future.  */

  if (!array_base_name_differ_p (dra, drb))
    {
      enum data_dependence_direction ddd =
	ddg_direction_between_stmts (DR_STMT (dra), DR_STMT (drb), 
				      loop_num (loop_of_stmt (DR_STMT (dra))));

      if (ddd == dir_independent)
	return true;

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, 
		"vect_analyze_data_ref_dependence: same base\n");
      return false;
    }

  return true;
}


/* Function vect_analyze_data_ref_dependences.

   Examine all the data references in the loop, and make sure there do not
   exist any data dependences between them.

   FORNOW: We do not construct a data dependence graph and try to deal with
           dependences, but fail at the first data dependence that we
	   encounter.

   FORNOW: We only handle array references.

   FORNOW: We apply a trivial conservative dependence test.  */

static bool
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
{
  unsigned int i, j;
  varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo);

  /* examine store-store (output) dependences */

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "compare all store-store pairs\n");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++)
    {
      for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
	{
	  struct data_reference *dra =
	    VARRAY_GENERIC_PTR (loop_write_refs, i);
	  struct data_reference *drb =
	    VARRAY_GENERIC_PTR (loop_write_refs, j);
	  bool ok = vect_analyze_data_ref_dependence (dra, drb);
	  if (!ok)
	    return false;
	}
    }

  /* examine load-store (true/anti) dependences */

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "compare all load-store pairs\n");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++)
    {
      for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
	{
	  struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i);
	  struct data_reference *drb =
	    VARRAY_GENERIC_PTR (loop_write_refs, j);
	  bool ok = vect_analyze_data_ref_dependence (dra, drb);
	  if (!ok)
	    return false;
	}
    }

  return true;
}


/* Function vect_get_array_first_index.

   REF is an array reference. Find the lower bound of the array dimension and
   return it in ARRAY_FIRST_INDEX (e.g, 0 in C arrays, 1 in Fortran arrays 
   (unless defined otherwise). At the moment, gfortran arrays are represented
   with a poiner which points to one element lower than the array base, so
   ARRAY_FIRST_INDEX is currently 0 also for Fortran arrays).
   Return TRUE if such lower bound was found, and FLASE otherwise.  */

static bool
vect_get_array_first_index (tree ref, int *array_first_index)
{
  tree array_start;
  tree array_base_type;
  int array_start_val;

  array_base_type = TREE_TYPE (TREE_OPERAND (ref, 0));
  if (! TYPE_DOMAIN (array_base_type))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "no domain for array base type\n");
          print_generic_expr (dump_file, array_base_type, TDF_DETAILS);
        }
      return false;
    }

  array_start = TYPE_MIN_VALUE (TYPE_DOMAIN (array_base_type));
  if (TREE_CODE (array_start) != INTEGER_CST)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "array min val not integer cst\n");
          print_generic_expr (dump_file, array_start, TDF_DETAILS);
        }
      return false;
    }

  if (TREE_INT_CST_HIGH (array_start) != 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "array min val CST_HIGH != 0\n");
      return false;
    }

  array_start_val = TREE_INT_CST_LOW (array_start);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      print_generic_expr (dump_file, array_start, TDF_DETAILS);
      fprintf (dump_file, "\narray min val = %d\n", array_start_val);
    }

  *array_first_index = array_start_val;

  return true;
}


/* Function vect_compute_data_ref_alignment

   Compute the mislignment of the data reference DR.

   FOR NOW: No analysis is actually performed. Misalignment is calculated
   only for trivial cases. TODO.  */

static void
vect_compute_data_ref_alignment (struct data_reference *dr, 
				 loop_vec_info loop_vinfo ATTRIBUTE_UNUSED)
{
  tree stmt = DR_STMT (dr);
  tree ref = DR_REF (dr);
  tree vectype;
  tree access_fn = DR_ACCESS_FN (dr, 0); /* CHECKME */
  tree init;
  int init_val;
  tree scalar_type;
  int misalign;
  int array_start_val;
  bool ok;

  /* Initialize misalignment to unknown.  */
  DR_MISALIGNMENT (dr) = -1;


  /* In the special case of an array which alignment can be forced, we may be
     able to compute more informative information.  */

  if (!vect_force_dr_alignment_p (dr))
    return;

  init = initial_condition (access_fn);

  /* FORNOW: In order to simplify the handling of alignment, we make sure 
     that the first location at which the array is accessed ('init') is on an 
     'NUNITS' boundary, since we are assuming here that the alignment of the
     'array base' is aligned. This is too conservative, since we require that 
     both {'array_base' is a multiple of NUNITS} && {'init' is a multiple of 
     NUNITS}, instead of just {('array_base' + 'init') is a multiple of NUNITS}.
     This should be relaxed in the future.  */

  if (init && TREE_CODE (init) != INTEGER_CST)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "init not INTEGER_CST\n");
      return;
    }

  /* CHECKME */
  if (TREE_INT_CST_HIGH (init) != 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "init CST_HIGH != 0\n");
      return;
    }

  init_val = TREE_INT_CST_LOW (init);

  scalar_type = TREE_TYPE (ref);
  vectype = get_vectype_for_scalar_type (scalar_type);
  if (!vectype)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
          fprintf (dump_file, "no vectype for stmt: ");
          print_generic_expr (dump_file, stmt, TDF_SLIM);
          fprintf (dump_file, "\nscalar_type: ");
          print_generic_expr (dump_file, scalar_type, TDF_DETAILS);
          fprintf (dump_file, "\n");
        }
      return;
    }

  ok = vect_get_array_first_index (ref, &array_start_val);
  if (!ok)
    return;

  misalign = (init_val - array_start_val) % 
		GET_MODE_NUNITS (TYPE_MODE (vectype));

  DR_MISALIGNMENT (dr) = misalign;

  return;
}


/* Function vect_compute_data_refs_alignment

   Compute the mislignment of data references in the loop.
   This pass may take place at function granularity instead of at loop
   granularity.

   FOR NOW: No analysis is actually performed. Misalignment is calculated
   only for trivial cases. TODO.  */

static void
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
{
  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
  unsigned int i;
  
  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
      vect_compute_data_ref_alignment (dr, loop_vinfo);
    }

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
      vect_compute_data_ref_alignment (dr, loop_vinfo);
    }

  return; 
}


/* Function vect_enhance_data_refs_alignment

   This pass will use loop versioning and loop peeling in order to enhance
   the alignment of data references in the loop.

   FOR NOW: we assume that whatever versioning/peeling takes place, only the
   original loop is to be vectorized; Any other loops that are created by
   the transformations performed in this pass - are not supposed to be
   vectorized. This restriction will be relaxed.

   FOR NOW: No transformation is actually performed. TODO.  */

static void
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo ATTRIBUTE_UNUSED)
{
  /*
     This pass will require a cost model to guide it whether to apply peeling 
     or versioning or a combination of the two. For example, the scheme that
     intel uses when given a loop with several memory accesses, is as follows:
     choose one memory access ('p') which alignment you want to force by doing 
     peeling. Then, either (1) generate a loop in which 'p' is aligned and all 
     other accesses are not necessarily aligned, or (2) use loop versioning to 
     generate one loop in which all accesses are aligned, and another loop in 
     which only 'p' is necessarily aligned. 

     ("Automatic Intra-Register Vectorization for the Intel Architecture",
      Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
      Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)	

     Devising a cost model is the most critical aspect of this work. It will 
     guide us on which access to peel for, whether to use loop versioning, how 
     many versions to create, etc. The cost model will probably consist of 
     generic considerations as well as target specific considerations (on 
     powerpc for example, misaligned stores are more painful than misaligned 
     loads). 

     Here is the general steps involved in alignment enhancements:
    
     -- original loop, before alignment analysis:
	for (i=0; i<N; i++){
	  x = q[i];			# DR_MISALIGNMENT(q) = unknown
	  p[i] = y;			# DR_MISALIGNMENT(p) = unknown
	}

     -- After vect_compute_data_refs_alignment:
	for (i=0; i<N; i++){
	  x = q[i];			# DR_MISALIGNMENT(q) = 3
	  p[i] = y;			# DR_MISALIGNMENT(p) = unknown
	}

     -- Possibility 1: we do loop versioning:
     if (p is aligned) {
	for (i=0; i<N; i++){	# loop 1A
	  x = q[i];			# DR_MISALIGNMENT(q) = 3
	  p[i] = y;			# DR_MISALIGNMENT(p) = 0
	}
     } 
     else {
	for (i=0; i<N; i++){	# loop 1B
	  x = q[i];			# DR_MISALIGNMENT(q) = 3
	  p[i] = y;			# DR_MISALIGNMENT(p) = unaligned
	}
     }
   
     -- Possibility 2: we do loop peeling:
     for (i = 0; i < 3; i++){	# (scalar loop, not to be vectorized).
	x = q[i];
	p[i] = y;
     }
     for (i = 3; i < N; i++){	# loop 2A
	x = q[i];			# DR_MISALIGNMENT(q) = 0
	p[i] = y;			# DR_MISALIGNMENT(p) = unknown
     }

     -- Possibility 3: combination of loop peeling and versioning:
     for (i = 0; i < 3; i++){	# (scalar loop, not to be vectorized).
	x = q[i];
	p[i] = y;
     }
     if (p is aligned) {
	for (i = 3; i<N; i++){  # loop 3A
	  x = q[i];			# DR_MISALIGNMENT(q) = 0
	  p[i] = y;			# DR_MISALIGNMENT(p) = 0
	}
     } 
     else {
	for (i = 3; i<N; i++){	# loop 3B
	  x = q[i];			# DR_MISALIGNMENT(q) = 0
	  p[i] = y;			# DR_MISALIGNMENT(p) = unaligned
	}
     }

     These loops are later passed to loop_transform to be vectorized. The 
     vectorizer will use the alignment information to guide the transformation 
     (whether to generate regular loads/stores, or with special handling for 
     misalignment). 
   */

  return;  
}


/* Function vect_analyze_data_refs_alignment

   Analyze the alignment of the data-references in the loop.
   FOR NOW: Until support fot misliagned accesses is in place, only if all
   accesses are aligned can the loop be vectorized. This restruction will be 
   relaxed.  */ 

static bool
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
{
  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
  unsigned int i;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vect_analyze_data_refs_alignment>>\n");


  /* This pass may take place at function granularity instead of at loop
     granularity.  */

  vect_compute_data_refs_alignment (loop_vinfo);


  /* This pass will use loop versioning and loop peeling in order to enhance
     the alignment of data references in the loop.
     FOR NOW: we assume that whatever versioning/peeling took place, the 
     original loop is to be vectorized. Any other loops that were created by
     the transformations performed in this pass - are not supposed to be 
     vectorized. This restriction will be relaxed.  */

  vect_enhance_data_refs_alignment (loop_vinfo);


  /* Finally, check that loop can be vectorized. 
     FOR NOW: Until support fot misliagned accesses is in place, only if all
     accesses are aligned can the loop be vectorized. This restruction will be 
     relaxed.  */

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
      if (!aligned_access_p (dr))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "first access not aligned.\n");
	  return false;
	}
    }

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
      if (!aligned_access_p (dr))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "first access not aligned.\n");
	  return false;
	}
    }

  return true;
}


/* Function vect_analyze_data_ref_access.

   Analyze the access pattern of the data-reference DR. For now, a data access
   has to consecutive and aligned to be considered vectorizable.  */

static bool
vect_analyze_data_ref_access (struct data_reference *dr)
{
  varray_type access_fns = DR_ACCESS_FNS (dr);
  tree access_fn;
  tree init, step;

  /* FORNOW: handle only one dimensional arrays.
     This restriction will be relaxed in the future.  */
  if (VARRAY_ACTIVE_SIZE (access_fns) != 1)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "multi dimensional array reference.\n");
      return false;
    }
  access_fn = DR_ACCESS_FN (dr, 0);

  if (!vect_is_simple_iv_evolution (loop_num (loop_of_stmt (DR_STMT (dr))), 
	access_fn, &init, &step, true))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "too complicated access function\n");
	  print_generic_expr (dump_file, access_fn, TDF_SLIM);
	}
      return false;
    }

  return true;
}


/* Function vect_analyze_data_ref_accesses.

   Analyze the access pattern of all the data references in the loop.

   FORNOW: the only access pattern that is considered vectorizable is a
	   simple step 1 (consecutive) access.

   FORNOW: handle only one dimensional arrays.  */

static bool
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
{
  unsigned int i;
  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vect_analyze_data_ref_accesses>>\n");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
      bool ok = vect_analyze_data_ref_access (dr);
      if (!ok)
	return false;
    }

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
      bool ok = vect_analyze_data_ref_access (dr);
      if (!ok)
	return false;
    }

  return true;
}


/* Function vect_analyze_data_refs.

   Find all the data references in the loop.

   FORNOW: Handle only one dimensional ARRAY_REFs which base is really an
           array (not a pointer) which alignment can be forced. This
	   restriction will be relaxed.   */

static bool
vect_analyze_data_refs (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  int j;
  struct data_reference *dr;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vect_analyze_data_refs>>\n");

  for (j = 0; j < nbbs; j++)
    {
      basic_block bb = bbs[j];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	  vdef_optype vdefs = STMT_VDEF_OPS (stmt);
	  vuse_optype vuses = STMT_VUSE_OPS (stmt);
	  varray_type *datarefs = NULL;
	  int nvuses = 0, nvdefs = 0;
	  tree ref = NULL;
	  tree array_base;

	  /* CHECKME: Relying on the fact that there exists a data-ref
	     in stmt, if and only if it has vuses/vdefs.  */

	  if (!vuses && !vdefs)
	    continue;

	  if (vuses)
	    nvuses = NUM_VUSES (vuses);
	  if (vdefs)
	    nvdefs = NUM_VDEFS (vdefs);

	  if (nvuses + nvdefs != 1)
	    {
	      /* CHECKME: multiple vdefs/vuses in a GIMPLE stmt are
	         assumed to indicate a non vectorizable stmt (e.g, ASM,
	         CALL_EXPR) or the presence of an aliasing problem. The
	         first case is ruled out during vect_analyze_operations;
	         As for the second case, currently the vuses/vdefs are
	         meaningless as they are too conservative. We therefore
	         ignore them.  */

	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
	          fprintf (dump_file, "Warning: multiple vops!\n");
	          print_generic_stmt (dump_file, stmt, 
			~(TDF_RAW | TDF_SLIM | TDF_LINENO));
		}
	    }

	  if (TREE_CODE (stmt) != MODIFY_EXPR)
	    {
	      /* CHECKME: a vdef/vuse in a GIMPLE stmt is assumed to
	         appear only in a MODIFY_EXPR.  */

	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "unexpected vops in stmt\n");
		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  if (vuses)
	    {
	      if (TREE_CODE (TREE_OPERAND (stmt, 1)) == ARRAY_REF)
		{
		  ref = TREE_OPERAND (stmt, 1);
		  datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo));
		}
	    }

	  if (vdefs)
	    {
	      if (TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_REF)
		{
		  ref = TREE_OPERAND (stmt, 0);
		  datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
		}
	    }

	  if (!ref)
	    {
	      /* A different type of data reference (pointer?, struct?)
	         FORNOW: Do not attempt to handle.  */
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "unhandled non-array data ref\n");
		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  dr = analyze_array (stmt, ref);

	  array_base = TREE_OPERAND (ref, 0);

	  /* FORNOW: make sure that the array is one dimensional.
	     This restriction will be relaxed in the future.  */
	  if (TREE_CODE (array_base) == ARRAY_REF)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "unhandled 2D-array data ref\n");
		  print_generic_stmt (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  VARRAY_PUSH_GENERIC_PTR (*datarefs, dr);
	  STMT_VINFO_DATA_REF (stmt_info) = dr;
	}
    }

  return true;
}


/* Utility functions used by vect_mark_stmts_to_be_vectorized.
   Implementation inspired by tree-ssa-dce.c.  */

/* Function vect_mark_relevant.

   Mark STMT as "relevant for vectorization" and add it to WORKLIST.  */

static void
vect_mark_relevant (varray_type worklist, tree stmt)
{
  stmt_vec_info stmt_info;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "mark relevant.\n");

  if (TREE_CODE (stmt) == PHI_NODE)
    {
      VARRAY_PUSH_TREE (worklist, stmt);
      return;
    }

  stmt_info = vinfo_for_stmt (stmt);

  if (!stmt_info)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "mark relevant: no stmt info!!\n");
	  print_generic_expr (dump_file, stmt, TDF_SLIM);
	}
      return;
    }

  if (STMT_VINFO_RELEVANT_P (stmt_info))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "already marked relevant.\n");
      return;
    }

  STMT_VINFO_RELEVANT_P (stmt_info) = 1;
  VARRAY_PUSH_TREE (worklist, stmt);
}


/* Function vect_stmt_relevant_p.

   Return true if STMT in loop that is represented by LOOP_VINFO is
   "relevant for vectorization".

   A stmt is considered "relevant for vectorization" if:
   - it has uses outside the loop.
   - it has vdefs (it alters memory).
   - control stmts in the loop (except for the exit condition).

   CHECKME: what other side effects would the vectorizer allow?  */

static bool
vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
{
  vdef_optype vdefs;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  int i;
  dataflow_t df;
  int num_uses;

  /* cond stmt other than loop exit cond.  */
  if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
    return true;

  /* changing memory.  */
  vdefs = STMT_VDEF_OPS (stmt);
  if (vdefs)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "vec_stmt_relevant_p: stmt has vdefs:\n");
      return true;
    }

  /* uses outside the loop.  */
  df = get_immediate_uses (stmt);
  num_uses = num_immediate_uses (df);
  for (i = 0; i < num_uses; i++)
    {
      tree use = immediate_use (df, i);
      basic_block bb = bb_for_stmt (use);
      if (!flow_bb_inside_loop_p (loop, bb))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, 
		"vec_stmt_relevant_p: used out of loop:\n");
	  return true;
	}
    }

  return false;
}


/* Function vect_mark_stmts_to_be_vectorized.

   Not all stmts in the loop need to be vectorized. For example:

     for i...
       for j...
   1.    T0 = i + j
   2.	 T1 = a[T0]

   3.    j = j + 1

   Stmt 1 and 3 do not need to be vectorized, because loop control and
   addressing of vectorized data-refs are handled differently.

   This pass detects such stmts.  */

static bool
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
{
  varray_type worklist;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  unsigned int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  tree stmt;
  stmt_ann_t ann;
  unsigned int i;
  int j;
  use_optype use_ops;
  stmt_vec_info stmt_info;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vect_mark_stmts_to_be_vectorized>>\n");

  VARRAY_TREE_INIT (worklist, 64, "work list");

  /* 1. Init worklist.  */

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  stmt = bsi_stmt (si);

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "init: stmt relevant?\n");
	      print_generic_stmt (dump_file, stmt, TDF_SLIM);
	    } 

	  stmt_info = vinfo_for_stmt (stmt);
	  STMT_VINFO_RELEVANT_P (stmt_info) = 0;

	  if (vect_stmt_relevant_p (stmt, loop_vinfo))
	    vect_mark_relevant (worklist, stmt);
	}
    }


  /* 2. Process_worklist */

  while (VARRAY_ACTIVE_SIZE (worklist) > 0)
    {
      stmt = VARRAY_TOP_TREE (worklist);
      VARRAY_POP (worklist);

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
          fprintf (dump_file, "worklist: examine stmt:\n");
          print_generic_stmt (dump_file, stmt, TDF_SLIM);
	}

      /* Examine the USES in this statement. Mark all the statements which
         feed this statement's uses as "relevant", unless the USE is used as
         an array index.  */

      if (TREE_CODE (stmt) == PHI_NODE)
	{
	  /* follow the def-use chain inside the loop.  */
	  for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
	    {
	      tree arg = PHI_ARG_DEF (stmt, j);
	      if (TREE_CODE (arg) == SSA_NAME)
		{
		  tree def_stmt = NULL_TREE;
		  basic_block bb;

		  if (TREE_CODE (arg) == SSA_NAME)
		    def_stmt = SSA_NAME_DEF_STMT (arg);

		  if (def_stmt == NULL_TREE )
		    {
		      if (dump_file && (dump_flags & TDF_DETAILS))
		        fprintf (dump_file, "\nworklist: no def_stmt!\n");
		      varray_clear (worklist);
		      return false;
		    }

		  if (TREE_CODE (def_stmt) == NOP_EXPR)
		    {
          	      tree arg = TREE_OPERAND (def_stmt, 0);
		      if (TREE_CODE (arg) != INTEGER_CST
			  && TREE_CODE (arg) != REAL_CST)
			{
		          if (dump_file && (dump_flags & TDF_DETAILS))
		            fprintf (dump_file, "\nworklist: NOP def_stmt?\n");
		          varray_clear (worklist);
		          return false;
			}
		      continue;	
		    }

		  if (dump_file && (dump_flags & TDF_DETAILS))
		    {
		      fprintf (dump_file, "\nworklist: def_stmt:\n");
		      print_generic_expr (dump_file, def_stmt, TDF_SLIM);
		    }

		  bb = bb_for_stmt (def_stmt);
		  if (flow_bb_inside_loop_p (loop, bb))
		    vect_mark_relevant (worklist, def_stmt);
		}
	    } 

	  continue;
	} 

      ann = stmt_ann (stmt);
      use_ops = USE_OPS (ann);

      for (i = 0; i < NUM_USES (use_ops); i++)
	{
	  tree use = USE_OP (use_ops, i);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "\nworklist: examine use %d:\n", i);
	      print_generic_expr (dump_file, use, TDF_SLIM);
	    }

	  if (exist_non_indexing_operands_for_use_p (use, stmt))
	    {
	      tree def_stmt = NULL_TREE;
	      basic_block bb;

	      if (TREE_CODE (use) == SSA_NAME)
		def_stmt = SSA_NAME_DEF_STMT (use);

	      if (def_stmt == NULL_TREE)
		{
		  if (dump_file && (dump_flags & TDF_DETAILS))
		    fprintf (dump_file, "\nworklist: no def_stmt!\n");
		  varray_clear (worklist);
		  return false;
		}

              if (TREE_CODE (def_stmt) == NOP_EXPR)
                {
                  tree arg = TREE_OPERAND (def_stmt, 0);
                  if (TREE_CODE (arg) != INTEGER_CST
                      && TREE_CODE (arg) != REAL_CST)
                    {
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        fprintf (dump_file, "\nworklist: NOP def_stmt?\n");
                      varray_clear (worklist);
                      return false;
                    }
                  continue;
                }

	      if (dump_file && (dump_flags & TDF_DETAILS))	
		{
	          fprintf (dump_file, "\nworklist: def_stmt:\n");
	          print_generic_expr (dump_file, def_stmt, TDF_SLIM);
		}

	      bb = bb_for_stmt (def_stmt);
	      if (flow_bb_inside_loop_p (loop, bb))
		vect_mark_relevant (worklist, def_stmt);
	    }
	}

    }				/* while worklist */

  varray_clear (worklist);
  return true;
}


/* Function vect_get_loop_niters.

   Determine how many iterations the loop is executed.  */

static tree
vect_get_loop_niters (struct loop *loop, int *number_of_iterations)
{
  tree niters;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<get_loop_niters>>\n");

  niters = number_of_iterations_in_loop (loop);

  if (niters != NULL_TREE
      && TREE_CODE (niters) == INTEGER_CST)
    {
      *number_of_iterations = TREE_INT_CST_LOW (niters);

      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "get_loop_niters: %d.\n",
		*number_of_iterations);
    }

  return get_loop_exit_condition (loop);
}


/* Function vect_analyze_loop_form.

   Verify the following restrictions:
   Some of these maybe relaxed in the future.

   - it's an inner-most loop
   - number of BBs = 2 (which are the loop header and the latch)
   - the loop has a pre header
   - the loop has a single entry and exit
   - the loop exit condition is simple enough  */

static loop_vec_info
vect_analyze_loop_form (struct loop *loop)
{
  loop_vec_info loop_vinfo;
  tree loop_cond;
  int number_of_iterations = -1;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n<<vect_analyze_loop_form>>\n");

  if (loop->level > 1		/* FORNOW: inner-most loop (CHECKME)  */
      || loop->num_exits > 1 || loop->num_entries > 1 || loop->num_nodes != 2
      || !loop->pre_header || !loop->header || !loop->latch)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file,
	   "loop_analyzer: bad loop form (entry/exit, nbbs, level...)\n");
	  flow_loop_dump (loop, dump_file, NULL, 1);
	}

      return NULL;
    }

  loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
  if (!loop_cond)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Complicated exit condition.\n");
      return NULL;
    }

  if (number_of_iterations < 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Can't determine num iters.\n");
      return NULL;
    }

  /* CHECKME: check monev analyzer.  */
  if (number_of_iterations == 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "0 iterations??\n");
      return NULL;
    }

  loop_vinfo = new_loop_vec_info (loop);

  LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
  LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;

  return loop_vinfo;
}


/* Function vect_analyze_loop.

   Apply a set of analyses on LOOP, and create a loop_vec_info struct
   for it. The different analyses will record information in the
   loop_vec_info struct.  */

static loop_vec_info
vect_analyze_loop (struct loop *loop)
{
  bool ok;
  loop_vec_info loop_vinfo;

  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\n\n<<<<<<< analyze_loop_nest >>>>>>>\n");

  /* Check the CFG characteristics of the loop (nesting, entry/exit, etc.  */

  loop_vinfo = vect_analyze_loop_form (loop);
  if (!loop_vinfo)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: bad loop form.\n");
      return NULL;
    }

  /* Find all data references in the loop (which correspond to vdefs/vuses)
     and analyze their evolution in the loop.

     FORNOW: Handle only simple, one-dimensional, array references, which
     alignment can be forced.  */

  ok = vect_analyze_data_refs (loop_vinfo);
  if (!ok)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: bad data references.\n");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }


  /* Data-flow analysis to detect stmts that do not need to be vectorized.  */

  ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
  if (!ok)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: unexpected pattern.\n");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }


  /* Check that all cross-iteration scalar data-flow cycles are OK.
     Cross-iteration cycles caused by virtual phis are analyzed separately.  */

  ok = vect_analyze_scalar_cycles (loop_vinfo);
  if (!ok)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: bad scalar cycle.\n");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }


  /* Analyze data dependences between the data-refs in the loop.
     FORNOW: We do not construct a data dependence graph and try to deal
     with dependences, but fail at the first data dependence that
     we encounter.  */

  ok = vect_analyze_data_ref_dependences (loop_vinfo);

  /* TODO: May want to generate run time pointer aliasing checks and
     loop versioning.  */

  /* TODO: May want to perform loop transformations to break dependence
     cycles.  */

  if (!ok)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: bad data dependence.\n");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }


  /* Analyze the access patterns of the data-refs in the loop (consecutive,
     complex, etc.). FORNOW: Only handle consecutive access pattern.  */

  ok = vect_analyze_data_ref_accesses (loop_vinfo);
  if (!ok)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: bad data access.\n");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }


  /* Analyze the alignment of the data-refs in the loop.
     FORNOW: Only aligned accesses are handled.  */

  ok = vect_analyze_data_refs_alignment (loop_vinfo);
  if (!ok)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: bad data alignment.\n");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }


  /* Scan all the operations in the loop and make sure they are
     vectorizable.  */

  ok = vect_analyze_operations (loop_vinfo);
  if (!ok)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "loop_analyzer: bad operations.\n");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  /* TODO: May want to collapse conditional code and loop versioning.   */

  /* TODO: Alignment: May want to perform loop peeling and/or run time
     tests and loop versioning.  */

  LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;

  return loop_vinfo;
}


/* Function indicating whether we ought to include information for 'var'
   when calculating immediate uses.  For this pass we only want use
   information for non-virtual variables.  */

static bool
need_imm_uses_for (tree var)
{
  return is_gimple_reg (var);
}


/* Function vectorize_loops.
   Entry Point to loop vectorization phase.  */

void
vectorize_loops (struct loops *loops)
{
  unsigned int i;
  unsigned int num_vectorized_loops = 0;

  /* Does the target support SIMD?  */
  /* FORNOW: until more sophisticated machine modelling is in place.  */
  if (!UNITS_PER_SIMD_WORD)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "vectorizer: target vector size is not defined.\n");
      return;
    }

  compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);

  /*  ----------- Analyze loops. -----------  */
  /* CHECKME */
  for (i = 1; i < loops->num; i++)
    {
      loop_vec_info loop_vinfo;
      struct loop *loop = loops->parray[i];

      flow_loop_scan (loop, LOOP_ALL);

      loop_vinfo = vect_analyze_loop (loop);
      loop->aux = loop_vinfo;

#ifndef ANALYZE_ALL_THEN_VECTORIZE_ALL
      if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
	continue;

      vect_transform_loop (loop_vinfo);
      num_vectorized_loops++;
#endif
    }

#ifdef ANALYZE_ALL_THEN_VECTORIZE_ALL
  for (i = 1; i < loops->num; i++)
    {
      struct loop *loop = loops->parray[i];
      loop_vec_info loop_vinfo = loop->aux;

      if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
	continue;

      vect_transform_loop (loop_vinfo);
      num_vectorized_loops++;
    }
#endif

  if (dump_file && (dump_flags & TDF_STATS))
    fprintf (dump_file, "vectorized %u loops in function.\n",
	     num_vectorized_loops);

  /*  ----------- Finialize. -----------  */

  free_df ();
  for (i = 1; i < loops->num; i++)
    {
      struct loop *loop = loops->parray[i];
      loop_vec_info loop_vinfo = loop->aux;
      destroy_loop_vec_info (loop_vinfo);
      loop->aux = NULL;
    }
}