aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/mps3r.c
blob: 4d55a6564c609e3929f9cd82c156dbde02e4c9f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/*
 * Arm MPS3 board emulation for Cortex-R-based FPGA images.
 * (For M-profile images see mps2.c and mps2tz.c.)
 *
 * Copyright (c) 2017 Linaro Limited
 * Written by Peter Maydell
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 or
 *  (at your option) any later version.
 */

/*
 * The MPS3 is an FPGA based dev board. This file handles FPGA images
 * which use the Cortex-R CPUs. We model these separately from the
 * M-profile images, because on M-profile the FPGA image is based on
 * a "Subsystem for Embedded" which is similar to an SoC, whereas
 * the R-profile FPGA images don't have that abstraction layer.
 *
 * We model the following FPGA images here:
 *  "mps3-an536" -- dual Cortex-R52 as documented in Arm Application Note AN536
 *
 * Application Note AN536:
 * https://developer.arm.com/documentation/dai0536/latest/
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qapi/qmp/qlist.h"
#include "exec/address-spaces.h"
#include "cpu.h"
#include "sysemu/sysemu.h"
#include "hw/boards.h"
#include "hw/or-irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "hw/arm/boot.h"
#include "hw/arm/bsa.h"
#include "hw/char/cmsdk-apb-uart.h"
#include "hw/i2c/arm_sbcon_i2c.h"
#include "hw/intc/arm_gicv3.h"
#include "hw/misc/mps2-scc.h"
#include "hw/misc/mps2-fpgaio.h"
#include "hw/misc/unimp.h"
#include "hw/net/lan9118.h"
#include "hw/rtc/pl031.h"
#include "hw/ssi/pl022.h"
#include "hw/timer/cmsdk-apb-dualtimer.h"
#include "hw/watchdog/cmsdk-apb-watchdog.h"

/* Define the layout of RAM and ROM in a board */
typedef struct RAMInfo {
    const char *name;
    hwaddr base;
    hwaddr size;
    int mrindex; /* index into rams[]; -1 for the system RAM block */
    int flags;
} RAMInfo;

/*
 * The MPS3 DDR is 3GiB, but on a 32-bit host QEMU doesn't permit
 * emulation of that much guest RAM, so artificially make it smaller.
 */
#if HOST_LONG_BITS == 32
#define MPS3_DDR_SIZE (1 * GiB)
#else
#define MPS3_DDR_SIZE (3 * GiB)
#endif

/*
 * Flag values:
 * IS_MAIN: this is the main machine RAM
 * IS_ROM: this area is read-only
 */
#define IS_MAIN 1
#define IS_ROM 2

#define MPS3R_RAM_MAX 9
#define MPS3R_CPU_MAX 2
#define MPS3R_UART_MAX 4 /* shared UART count */

#define PERIPHBASE 0xf0000000
#define NUM_SPIS 96

typedef enum MPS3RFPGAType {
    FPGA_AN536,
} MPS3RFPGAType;

struct MPS3RMachineClass {
    MachineClass parent;
    MPS3RFPGAType fpga_type;
    const RAMInfo *raminfo;
    hwaddr loader_start;
};

struct MPS3RMachineState {
    MachineState parent;
    struct arm_boot_info bootinfo;
    MemoryRegion ram[MPS3R_RAM_MAX];
    Object *cpu[MPS3R_CPU_MAX];
    MemoryRegion cpu_sysmem[MPS3R_CPU_MAX];
    MemoryRegion sysmem_alias[MPS3R_CPU_MAX];
    MemoryRegion cpu_ram[MPS3R_CPU_MAX];
    GICv3State gic;
    /* per-CPU UARTs followed by the shared UARTs */
    CMSDKAPBUART uart[MPS3R_CPU_MAX + MPS3R_UART_MAX];
    OrIRQState cpu_uart_oflow[MPS3R_CPU_MAX];
    OrIRQState uart_oflow;
    CMSDKAPBWatchdog watchdog;
    CMSDKAPBDualTimer dualtimer;
    ArmSbconI2CState i2c[5];
    PL022State spi[3];
    MPS2SCC scc;
    MPS2FPGAIO fpgaio;
    UnimplementedDeviceState i2s_audio;
    PL031State rtc;
    Clock *clk;
};

#define TYPE_MPS3R_MACHINE "mps3r"
#define TYPE_MPS3R_AN536_MACHINE MACHINE_TYPE_NAME("mps3-an536")

OBJECT_DECLARE_TYPE(MPS3RMachineState, MPS3RMachineClass, MPS3R_MACHINE)

/*
 * Main clock frequency CLK in Hz (50MHz). In the image there are also
 * ACLK, MCLK, GPUCLK and PERIPHCLK at the same frequency; for our
 * model we just roll them all into one.
 */
#define CLK_FRQ 50000000

static const RAMInfo an536_raminfo[] = {
    {
        .name = "ATCM",
        .base = 0x00000000,
        .size = 0x00008000,
        .mrindex = 0,
    }, {
        /* We model the QSPI flash as simple ROM for now */
        .name = "QSPI",
        .base = 0x08000000,
        .size = 0x00800000,
        .flags = IS_ROM,
        .mrindex = 1,
    }, {
        .name = "BRAM",
        .base = 0x10000000,
        .size = 0x00080000,
        .mrindex = 2,
    }, {
        .name = "DDR",
        .base = 0x20000000,
        .size = MPS3_DDR_SIZE,
        .mrindex = -1,
    }, {
        .name = "ATCM0",
        .base = 0xee000000,
        .size = 0x00008000,
        .mrindex = 3,
    }, {
        .name = "BTCM0",
        .base = 0xee100000,
        .size = 0x00008000,
        .mrindex = 4,
    }, {
        .name = "CTCM0",
        .base = 0xee200000,
        .size = 0x00008000,
        .mrindex = 5,
    }, {
        .name = "ATCM1",
        .base = 0xee400000,
        .size = 0x00008000,
        .mrindex = 6,
    }, {
        .name = "BTCM1",
        .base = 0xee500000,
        .size = 0x00008000,
        .mrindex = 7,
    }, {
        .name = "CTCM1",
        .base = 0xee600000,
        .size = 0x00008000,
        .mrindex = 8,
    }, {
        .name = NULL,
    }
};

static const int an536_oscclk[] = {
    24000000, /* 24MHz reference for RTC and timers */
    50000000, /* 50MHz ACLK */
    50000000, /* 50MHz MCLK */
    50000000, /* 50MHz GPUCLK */
    24576000, /* 24.576MHz AUDCLK */
    23750000, /* 23.75MHz HDLCDCLK */
    100000000, /* 100MHz DDR4_REF_CLK */
};

static MemoryRegion *mr_for_raminfo(MPS3RMachineState *mms,
                                    const RAMInfo *raminfo)
{
    /* Return an initialized MemoryRegion for the RAMInfo. */
    MemoryRegion *ram;

    if (raminfo->mrindex < 0) {
        /* Means this RAMInfo is for QEMU's "system memory" */
        MachineState *machine = MACHINE(mms);
        assert(!(raminfo->flags & IS_ROM));
        return machine->ram;
    }

    assert(raminfo->mrindex < MPS3R_RAM_MAX);
    ram = &mms->ram[raminfo->mrindex];

    memory_region_init_ram(ram, NULL, raminfo->name,
                           raminfo->size, &error_fatal);
    if (raminfo->flags & IS_ROM) {
        memory_region_set_readonly(ram, true);
    }
    return ram;
}

/*
 * There is no defined secondary boot protocol for Linux for the AN536,
 * because real hardware has a restriction that atomic operations between
 * the two CPUs do not function correctly, and so true SMP is not
 * possible. Therefore for cases where the user is directly booting
 * a kernel, we treat the system as essentially uniprocessor, and
 * put the secondary CPU into power-off state (as if the user on the
 * real hardware had configured the secondary to be halted via the
 * SCC config registers).
 *
 * Note that the default secondary boot code would not work here anyway
 * as it assumes a GICv2, and we have a GICv3.
 */
static void mps3r_write_secondary_boot(ARMCPU *cpu,
                                       const struct arm_boot_info *info)
{
    /*
     * Power the secondary CPU off. This means we don't need to write any
     * boot code into guest memory. Note that the 'cpu' argument to this
     * function is the primary CPU we passed to arm_load_kernel(), not
     * the secondary. Loop around all the other CPUs, as the boot.c
     * code does for the "disable secondaries if PSCI is enabled" case.
     */
    for (CPUState *cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
        if (cs != first_cpu) {
            object_property_set_bool(OBJECT(cs), "start-powered-off", true,
                                     &error_abort);
        }
    }
}

static void mps3r_secondary_cpu_reset(ARMCPU *cpu,
                                      const struct arm_boot_info *info)
{
    /* We don't need to do anything here because the CPU will be off */
}

static void create_gic(MPS3RMachineState *mms, MemoryRegion *sysmem)
{
    MachineState *machine = MACHINE(mms);
    DeviceState *gicdev;
    QList *redist_region_count;

    object_initialize_child(OBJECT(mms), "gic", &mms->gic, TYPE_ARM_GICV3);
    gicdev = DEVICE(&mms->gic);
    qdev_prop_set_uint32(gicdev, "num-cpu", machine->smp.cpus);
    qdev_prop_set_uint32(gicdev, "num-irq", NUM_SPIS + GIC_INTERNAL);
    redist_region_count = qlist_new();
    qlist_append_int(redist_region_count, machine->smp.cpus);
    qdev_prop_set_array(gicdev, "redist-region-count", redist_region_count);
    object_property_set_link(OBJECT(&mms->gic), "sysmem",
                             OBJECT(sysmem), &error_fatal);
    sysbus_realize(SYS_BUS_DEVICE(&mms->gic), &error_fatal);
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 0, PERIPHBASE);
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->gic), 1, PERIPHBASE + 0x100000);
    /*
     * Wire the outputs from each CPU's generic timer and the GICv3
     * maintenance interrupt signal to the appropriate GIC PPI inputs,
     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
     */
    for (int i = 0; i < machine->smp.cpus; i++) {
        DeviceState *cpudev = DEVICE(mms->cpu[i]);
        SysBusDevice *gicsbd = SYS_BUS_DEVICE(&mms->gic);
        int intidbase = NUM_SPIS + i * GIC_INTERNAL;
        int irq;
        /*
         * Mapping from the output timer irq lines from the CPU to the
         * GIC PPI inputs used for this board. This isn't a BSA board,
         * but it uses the standard convention for the PPI numbers.
         */
        const int timer_irq[] = {
            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
        };

        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
            qdev_connect_gpio_out(cpudev, irq,
                                  qdev_get_gpio_in(gicdev,
                                                   intidbase + timer_irq[irq]));
        }

        qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
                                    qdev_get_gpio_in(gicdev,
                                                     intidbase + ARCH_GIC_MAINT_IRQ));

        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
                                    qdev_get_gpio_in(gicdev,
                                                     intidbase + VIRTUAL_PMU_IRQ));

        sysbus_connect_irq(gicsbd, i,
                           qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
        sysbus_connect_irq(gicsbd, i + machine->smp.cpus,
                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
        sysbus_connect_irq(gicsbd, i + 2 * machine->smp.cpus,
                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
        sysbus_connect_irq(gicsbd, i + 3 * machine->smp.cpus,
                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
    }
}

/*
 * Create UART uartno, and map it into the MemoryRegion mem at address baseaddr.
 * The qemu_irq arguments are where we connect the various IRQs from the UART.
 */
static void create_uart(MPS3RMachineState *mms, int uartno, MemoryRegion *mem,
                        hwaddr baseaddr, qemu_irq txirq, qemu_irq rxirq,
                        qemu_irq txoverirq, qemu_irq rxoverirq,
                        qemu_irq combirq)
{
    g_autofree char *s = g_strdup_printf("uart%d", uartno);
    SysBusDevice *sbd;

    assert(uartno < ARRAY_SIZE(mms->uart));
    object_initialize_child(OBJECT(mms), s, &mms->uart[uartno],
                            TYPE_CMSDK_APB_UART);
    qdev_prop_set_uint32(DEVICE(&mms->uart[uartno]), "pclk-frq", CLK_FRQ);
    qdev_prop_set_chr(DEVICE(&mms->uart[uartno]), "chardev", serial_hd(uartno));
    sbd = SYS_BUS_DEVICE(&mms->uart[uartno]);
    sysbus_realize(sbd, &error_fatal);
    memory_region_add_subregion(mem, baseaddr,
                                sysbus_mmio_get_region(sbd, 0));
    sysbus_connect_irq(sbd, 0, txirq);
    sysbus_connect_irq(sbd, 1, rxirq);
    sysbus_connect_irq(sbd, 2, txoverirq);
    sysbus_connect_irq(sbd, 3, rxoverirq);
    sysbus_connect_irq(sbd, 4, combirq);
}

static void mps3r_common_init(MachineState *machine)
{
    MPS3RMachineState *mms = MPS3R_MACHINE(machine);
    MPS3RMachineClass *mmc = MPS3R_MACHINE_GET_CLASS(mms);
    MemoryRegion *sysmem = get_system_memory();
    DeviceState *gicdev;
    QList *oscclk;

    mms->clk = clock_new(OBJECT(machine), "CLK");
    clock_set_hz(mms->clk, CLK_FRQ);

    for (const RAMInfo *ri = mmc->raminfo; ri->name; ri++) {
        MemoryRegion *mr = mr_for_raminfo(mms, ri);
        memory_region_add_subregion(sysmem, ri->base, mr);
    }

    assert(machine->smp.cpus <= MPS3R_CPU_MAX);
    for (int i = 0; i < machine->smp.cpus; i++) {
        g_autofree char *sysmem_name = g_strdup_printf("cpu-%d-memory", i);
        g_autofree char *ramname = g_strdup_printf("cpu-%d-memory", i);
        g_autofree char *alias_name = g_strdup_printf("sysmem-alias-%d", i);

        /*
         * Each CPU has some private RAM/peripherals, so create the container
         * which will house those, with the whole-machine system memory being
         * used where there's no CPU-specific device. Note that we need the
         * sysmem_alias aliases because we can't put one MR (the original
         * 'sysmem') into more than one other MR.
         */
        memory_region_init(&mms->cpu_sysmem[i], OBJECT(machine),
                           sysmem_name, UINT64_MAX);
        memory_region_init_alias(&mms->sysmem_alias[i], OBJECT(machine),
                                 alias_name, sysmem, 0, UINT64_MAX);
        memory_region_add_subregion_overlap(&mms->cpu_sysmem[i], 0,
                                            &mms->sysmem_alias[i], -1);

        mms->cpu[i] = object_new(machine->cpu_type);
        object_property_set_link(mms->cpu[i], "memory",
                                 OBJECT(&mms->cpu_sysmem[i]), &error_abort);
        object_property_set_int(mms->cpu[i], "reset-cbar",
                                PERIPHBASE, &error_abort);
        qdev_realize(DEVICE(mms->cpu[i]), NULL, &error_fatal);
        object_unref(mms->cpu[i]);

        /* Per-CPU RAM */
        memory_region_init_ram(&mms->cpu_ram[i], NULL, ramname,
                               0x1000, &error_fatal);
        memory_region_add_subregion(&mms->cpu_sysmem[i], 0xe7c01000,
                                    &mms->cpu_ram[i]);
    }

    create_gic(mms, sysmem);
    gicdev = DEVICE(&mms->gic);

    /*
     * UARTs 0 and 1 are per-CPU; their interrupts are wired to
     * the relevant CPU's PPI 0..3, aka INTID 16..19
     */
    for (int i = 0; i < machine->smp.cpus; i++) {
        int intidbase = NUM_SPIS + i * GIC_INTERNAL;
        g_autofree char *s = g_strdup_printf("cpu-uart-oflow-orgate%d", i);
        DeviceState *orgate;

        /* The two overflow IRQs from the UART are ORed together into PPI 3 */
        object_initialize_child(OBJECT(mms), s, &mms->cpu_uart_oflow[i],
                                TYPE_OR_IRQ);
        orgate = DEVICE(&mms->cpu_uart_oflow[i]);
        qdev_prop_set_uint32(orgate, "num-lines", 2);
        qdev_realize(orgate, NULL, &error_fatal);
        qdev_connect_gpio_out(orgate, 0,
                              qdev_get_gpio_in(gicdev, intidbase + 19));

        create_uart(mms, i, &mms->cpu_sysmem[i], 0xe7c00000,
                    qdev_get_gpio_in(gicdev, intidbase + 17), /* tx */
                    qdev_get_gpio_in(gicdev, intidbase + 16), /* rx */
                    qdev_get_gpio_in(orgate, 0), /* txover */
                    qdev_get_gpio_in(orgate, 1), /* rxover */
                    qdev_get_gpio_in(gicdev, intidbase + 18) /* combined */);
    }
    /*
     * UARTs 2 to 5 are whole-system; all overflow IRQs are ORed
     * together into IRQ 17
     */
    object_initialize_child(OBJECT(mms), "uart-oflow-orgate",
                            &mms->uart_oflow, TYPE_OR_IRQ);
    qdev_prop_set_uint32(DEVICE(&mms->uart_oflow), "num-lines",
                         MPS3R_UART_MAX * 2);
    qdev_realize(DEVICE(&mms->uart_oflow), NULL, &error_fatal);
    qdev_connect_gpio_out(DEVICE(&mms->uart_oflow), 0,
                          qdev_get_gpio_in(gicdev, 17));

    for (int i = 0; i < MPS3R_UART_MAX; i++) {
        hwaddr baseaddr = 0xe0205000 + i * 0x1000;
        int rxirq = 5 + i * 2, txirq = 6 + i * 2, combirq = 13 + i;

        create_uart(mms, i + MPS3R_CPU_MAX, sysmem, baseaddr,
                    qdev_get_gpio_in(gicdev, txirq),
                    qdev_get_gpio_in(gicdev, rxirq),
                    qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2),
                    qdev_get_gpio_in(DEVICE(&mms->uart_oflow), i * 2 + 1),
                    qdev_get_gpio_in(gicdev, combirq));
    }

    for (int i = 0; i < 4; i++) {
        /* CMSDK GPIO controllers */
        g_autofree char *s = g_strdup_printf("gpio%d", i);
        create_unimplemented_device(s, 0xe0000000 + i * 0x1000, 0x1000);
    }

    object_initialize_child(OBJECT(mms), "watchdog", &mms->watchdog,
                            TYPE_CMSDK_APB_WATCHDOG);
    qdev_connect_clock_in(DEVICE(&mms->watchdog), "WDOGCLK", mms->clk);
    sysbus_realize(SYS_BUS_DEVICE(&mms->watchdog), &error_fatal);
    sysbus_connect_irq(SYS_BUS_DEVICE(&mms->watchdog), 0,
                       qdev_get_gpio_in(gicdev, 0));
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->watchdog), 0, 0xe0100000);

    object_initialize_child(OBJECT(mms), "dualtimer", &mms->dualtimer,
                            TYPE_CMSDK_APB_DUALTIMER);
    qdev_connect_clock_in(DEVICE(&mms->dualtimer), "TIMCLK", mms->clk);
    sysbus_realize(SYS_BUS_DEVICE(&mms->dualtimer), &error_fatal);
    sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 0,
                       qdev_get_gpio_in(gicdev, 3));
    sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 1,
                       qdev_get_gpio_in(gicdev, 1));
    sysbus_connect_irq(SYS_BUS_DEVICE(&mms->dualtimer), 2,
                       qdev_get_gpio_in(gicdev, 2));
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->dualtimer), 0, 0xe0101000);

    for (int i = 0; i < ARRAY_SIZE(mms->i2c); i++) {
        static const hwaddr i2cbase[] = {0xe0102000,    /* Touch */
                                         0xe0103000,    /* Audio */
                                         0xe0107000,    /* Shield0 */
                                         0xe0108000,    /* Shield1 */
                                         0xe0109000};   /* DDR4 EEPROM */
        g_autofree char *s = g_strdup_printf("i2c%d", i);

        object_initialize_child(OBJECT(mms), s, &mms->i2c[i],
                                TYPE_ARM_SBCON_I2C);
        sysbus_realize(SYS_BUS_DEVICE(&mms->i2c[i]), &error_fatal);
        sysbus_mmio_map(SYS_BUS_DEVICE(&mms->i2c[i]), 0, i2cbase[i]);
        if (i != 2 && i != 3) {
            /*
             * internal-only bus: mark it full to avoid user-created
             * i2c devices being plugged into it.
             */
            qbus_mark_full(qdev_get_child_bus(DEVICE(&mms->i2c[i]), "i2c"));
        }
    }

    for (int i = 0; i < ARRAY_SIZE(mms->spi); i++) {
        g_autofree char *s = g_strdup_printf("spi%d", i);
        hwaddr baseaddr = 0xe0104000 + i * 0x1000;

        object_initialize_child(OBJECT(mms), s, &mms->spi[i], TYPE_PL022);
        sysbus_realize(SYS_BUS_DEVICE(&mms->spi[i]), &error_fatal);
        sysbus_mmio_map(SYS_BUS_DEVICE(&mms->spi[i]), 0, baseaddr);
        sysbus_connect_irq(SYS_BUS_DEVICE(&mms->spi[i]), 0,
                           qdev_get_gpio_in(gicdev, 22 + i));
    }

    object_initialize_child(OBJECT(mms), "scc", &mms->scc, TYPE_MPS2_SCC);
    qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg0", 0);
    qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-cfg4", 0x2);
    qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-aid", 0x00200008);
    qdev_prop_set_uint32(DEVICE(&mms->scc), "scc-id", 0x41055360);
    oscclk = qlist_new();
    for (int i = 0; i < ARRAY_SIZE(an536_oscclk); i++) {
        qlist_append_int(oscclk, an536_oscclk[i]);
    }
    qdev_prop_set_array(DEVICE(&mms->scc), "oscclk", oscclk);
    sysbus_realize(SYS_BUS_DEVICE(&mms->scc), &error_fatal);
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->scc), 0, 0xe0200000);

    create_unimplemented_device("i2s-audio", 0xe0201000, 0x1000);

    object_initialize_child(OBJECT(mms), "fpgaio", &mms->fpgaio,
                            TYPE_MPS2_FPGAIO);
    qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "prescale-clk", an536_oscclk[1]);
    qdev_prop_set_uint32(DEVICE(&mms->fpgaio), "num-leds", 10);
    qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-switches", true);
    qdev_prop_set_bit(DEVICE(&mms->fpgaio), "has-dbgctrl", false);
    sysbus_realize(SYS_BUS_DEVICE(&mms->fpgaio), &error_fatal);
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->fpgaio), 0, 0xe0202000);

    create_unimplemented_device("clcd", 0xe0209000, 0x1000);

    object_initialize_child(OBJECT(mms), "rtc", &mms->rtc, TYPE_PL031);
    sysbus_realize(SYS_BUS_DEVICE(&mms->rtc), &error_fatal);
    sysbus_mmio_map(SYS_BUS_DEVICE(&mms->rtc), 0, 0xe020a000);
    sysbus_connect_irq(SYS_BUS_DEVICE(&mms->rtc), 0,
                       qdev_get_gpio_in(gicdev, 4));

    /*
     * In hardware this is a LAN9220; the LAN9118 is software compatible
     * except that it doesn't support the checksum-offload feature.
     */
    lan9118_init(0xe0300000,
                 qdev_get_gpio_in(gicdev, 18));

    create_unimplemented_device("usb", 0xe0301000, 0x1000);
    create_unimplemented_device("qspi-write-config", 0xe0600000, 0x1000);

    mms->bootinfo.ram_size = machine->ram_size;
    mms->bootinfo.board_id = -1;
    mms->bootinfo.loader_start = mmc->loader_start;
    mms->bootinfo.write_secondary_boot = mps3r_write_secondary_boot;
    mms->bootinfo.secondary_cpu_reset_hook = mps3r_secondary_cpu_reset;
    arm_load_kernel(ARM_CPU(mms->cpu[0]), machine, &mms->bootinfo);
}

static void mps3r_set_default_ram_info(MPS3RMachineClass *mmc)
{
    /*
     * Set mc->default_ram_size and default_ram_id from the
     * information in mmc->raminfo.
     */
    MachineClass *mc = MACHINE_CLASS(mmc);
    const RAMInfo *p;

    for (p = mmc->raminfo; p->name; p++) {
        if (p->mrindex < 0) {
            /* Found the entry for "system memory" */
            mc->default_ram_size = p->size;
            mc->default_ram_id = p->name;
            mmc->loader_start = p->base;
            return;
        }
    }
    g_assert_not_reached();
}

static void mps3r_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->init = mps3r_common_init;
}

static void mps3r_an536_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
    MPS3RMachineClass *mmc = MPS3R_MACHINE_CLASS(oc);
    static const char * const valid_cpu_types[] = {
        ARM_CPU_TYPE_NAME("cortex-r52"),
        NULL
    };

    mc->desc = "ARM MPS3 with AN536 FPGA image for Cortex-R52";
    /*
     * In the real FPGA image there are always two cores, but the standard
     * initial setting for the SCC SYSCON 0x000 register is 0x21, meaning
     * that the second core is held in reset and halted. Many images built for
     * the board do not expect the second core to run at startup (especially
     * since on the real FPGA image it is not possible to use LDREX/STREX
     * in RAM between the two cores, so a true SMP setup isn't supported).
     *
     * As QEMU's equivalent of this, we support both -smp 1 and -smp 2,
     * with the default being -smp 1. This seems a more intuitive UI for
     * QEMU users than, for instance, having a machine property to allow
     * the user to set the initial value of the SYSCON 0x000 register.
     */
    mc->default_cpus = 1;
    mc->min_cpus = 1;
    mc->max_cpus = 2;
    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-r52");
    mc->valid_cpu_types = valid_cpu_types;
    mmc->raminfo = an536_raminfo;
    mps3r_set_default_ram_info(mmc);
}

static const TypeInfo mps3r_machine_types[] = {
    {
        .name = TYPE_MPS3R_MACHINE,
        .parent = TYPE_MACHINE,
        .abstract = true,
        .instance_size = sizeof(MPS3RMachineState),
        .class_size = sizeof(MPS3RMachineClass),
        .class_init = mps3r_class_init,
    }, {
        .name = TYPE_MPS3R_AN536_MACHINE,
        .parent = TYPE_MPS3R_MACHINE,
        .class_init = mps3r_an536_class_init,
    },
};

DEFINE_TYPES(mps3r_machine_types);