aboutsummaryrefslogtreecommitdiff
path: root/libstdc++-v3/doc/html/manual/bk01pt11ch27s02.html
blob: e8079c4d3de1750f69fb175993110c46a886b61c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /><title>Binary Input and Output</title><meta name="generator" content="DocBook XSL Stylesheets V1.74.0" /><meta name="keywords" content="&#10;      ISO C++&#10;    , &#10;      library&#10;    " /><link rel="home" href="../spine.html" title="The GNU C++ Library Documentation" /><link rel="up" href="bk01pt11ch27.html" title="Chapter 27. File Based Streams" /><link rel="prev" href="bk01pt11ch27.html" title="Chapter 27. File Based Streams" /><link rel="next" href="bk01pt11ch27s03.html" title="More Binary Input and Output" /></head><body><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Binary Input and Output</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="bk01pt11ch27.html">Prev</a> </td><th width="60%" align="center">Chapter 27. File Based Streams</th><td width="20%" align="right"> <a accesskey="n" href="bk01pt11ch27s03.html">Next</a></td></tr></table><hr /></div><div class="sect1" lang="en" xml:lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a id="manual.io.filestreams.binary"></a>Binary Input and Output</h2></div></div></div><p>
    </p><p>The first and most important thing to remember about binary I/O is
      that opening a file with <code class="code">ios::binary</code> is not, repeat
      <span class="emphasis"><em>not</em></span>, the only thing you have to do.  It is not a silver
      bullet, and will not allow you to use the <code class="code">&lt;&lt;/&gt;&gt;</code>
      operators of the normal fstreams to do binary I/O.
   </p><p>Sorry.  Them's the breaks.
   </p><p>This isn't going to try and be a complete tutorial on reading and
      writing binary files (because "binary"
      <a class="ulink" href="#7" target="_top">covers a lot of ground)</a>, but we will try and clear
      up a couple of misconceptions and common errors.
   </p><p>First, <code class="code">ios::binary</code> has exactly one defined effect, no more
      and no less.  Normal text mode has to be concerned with the newline
      characters, and the runtime system will translate between (for
      example) '\n' and the appropriate end-of-line sequence (LF on Unix,
      CRLF on DOS, CR on Macintosh, etc).  (There are other things that
      normal mode does, but that's the most obvious.)  Opening a file in
      binary mode disables this conversion, so reading a CRLF sequence
      under Windows won't accidentally get mapped to a '\n' character, etc.
      Binary mode is not supposed to suddenly give you a bitstream, and
      if it is doing so in your program then you've discovered a bug in
      your vendor's compiler (or some other part of the C++ implementation,
      possibly the runtime system).
   </p><p>Second, using <code class="code">&lt;&lt;</code> to write and <code class="code">&gt;&gt;</code> to
      read isn't going to work with the standard file stream classes, even
      if you use <code class="code">skipws</code> during reading.  Why not?  Because 
      ifstream and ofstream exist for the purpose of <span class="emphasis"><em>formatting</em></span>,
      not reading and writing.  Their job is to interpret the data into
      text characters, and that's exactly what you don't want to happen
      during binary I/O.
   </p><p>Third, using the <code class="code">get()</code> and <code class="code">put()/write()</code> member
      functions still aren't guaranteed to help you.  These are
      "unformatted" I/O functions, but still character-based.
      (This may or may not be what you want, see below.)
   </p><p>Notice how all the problems here are due to the inappropriate use
      of <span class="emphasis"><em>formatting</em></span> functions and classes to perform something
      which <span class="emphasis"><em>requires</em></span> that formatting not be done?  There are a
      seemingly infinite number of solutions, and a few are listed here:
   </p><div class="itemizedlist"><ul type="disc"><li><p>“<span class="quote">Derive your own fstream-type classes and write your own
          &lt;&lt;/&gt;&gt; operators to do binary I/O on whatever data
          types you're using.</span>”
	</p><p>
	  This is a Bad Thing, because while
          the compiler would probably be just fine with it, other humans
          are going to be confused.  The overloaded bitshift operators
          have a well-defined meaning (formatting), and this breaks it.
	</p></li><li><p>
	  “<span class="quote">Build the file structure in memory, then
	  <code class="code">mmap()</code> the file and copy the
	  structure.
	</span>”
	</p><p>
	  Well, this is easy to make work, and easy to break, and is
	  pretty equivalent to using <code class="code">::read()</code> and
	  <code class="code">::write()</code> directly, and makes no use of the
	  iostream library at all...
	  </p></li><li><p>
	  “<span class="quote">Use streambufs, that's what they're there for.</span>”
	</p><p>
          While not trivial for the beginner, this is the best of all
          solutions.  The streambuf/filebuf layer is the layer that is
          responsible for actual I/O.  If you want to use the C++
          library for binary I/O, this is where you start.
	</p></li></ul></div><p>How to go about using streambufs is a bit beyond the scope of this
      document (at least for now), but while streambufs go a long way,
      they still leave a couple of things up to you, the programmer.
      As an example, byte ordering is completely between you and the
      operating system, and you have to handle it yourself.
   </p><p>Deriving a streambuf or filebuf
      class from the standard ones, one that is specific to your data
      types (or an abstraction thereof) is probably a good idea, and
      lots of examples exist in journals and on Usenet.  Using the
      standard filebufs directly (either by declaring your own or by
      using the pointer returned from an fstream's <code class="code">rdbuf()</code>)
      is certainly feasible as well.
   </p><p>One area that causes problems is trying to do bit-by-bit operations
      with filebufs.  C++ is no different from C in this respect:  I/O
      must be done at the byte level.  If you're trying to read or write
      a few bits at a time, you're going about it the wrong way.  You
      must read/write an integral number of bytes and then process the
      bytes.  (For example, the streambuf functions take and return
      variables of type <code class="code">int_type</code>.)
   </p><p>Another area of problems is opening text files in binary mode.
      Generally, binary mode is intended for binary files, and opening
      text files in binary mode means that you now have to deal with all of 
      those end-of-line and end-of-file problems that we mentioned before.
      An instructive thread from comp.lang.c++.moderated delved off into
      this topic starting more or less at
      <a class="ulink" href="http://groups.google.com/groups?oi=djq&amp;selm=an_436187505" target="_top">this</a>
      article and continuing to the end of the thread.  (You'll have to
      sort through some flames every couple of paragraphs, but the points
      made are good ones.)
   </p></div><div class="navfooter"><hr /><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="bk01pt11ch27.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="bk01pt11ch27.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="bk01pt11ch27s03.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 27. File Based Streams </td><td width="20%" align="center"><a accesskey="h" href="../spine.html">Home</a></td><td width="40%" align="right" valign="top"> More Binary Input and Output</td></tr></table></div></body></html>