aboutsummaryrefslogtreecommitdiff
path: root/libffi/src/ia64/ffi.c
blob: bb4fbb73a728ed810d649f780d752e42f05ba4e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
/* -----------------------------------------------------------------------
   ffi.c - Copyright (c) 1998 Cygnus Solutions
	   Copyright (c) 2000 Hewlett Packard Company
   
   IA64 Foreign Function Interface 

   Permission is hereby granted, free of charge, to any person obtaining
   a copy of this software and associated documentation files (the
   ``Software''), to deal in the Software without restriction, including
   without limitation the rights to use, copy, modify, merge, publish,
   distribute, sublicense, and/or sell copies of the Software, and to
   permit persons to whom the Software is furnished to do so, subject to
   the following conditions:

   The above copyright notice and this permission notice shall be included
   in all copies or substantial portions of the Software.

   THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
   IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
   OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
   ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
   OTHER DEALINGS IN THE SOFTWARE.
   ----------------------------------------------------------------------- */

#include <ffi.h>
#include <ffi_common.h>

#include <stdlib.h>

#include "ia64_flags.h"

/* Memory image of fp register contents.  Should eventually be an fp 	*/
/* type long enough to hold an entire register.  For now we use double.	*/
typedef double float80;

/* The stack layout at call to ffi_prep_regs.  Other_args will remain	*/
/* on the stack for the actual call.  Everything else we be transferred	*/
/* to registers and popped by the assembly code.			*/

struct ia64_args {
    long scratch[2];	/* Two scratch words at top of stack.		*/
			/* Allows sp to passed as arg pointer.		*/
    void * r8_contents;	/* Value to be passed in r8			*/
    long spare;		/* Not used.					*/
    float80 fp_regs[8]; /* Contents of 8 floating point argument 	*/
			/* registers.					*/
    long out_regs[8];	/* Contents of the 8 out registers used 	*/
			/* for integer parameters.			*/
    long other_args[0]; /* Arguments passed on stack, variable size	*/
			/* Treated as continuation of out_regs.		*/
};

static size_t float_type_size(unsigned short tp)
{
  switch(tp) {
    case FFI_TYPE_FLOAT:
      return sizeof(float);
    case FFI_TYPE_DOUBLE:
      return sizeof(double);
#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
    case FFI_TYPE_LONGDOUBLE:
      return sizeof(long double);
#endif
    default:
      FFI_ASSERT(0);
  }
}

/*
 * Is type a struct containing at most n floats, doubles, or extended
 * doubles, all of the same fp type?
 * If so, set *element_type to the fp type.
 */
static bool is_homogeneous_fp_aggregate(ffi_type * type, int n,
				        unsigned short * element_type)
{
  ffi_type **ptr; 
  unsigned short element, struct_element;

  int type_set = 0;

  FFI_ASSERT(type != NULL);

  FFI_ASSERT(type->elements != NULL);

  ptr = &(type->elements[0]);

  while ((*ptr) != NULL)
    {
      switch((*ptr) -> type) {
	case FFI_TYPE_FLOAT:
	  if (type_set && element != FFI_TYPE_FLOAT) return 0;
	  if (--n < 0) return FALSE;
	  type_set = 1;
	  element = FFI_TYPE_FLOAT;
	  break;
	case FFI_TYPE_DOUBLE:
	  if (type_set && element != FFI_TYPE_DOUBLE) return 0;
	  if (--n < 0) return FALSE;
	  type_set = 1;
	  element = FFI_TYPE_DOUBLE;
	  break;
	case FFI_TYPE_STRUCT:
	  if (!is_homogeneous_fp_aggregate(type, n, &struct_element))
	      return FALSE;
	  if (type_set && struct_element != element) return FALSE;
	  n -= (type -> size)/float_type_size(element);
	  element = struct_element;
	  if (n < 0) return FALSE;
	  break;
	/* case FFI_TYPE_LONGDOUBLE:
	  Not yet implemented.	*/
	default:
	  return FALSE;
      }
      ptr++;
    }
  *element_type = element;
  return TRUE;
   
} 

/* ffi_prep_args is called by the assembly routine once stack space
   has been allocated for the function's arguments.  Returns nonzero
   if fp registers are used for arguments. */

static bool
ffi_prep_args(struct ia64_args *stack, extended_cif *ecif, int bytes)
{
  register long i, avn;
  register void **p_argv;
  register long *argp = stack -> out_regs;
  register float80 *fp_argp = stack -> fp_regs;
  register ffi_type **p_arg;

  /* For big return structs, r8 needs to contain the target address.	*/
  /* Since r8 is otherwise dead, we set it unconditionally.		*/
  stack -> r8_contents = ecif -> rvalue;
  i = 0;
  avn = ecif->cif->nargs;
  p_arg = ecif->cif->arg_types;
  p_argv = ecif->avalue;
  while (i < avn)
    {
      size_t z; /* z is in units of arg slots or words, not bytes.	*/

      switch ((*p_arg)->type)
	{
	case FFI_TYPE_SINT8:
	  z = 1;
	  *(SINT64 *) argp = *(SINT8 *)(* p_argv);
	  break;
		  
	case FFI_TYPE_UINT8:
	  z = 1;
	  *(UINT64 *) argp = *(UINT8 *)(* p_argv);
	  break;
		  
	case FFI_TYPE_SINT16:
	  z = 1;
	  *(SINT64 *) argp = *(SINT16 *)(* p_argv);
	  break;
		  
	case FFI_TYPE_UINT16:
	  z = 1;
	  *(UINT64 *) argp = *(UINT16 *)(* p_argv);
	  break;
		  
	case FFI_TYPE_SINT32:
	  z = 1;
	  *(SINT64 *) argp = *(SINT32 *)(* p_argv);
	  break;
		  
	case FFI_TYPE_UINT32:
	  z = 1;
	  *(UINT64 *) argp = *(UINT32 *)(* p_argv);
	  break;

	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT64:
	case FFI_TYPE_POINTER:
	  z = 1;
	  *(UINT64 *) argp = *(UINT64 *)(* p_argv);
	  break;

	case FFI_TYPE_FLOAT:
	  z = 1;
	  if (fp_argp - stack->fp_regs < 8)
	    {
	      /* Note the conversion -- all the fp regs are loaded as
		 doubles.  */
	      *fp_argp++ = *(float *)(* p_argv);
	    }
	  /* Also put it into the integer registers or memory: */
	    *(UINT64 *) argp = *(UINT32 *)(* p_argv);
	  break;

	case FFI_TYPE_DOUBLE:
	  z = 1;
	  if (fp_argp - stack->fp_regs < 8)
	    *fp_argp++ = *(double *)(* p_argv);
	  /* Also put it into the integer registers or memory: */
	    *(double *) argp = *(double *)(* p_argv);
	  break;

	case FFI_TYPE_STRUCT:
	  {
	      size_t sz = (*p_arg)->size;
	      unsigned short element_type;
              z = ((*p_arg)->size + SIZEOF_ARG - 1)/SIZEOF_ARG;
	      if (is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) {
		int i;
		int nelements = sz/float_type_size(element_type);
		for (i = 0; i < nelements; ++i) {
		  switch (element_type) {
		    case FFI_TYPE_FLOAT:
		      if (fp_argp - stack->fp_regs < 8)
			*fp_argp++ = ((float *)(* p_argv))[i];
		      break;
		    case FFI_TYPE_DOUBLE:
		      if (fp_argp - stack->fp_regs < 8)
			*fp_argp++ = ((double *)(* p_argv))[i];
		      break;
		    default:
			/* Extended precision not yet implemented. */
			abort();
		  }
		}
	      }
	      /* And pass it in integer registers as a struct, with	*/
	      /* its actual field sizes packed into registers.		*/
	      memcpy(argp, *p_argv, (*p_arg)->size);
	  }
	  break;

	default:
	  FFI_ASSERT(0);
	}

      argp += z;
      i++, p_arg++, p_argv++;
    }
  return (fp_argp != stack -> fp_regs);
}

/* Perform machine dependent cif processing */
ffi_status
ffi_prep_cif_machdep(ffi_cif *cif)
{
  long i, avn;
  bool is_simple = TRUE;
  long simple_flag = FFI_SIMPLE_V;
  /* Adjust cif->bytes to include space for the 2 scratch words,
     r8 register contents, spare word,
     the 8 fp register contents, and all 8 integer register contents.
     This will be removed before the call, though 2 scratch words must
     remain.  */

  cif->bytes += 4*sizeof(long) + 8 *sizeof(float80);
  if (cif->bytes < sizeof(struct ia64_args))
    cif->bytes = sizeof(struct ia64_args);

  /* The stack must be double word aligned, so round bytes up
     appropriately. */

  cif->bytes = ALIGN(cif->bytes, 2*sizeof(void*));

  avn = cif->nargs;
  if (avn <= 2) {
    for (i = 0; i < avn; ++i) {
      switch(cif -> arg_types[i] -> type) {
	case FFI_TYPE_SINT32:
	  simple_flag = FFI_ADD_INT_ARG(simple_flag);
	  break;
	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT64:
	case FFI_TYPE_POINTER:
	  simple_flag = FFI_ADD_LONG_ARG(simple_flag);
	  break;
	default:
	  is_simple = FALSE;
      }
    }
  } else {
    is_simple = FALSE;
  }

  /* Set the return type flag */
  switch (cif->rtype->type)
    {
    case FFI_TYPE_VOID:
      cif->flags = FFI_TYPE_VOID;
      break;

    case FFI_TYPE_STRUCT:
      {
        size_t sz = cif -> rtype -> size;
  	unsigned short element_type;

	is_simple = FALSE;
  	if (is_homogeneous_fp_aggregate(cif -> rtype, 8, &element_type)) {
	  int nelements = sz/float_type_size(element_type);
	  if (nelements <= 1) {
	    if (0 == nelements) {
	      cif -> flags = FFI_TYPE_VOID;
	    } else {
	      cif -> flags = element_type;
	    }
	  } else {
	    switch(element_type) {
	      case FFI_TYPE_FLOAT:
	        cif -> flags = FFI_IS_FLOAT_FP_AGGREGATE | nelements;
		break;
	      case FFI_TYPE_DOUBLE:
	        cif -> flags = FFI_IS_DOUBLE_FP_AGGREGATE | nelements;
		break;
	      default:
		/* long double NYI */
		abort();
	    }
	  }
	  break;
        }
        if (sz <= 32) {
	  if (sz <= 8) {
              cif->flags = FFI_TYPE_INT;
  	  } else if (sz <= 16) {
              cif->flags = FFI_IS_SMALL_STRUCT2;
  	  } else if (sz <= 24) {
              cif->flags = FFI_IS_SMALL_STRUCT3;
	  } else {
              cif->flags = FFI_IS_SMALL_STRUCT4;
	  }
        } else {
          cif->flags = FFI_TYPE_STRUCT;
	}
      }
      break;

    case FFI_TYPE_FLOAT:
      is_simple = FALSE;
      cif->flags = FFI_TYPE_FLOAT;
      break;

    case FFI_TYPE_DOUBLE:
      is_simple = FALSE;
      cif->flags = FFI_TYPE_DOUBLE;
      break;

    default:
      cif->flags = FFI_TYPE_INT;
      /* This seems to depend on little endian mode, and the fact that	*/
      /* the return pointer always points to at least 8 bytes.  But 	*/
      /* that also seems to be true for other platforms.		*/
      break;
    }
  
  if (is_simple) cif -> flags |= simple_flag;
  return FFI_OK;
}

extern int ffi_call_unix(bool (*)(struct ia64_args *, extended_cif *, int), 
			 extended_cif *, unsigned, 
			 unsigned, unsigned *, void (*)());

void
ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
{
  extended_cif ecif;
  long simple = cif -> flags & FFI_SIMPLE;

  /* Should this also check for Unix ABI? */
  /* This is almost, but not quite, machine independent.  Note that	*/
  /* we can get away with not caring about length of the result because	*/
  /* we assume we are little endian, and the result buffer is large 	*/
  /* enough.								*/
  /* This needs work for HP/UX.						*/
  if (simple) {
    long (*lfn)() = (long (*)())fn;
    long result;
    switch(simple) {
      case FFI_SIMPLE_V:
	result = lfn();
	break;
      case FFI_SIMPLE_I:
	result = lfn(*(int *)avalue[0]);
	break;
      case FFI_SIMPLE_L:
	result = lfn(*(long *)avalue[0]);
	break;
      case FFI_SIMPLE_II:
	result = lfn(*(int *)avalue[0], *(int *)avalue[1]);
	break;
      case FFI_SIMPLE_IL:
	result = lfn(*(int *)avalue[0], *(long *)avalue[1]);
	break;
      case FFI_SIMPLE_LI:
	result = lfn(*(long *)avalue[0], *(int *)avalue[1]);
	break;
      case FFI_SIMPLE_LL:
	result = lfn(*(long *)avalue[0], *(long *)avalue[1]);
	break;
    }
    if ((cif->flags & ~FFI_SIMPLE) != FFI_TYPE_VOID && 0 != rvalue) {
      * (long *)rvalue = result;
    }
    return;
  }
  ecif.cif = cif;
  ecif.avalue = avalue;
  
  /* If the return value is a struct and we don't have a return
     value address then we need to make one.  */
  
  if (rvalue == NULL && cif->rtype->type == FFI_TYPE_STRUCT)
    ecif.rvalue = alloca(cif->rtype->size);
  else
    ecif.rvalue = rvalue;
    
  switch (cif->abi) 
    {
    case FFI_UNIX:
      ffi_call_unix(ffi_prep_args, &ecif, cif->bytes,
		    cif->flags, rvalue, fn);
      break;

    default:
      FFI_ASSERT(0);
      break;
    }
}

/*
 * Closures represent a pair consisting of a function pointer, and
 * some user data.  A closure is invoked by reinterpreting the closure
 * as a function pointer, and branching to it.  Thus we can make an
 * interpreted function callable as a C function:  We turn the interpreter
 * itself, together with a pointer specifying the interpreted procedure,
 * into a closure.
 * On X86, the first few words of the closure structure actually contain code,
 * which will do the right thing.  On most other architectures, this
 * would raise some Icache/Dcache coherence issues (which can be solved, but
 * often not cheaply).
 * For IA64, function pointer are already pairs consisting of a code
 * pointer, and a gp pointer.  The latter is needed to access global variables.
 * Here we set up such a pair as the first two words of the closure (in
 * the "trampoline" area), but we replace the gp pointer with a pointer
 * to the closure itself.  We also add the real gp pointer to the
 * closure.  This allows the function entry code to both retrieve the
 * user data, and to restire the correct gp pointer.
 */

static void 
ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue,
			    void **avalue, ffi_cif *cif);

/* This function is entered with the doctored gp (r1) value.
 * This code is extremely gcc specific.  There is some argument that
 * it should really be written in assembly code, since it depends on
 * gcc properties that might change over time.
 */

/* ffi_closure_UNIX is an assembly routine, which copies the register 	*/
/* state into s struct ia64_args, and the invokes			*/
/* ffi_closure_UNIX_inner.  It also recovers the closure pointer	*/
/* from its fake gp pointer.						*/
void ffi_closure_UNIX();

#ifndef __GNUC__
#   error This requires gcc
#endif
void
ffi_closure_UNIX_inner (ffi_closure *closure, struct ia64_args * args)
/* Hopefully declarint this as a varargs function will force all args	*/
/* to memory.								*/
{
  // this is our return value storage
  long double    res;

  // our various things...
  ffi_cif       *cif;
  unsigned short rtype;
  void          *resp;
  void		**arg_area;

  resp = (void*)&res;
  cif         = closure->cif;
  arg_area    = (void**) alloca (cif->nargs * sizeof (void*));  

  /* this call will initialize ARG_AREA, such that each
   * element in that array points to the corresponding 
   * value on the stack; and if the function returns
   * a structure, it will re-set RESP to point to the
   * structure return address.  */

  ffi_prep_incoming_args_UNIX(args, (void**)&resp, arg_area, cif);
  
  (closure->fun) (cif, resp, arg_area, closure->user_data);

  rtype = cif->flags;

  /* now, do a generic return based on the value of rtype */
  if (rtype == FFI_TYPE_INT)
    {
      asm volatile ("ld8 r8=[%0]" : : "r" (resp) : "r8");
    }
  else if (rtype == FFI_TYPE_FLOAT)
    {
      asm volatile ("ldfs f8=[%0]" : : "r" (resp) : "f8");
    }
  else if (rtype == FFI_TYPE_DOUBLE)
    {
      asm volatile ("ldfd f8=[%0]" : : "r" (resp) : "f8");
    }
  else if (rtype == FFI_IS_SMALL_STRUCT2)
    {
      asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]"
		    : : "r" (resp), "r" (resp+8) : "r8","r9");
    }
  else if (rtype == FFI_IS_SMALL_STRUCT3)
    {
      asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]"
		    : : "r" (resp), "r" (resp+8), "r" (resp+16)
		    : "r8","r9","r10");
    }
  else if (rtype == FFI_IS_SMALL_STRUCT4)
    {
      asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]; ld8 r11=[%3]"
		    : : "r" (resp), "r" (resp+8), "r" (resp+16), "r" (resp+24)
		    : "r8","r9","r10","r11");
    }
  else if (rtype != FFI_TYPE_VOID && rtype != FFI_TYPE_STRUCT)
    {
      /* Can only happen for homogeneous FP aggregates?	*/
      abort();
    }
}

static void 
ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue,
			    void **avalue, ffi_cif *cif)
{
  register unsigned int i;
  register unsigned int avn;
  register void **p_argv;
  register unsigned long *argp = args -> out_regs;
  unsigned fp_reg_num = 0;
  register ffi_type **p_arg;

  avn = cif->nargs;
  p_argv = avalue;

  for (i = cif->nargs, p_arg = cif->arg_types; i != 0; i--, p_arg++)
    {
      size_t z; /* In units of words or argument slots.	*/

      switch ((*p_arg)->type)
	{
	case FFI_TYPE_SINT8:
	case FFI_TYPE_UINT8:
	case FFI_TYPE_SINT16:
	case FFI_TYPE_UINT16:
	case FFI_TYPE_SINT32:
	case FFI_TYPE_UINT32:
	case FFI_TYPE_SINT64:
	case FFI_TYPE_UINT64:
	case FFI_TYPE_POINTER:
	  z = 1;
	  *p_argv = (void *)argp;
	  break;
		  
	case FFI_TYPE_FLOAT:
	  z = 1;
	  /* Convert argument back to float in place from the saved value */
	  if (fp_reg_num < 8) {
	      *(float *)argp = args -> fp_regs[fp_reg_num++];
	  } else {
	      *(float *)argp = *(double *)argp;
	  }
	  *p_argv = (void *)argp;
	  break;

	case FFI_TYPE_DOUBLE:
	  z = 1;
	  if (fp_reg_num < 8) {
	      *p_argv = args -> fp_regs + fp_reg_num++;
	  } else {
	      *p_argv = (void *)argp;
	  }
	  break;

	case FFI_TYPE_STRUCT:
	  {
	      size_t sz = (*p_arg)->size;
	      unsigned short element_type;
              z = ((*p_arg)->size + SIZEOF_ARG - 1)/SIZEOF_ARG;
	      if (is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) {
		int nelements = sz/float_type_size(element_type);
		if (nelements + fp_reg_num >= 8) {
		  /* hard case NYI.	*/
		  abort();
		}
		if (element_type == FFI_TYPE_DOUBLE) {
	          *p_argv = args -> fp_regs + fp_reg_num;
		  fp_reg_num += nelements;
		  break;
		}
		if (element_type == FFI_TYPE_FLOAT) {
		  int j;
		  for (j = 0; j < nelements; ++ j) {
		     ((float *)argp)[j] = args -> fp_regs[fp_reg_num + j];
		  }
	          *p_argv = (void *)argp;
		  fp_reg_num += nelements;
		  break;
		}
		abort();  /* Other fp types NYI */
	      }
	  }
	  break;

	default:
	  FFI_ASSERT(0);
	}

      argp += z;
      p_argv++;

    }
  
  return;
}


/* Fill in a closure to refer to the specified fun and user_data.	*/
/* cif specifies the argument and result types for fun.			*/
/* the cif must already be prep'ed */

/* The layout of a function descriptor.  A C function pointer really 	*/
/* points to one of these.						*/
typedef struct ia64_fd_struct {
    void *code_pointer;
    void *gp;
} ia64_fd;

ffi_status
ffi_prep_closure (ffi_closure* closure,
		  ffi_cif* cif,
		  void (*fun)(ffi_cif*,void*,void**,void*),
		  void *user_data)
{
  struct ffi_ia64_trampoline_struct *tramp =
    (struct ffi_ia64_trampoline_struct *) (closure -> tramp);
  ia64_fd *fd = (ia64_fd *)(void *)ffi_closure_UNIX;

  FFI_ASSERT (cif->abi == FFI_UNIX);

  tramp -> code_pointer = fd -> code_pointer;
  tramp -> real_gp = fd -> gp;
  tramp -> fake_gp = closure;
  closure->cif  = cif;
  closure->user_data = user_data;
  closure->fun  = fun;

  return FFI_OK;
}