summaryrefslogtreecommitdiff
path: root/driver/product/kernel/drivers/gpu/arm/midgard/mali_kbase_mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'driver/product/kernel/drivers/gpu/arm/midgard/mali_kbase_mmu.c')
-rwxr-xr-xdriver/product/kernel/drivers/gpu/arm/midgard/mali_kbase_mmu.c2073
1 files changed, 2073 insertions, 0 deletions
diff --git a/driver/product/kernel/drivers/gpu/arm/midgard/mali_kbase_mmu.c b/driver/product/kernel/drivers/gpu/arm/midgard/mali_kbase_mmu.c
new file mode 100755
index 0000000..0329dfd
--- /dev/null
+++ b/driver/product/kernel/drivers/gpu/arm/midgard/mali_kbase_mmu.c
@@ -0,0 +1,2073 @@
+/*
+ *
+ * (C) COPYRIGHT 2010-2016 ARM Limited. All rights reserved.
+ *
+ * This program is free software and is provided to you under the terms of the
+ * GNU General Public License version 2 as published by the Free Software
+ * Foundation, and any use by you of this program is subject to the terms
+ * of such GNU licence.
+ *
+ * A copy of the licence is included with the program, and can also be obtained
+ * from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+ *
+ */
+
+
+
+
+
+/**
+ * @file mali_kbase_mmu.c
+ * Base kernel MMU management.
+ */
+
+/* #define DEBUG 1 */
+#include <linux/kernel.h>
+#include <linux/dma-mapping.h>
+#include <mali_kbase.h>
+#include <mali_midg_regmap.h>
+#if defined(CONFIG_MALI_GATOR_SUPPORT)
+#include <mali_kbase_gator.h>
+#endif
+#include <mali_kbase_tlstream.h>
+#include <mali_kbase_instr_defs.h>
+#include <mali_kbase_debug.h>
+
+#define beenthere(kctx, f, a...) dev_dbg(kctx->kbdev->dev, "%s:" f, __func__, ##a)
+
+#include <mali_kbase_defs.h>
+#include <mali_kbase_hw.h>
+#include <mali_kbase_mmu_hw.h>
+#include <mali_kbase_hwaccess_jm.h>
+#include <mali_kbase_time.h>
+#include <mali_kbase_mem.h>
+
+#define KBASE_MMU_PAGE_ENTRIES 512
+
+/**
+ * kbase_mmu_flush_invalidate() - Flush and invalidate the GPU caches.
+ * @kctx: The KBase context.
+ * @vpfn: The virtual page frame number to start the flush on.
+ * @nr: The number of pages to flush.
+ * @sync: Set if the operation should be synchronous or not.
+ *
+ * Issue a cache flush + invalidate to the GPU caches and invalidate the TLBs.
+ *
+ * If sync is not set then transactions still in flight when the flush is issued
+ * may use the old page tables and the data they write will not be written out
+ * to memory, this function returns after the flush has been issued but
+ * before all accesses which might effect the flushed region have completed.
+ *
+ * If sync is set then accesses in the flushed region will be drained
+ * before data is flush and invalidated through L1, L2 and into memory,
+ * after which point this function will return.
+ */
+static void kbase_mmu_flush_invalidate(struct kbase_context *kctx,
+ u64 vpfn, size_t nr, bool sync);
+
+/**
+ * kbase_mmu_sync_pgd - sync page directory to memory
+ * @kbdev: Device pointer.
+ * @handle: Address of DMA region.
+ * @size: Size of the region to sync.
+ *
+ * This should be called after each page directory update.
+ */
+
+static void kbase_mmu_sync_pgd(struct kbase_device *kbdev,
+ dma_addr_t handle, size_t size)
+{
+ /* If page table is not coherent then ensure the gpu can read
+ * the pages from memory
+ */
+ if (kbdev->system_coherency != COHERENCY_ACE)
+ dma_sync_single_for_device(kbdev->dev, handle, size,
+ DMA_TO_DEVICE);
+}
+
+/*
+ * Definitions:
+ * - PGD: Page Directory.
+ * - PTE: Page Table Entry. A 64bit value pointing to the next
+ * level of translation
+ * - ATE: Address Transation Entry. A 64bit value pointing to
+ * a 4kB physical page.
+ */
+
+static void kbase_mmu_report_fault_and_kill(struct kbase_context *kctx,
+ struct kbase_as *as, const char *reason_str);
+
+
+static size_t make_multiple(size_t minimum, size_t multiple)
+{
+ size_t remainder = minimum % multiple;
+
+ if (remainder == 0)
+ return minimum;
+
+ return minimum + multiple - remainder;
+}
+
+void page_fault_worker(struct work_struct *data)
+{
+ u64 fault_pfn;
+ u32 fault_status;
+ size_t new_pages;
+ size_t fault_rel_pfn;
+ struct kbase_as *faulting_as;
+ int as_no;
+ struct kbase_context *kctx;
+ struct kbase_device *kbdev;
+ struct kbase_va_region *region;
+ int err;
+ bool grown = false;
+
+ faulting_as = container_of(data, struct kbase_as, work_pagefault);
+ fault_pfn = faulting_as->fault_addr >> PAGE_SHIFT;
+ as_no = faulting_as->number;
+
+ kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
+
+ /* Grab the context that was already refcounted in kbase_mmu_interrupt().
+ * Therefore, it cannot be scheduled out of this AS until we explicitly release it
+ */
+ kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no);
+ if (WARN_ON(!kctx)) {
+ atomic_dec(&kbdev->faults_pending);
+ return;
+ }
+
+ KBASE_DEBUG_ASSERT(kctx->kbdev == kbdev);
+
+ if (unlikely(faulting_as->protected_mode))
+ {
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Protected mode fault");
+ kbase_mmu_hw_clear_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE);
+
+ goto fault_done;
+ }
+
+ fault_status = faulting_as->fault_status;
+ switch (fault_status & AS_FAULTSTATUS_EXCEPTION_CODE_MASK) {
+
+ case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSLATION_FAULT:
+ /* need to check against the region to handle this one */
+ break;
+
+ case AS_FAULTSTATUS_EXCEPTION_CODE_PERMISSION_FAULT:
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Permission failure");
+ goto fault_done;
+
+ case AS_FAULTSTATUS_EXCEPTION_CODE_TRANSTAB_BUS_FAULT:
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Translation table bus fault");
+ goto fault_done;
+
+ case AS_FAULTSTATUS_EXCEPTION_CODE_ACCESS_FLAG:
+ /* nothing to do, but we don't expect this fault currently */
+ dev_warn(kbdev->dev, "Access flag unexpectedly set");
+ goto fault_done;
+
+#ifdef CONFIG_MALI_GPU_MMU_AARCH64
+ case AS_FAULTSTATUS_EXCEPTION_CODE_ADDRESS_SIZE_FAULT:
+
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Address size fault");
+ goto fault_done;
+
+ case AS_FAULTSTATUS_EXCEPTION_CODE_MEMORY_ATTRIBUTES_FAULT:
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Memory attributes fault");
+ goto fault_done;
+#endif /* CONFIG_MALI_GPU_MMU_AARCH64 */
+
+ default:
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Unknown fault code");
+ goto fault_done;
+ }
+
+ /* so we have a translation fault, let's see if it is for growable
+ * memory */
+ kbase_gpu_vm_lock(kctx);
+
+ region = kbase_region_tracker_find_region_enclosing_address(kctx,
+ faulting_as->fault_addr);
+ if (!region || region->flags & KBASE_REG_FREE) {
+ kbase_gpu_vm_unlock(kctx);
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Memory is not mapped on the GPU");
+ goto fault_done;
+ }
+
+ if (region->gpu_alloc->type == KBASE_MEM_TYPE_IMPORTED_UMM) {
+ kbase_gpu_vm_unlock(kctx);
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "DMA-BUF is not mapped on the GPU");
+ goto fault_done;
+ }
+
+ if ((region->flags & GROWABLE_FLAGS_REQUIRED)
+ != GROWABLE_FLAGS_REQUIRED) {
+ kbase_gpu_vm_unlock(kctx);
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Memory is not growable");
+ goto fault_done;
+ }
+
+ if ((region->flags & KBASE_REG_DONT_NEED)) {
+ kbase_gpu_vm_unlock(kctx);
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Don't need memory can't be grown");
+ goto fault_done;
+ }
+
+ /* find the size we need to grow it by */
+ /* we know the result fit in a size_t due to kbase_region_tracker_find_region_enclosing_address
+ * validating the fault_adress to be within a size_t from the start_pfn */
+ fault_rel_pfn = fault_pfn - region->start_pfn;
+
+ if (fault_rel_pfn < kbase_reg_current_backed_size(region)) {
+ dev_dbg(kbdev->dev, "Page fault @ 0x%llx in allocated region 0x%llx-0x%llx of growable TMEM: Ignoring",
+ faulting_as->fault_addr, region->start_pfn,
+ region->start_pfn +
+ kbase_reg_current_backed_size(region));
+
+ mutex_lock(&kbdev->mmu_hw_mutex);
+
+ kbase_mmu_hw_clear_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE);
+ /* [1] in case another page fault occurred while we were
+ * handling the (duplicate) page fault we need to ensure we
+ * don't loose the other page fault as result of us clearing
+ * the MMU IRQ. Therefore, after we clear the MMU IRQ we send
+ * an UNLOCK command that will retry any stalled memory
+ * transaction (which should cause the other page fault to be
+ * raised again).
+ */
+ kbase_mmu_hw_do_operation(kbdev, faulting_as, NULL, 0, 0,
+ AS_COMMAND_UNLOCK, 1);
+
+ mutex_unlock(&kbdev->mmu_hw_mutex);
+
+ kbase_mmu_hw_enable_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE);
+ kbase_gpu_vm_unlock(kctx);
+
+ goto fault_done;
+ }
+
+ new_pages = make_multiple(fault_rel_pfn -
+ kbase_reg_current_backed_size(region) + 1,
+ region->extent);
+
+ /* cap to max vsize */
+ if (new_pages + kbase_reg_current_backed_size(region) >
+ region->nr_pages)
+ new_pages = region->nr_pages -
+ kbase_reg_current_backed_size(region);
+
+ if (0 == new_pages) {
+ mutex_lock(&kbdev->mmu_hw_mutex);
+
+ /* Duplicate of a fault we've already handled, nothing to do */
+ kbase_mmu_hw_clear_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE);
+ /* See comment [1] about UNLOCK usage */
+ kbase_mmu_hw_do_operation(kbdev, faulting_as, NULL, 0, 0,
+ AS_COMMAND_UNLOCK, 1);
+
+ mutex_unlock(&kbdev->mmu_hw_mutex);
+
+ kbase_mmu_hw_enable_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE);
+ kbase_gpu_vm_unlock(kctx);
+ goto fault_done;
+ }
+
+ if (kbase_alloc_phy_pages_helper(region->gpu_alloc, new_pages) == 0) {
+ if (region->gpu_alloc != region->cpu_alloc) {
+ if (kbase_alloc_phy_pages_helper(
+ region->cpu_alloc, new_pages) == 0) {
+ grown = true;
+ } else {
+ kbase_free_phy_pages_helper(region->gpu_alloc,
+ new_pages);
+ }
+ } else {
+ grown = true;
+ }
+ }
+
+
+ if (grown) {
+ u64 pfn_offset;
+ u32 op;
+
+ /* alloc success */
+ KBASE_DEBUG_ASSERT(kbase_reg_current_backed_size(region) <= region->nr_pages);
+
+ /* set up the new pages */
+ pfn_offset = kbase_reg_current_backed_size(region) - new_pages;
+ /*
+ * Note:
+ * Issuing an MMU operation will unlock the MMU and cause the
+ * translation to be replayed. If the page insertion fails then
+ * rather then trying to continue the context should be killed
+ * so the no_flush version of insert_pages is used which allows
+ * us to unlock the MMU as we see fit.
+ */
+ err = kbase_mmu_insert_pages_no_flush(kctx,
+ region->start_pfn + pfn_offset,
+ &kbase_get_gpu_phy_pages(region)[pfn_offset],
+ new_pages, region->flags);
+ if (err) {
+ kbase_free_phy_pages_helper(region->gpu_alloc, new_pages);
+ if (region->gpu_alloc != region->cpu_alloc)
+ kbase_free_phy_pages_helper(region->cpu_alloc,
+ new_pages);
+ kbase_gpu_vm_unlock(kctx);
+ /* The locked VA region will be unlocked and the cache invalidated in here */
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Page table update failure");
+ goto fault_done;
+ }
+#if defined(CONFIG_MALI_GATOR_SUPPORT)
+ kbase_trace_mali_page_fault_insert_pages(as_no, new_pages);
+#endif
+ KBASE_TLSTREAM_AUX_PAGEFAULT(kctx->id, (u64)new_pages);
+
+ /* AS transaction begin */
+ mutex_lock(&kbdev->mmu_hw_mutex);
+
+ /* flush L2 and unlock the VA (resumes the MMU) */
+ if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_6367))
+ op = AS_COMMAND_FLUSH;
+ else
+ op = AS_COMMAND_FLUSH_PT;
+
+ /* clear MMU interrupt - this needs to be done after updating
+ * the page tables but before issuing a FLUSH command. The
+ * FLUSH cmd has a side effect that it restarts stalled memory
+ * transactions in other address spaces which may cause
+ * another fault to occur. If we didn't clear the interrupt at
+ * this stage a new IRQ might not be raised when the GPU finds
+ * a MMU IRQ is already pending.
+ */
+ kbase_mmu_hw_clear_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE);
+
+ kbase_mmu_hw_do_operation(kbdev, faulting_as, kctx,
+ faulting_as->fault_addr >> PAGE_SHIFT,
+ new_pages,
+ op, 1);
+
+ mutex_unlock(&kbdev->mmu_hw_mutex);
+ /* AS transaction end */
+
+ /* reenable this in the mask */
+ kbase_mmu_hw_enable_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE);
+ kbase_gpu_vm_unlock(kctx);
+ } else {
+ /* failed to extend, handle as a normal PF */
+ kbase_gpu_vm_unlock(kctx);
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Page allocation failure");
+ }
+
+fault_done:
+ /*
+ * By this point, the fault was handled in some way,
+ * so release the ctx refcount
+ */
+ kbasep_js_runpool_release_ctx(kbdev, kctx);
+
+ atomic_dec(&kbdev->faults_pending);
+}
+
+phys_addr_t kbase_mmu_alloc_pgd(struct kbase_context *kctx)
+{
+ u64 *page;
+ int i;
+ struct page *p;
+ int new_page_count __maybe_unused;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ new_page_count = kbase_atomic_add_pages(1, &kctx->used_pages);
+ kbase_atomic_add_pages(1, &kctx->kbdev->memdev.used_pages);
+
+ p = kbase_mem_pool_alloc(&kctx->mem_pool);
+ if (!p)
+ goto sub_pages;
+
+ KBASE_TLSTREAM_AUX_PAGESALLOC(
+ (u32)kctx->id,
+ (u64)new_page_count);
+
+ page = kmap(p);
+ if (NULL == page)
+ goto alloc_free;
+
+ kbase_process_page_usage_inc(kctx, 1);
+
+ for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++)
+ kctx->kbdev->mmu_mode->entry_invalidate(&page[i]);
+
+ kbase_mmu_sync_pgd(kctx->kbdev, kbase_dma_addr(p), PAGE_SIZE);
+
+ kunmap(p);
+ return page_to_phys(p);
+
+alloc_free:
+ kbase_mem_pool_free(&kctx->mem_pool, p, false);
+sub_pages:
+ kbase_atomic_sub_pages(1, &kctx->used_pages);
+ kbase_atomic_sub_pages(1, &kctx->kbdev->memdev.used_pages);
+
+ return 0;
+}
+
+KBASE_EXPORT_TEST_API(kbase_mmu_alloc_pgd);
+
+/* Given PGD PFN for level N, return PGD PFN for level N+1, allocating the
+ * new table from the pool if needed and possible
+ */
+static int mmu_get_next_pgd(struct kbase_context *kctx,
+ phys_addr_t *pgd, u64 vpfn, int level)
+{
+ u64 *page;
+ phys_addr_t target_pgd;
+ struct page *p;
+
+ KBASE_DEBUG_ASSERT(*pgd);
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+
+ lockdep_assert_held(&kctx->mmu_lock);
+
+ /*
+ * Architecture spec defines level-0 as being the top-most.
+ * This is a bit unfortunate here, but we keep the same convention.
+ */
+ vpfn >>= (3 - level) * 9;
+ vpfn &= 0x1FF;
+
+ p = pfn_to_page(PFN_DOWN(*pgd));
+ page = kmap(p);
+ if (NULL == page) {
+ dev_warn(kctx->kbdev->dev, "mmu_get_next_pgd: kmap failure\n");
+ return -EINVAL;
+ }
+
+ target_pgd = kctx->kbdev->mmu_mode->pte_to_phy_addr(page[vpfn]);
+
+ if (!target_pgd) {
+ target_pgd = kbase_mmu_alloc_pgd(kctx);
+ if (!target_pgd) {
+ dev_dbg(kctx->kbdev->dev, "mmu_get_next_pgd: kbase_mmu_alloc_pgd failure\n");
+ kunmap(p);
+ return -ENOMEM;
+ }
+
+ kctx->kbdev->mmu_mode->entry_set_pte(&page[vpfn], target_pgd);
+
+ kbase_mmu_sync_pgd(kctx->kbdev, kbase_dma_addr(p), PAGE_SIZE);
+ /* Rely on the caller to update the address space flags. */
+ }
+
+ kunmap(p);
+ *pgd = target_pgd;
+
+ return 0;
+}
+
+static int mmu_get_bottom_pgd(struct kbase_context *kctx,
+ u64 vpfn, phys_addr_t *out_pgd)
+{
+ phys_addr_t pgd;
+ int l;
+
+ lockdep_assert_held(&kctx->mmu_lock);
+
+ pgd = kctx->pgd;
+ for (l = MIDGARD_MMU_TOPLEVEL; l < MIDGARD_MMU_BOTTOMLEVEL; l++) {
+ int err = mmu_get_next_pgd(kctx, &pgd, vpfn, l);
+ /* Handle failure condition */
+ if (err) {
+ dev_dbg(kctx->kbdev->dev, "mmu_get_bottom_pgd: mmu_get_next_pgd failure\n");
+ return err;
+ }
+ }
+
+ *out_pgd = pgd;
+
+ return 0;
+}
+
+static phys_addr_t mmu_insert_pages_recover_get_next_pgd(struct kbase_context *kctx, phys_addr_t pgd, u64 vpfn, int level)
+{
+ u64 *page;
+ phys_addr_t target_pgd;
+
+ KBASE_DEBUG_ASSERT(pgd);
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+
+ lockdep_assert_held(&kctx->mmu_lock);
+ lockdep_assert_held(&kctx->reg_lock);
+
+ /*
+ * Architecture spec defines level-0 as being the top-most.
+ * This is a bit unfortunate here, but we keep the same convention.
+ */
+ vpfn >>= (3 - level) * 9;
+ vpfn &= 0x1FF;
+
+ page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
+ /* kmap_atomic should NEVER fail */
+ KBASE_DEBUG_ASSERT(NULL != page);
+
+ target_pgd = kctx->kbdev->mmu_mode->pte_to_phy_addr(page[vpfn]);
+ /* As we are recovering from what has already been set up, we should have a target_pgd */
+ KBASE_DEBUG_ASSERT(0 != target_pgd);
+ kunmap_atomic(page);
+ return target_pgd;
+}
+
+static phys_addr_t mmu_insert_pages_recover_get_bottom_pgd(struct kbase_context *kctx, u64 vpfn)
+{
+ phys_addr_t pgd;
+ int l;
+
+ lockdep_assert_held(&kctx->mmu_lock);
+
+ pgd = kctx->pgd;
+
+ for (l = MIDGARD_MMU_TOPLEVEL; l < MIDGARD_MMU_BOTTOMLEVEL; l++) {
+ pgd = mmu_insert_pages_recover_get_next_pgd(kctx, pgd, vpfn, l);
+ /* Should never fail */
+ KBASE_DEBUG_ASSERT(0 != pgd);
+ }
+
+ return pgd;
+}
+
+static void mmu_insert_pages_failure_recovery(struct kbase_context *kctx, u64 vpfn,
+ size_t nr)
+{
+ phys_addr_t pgd;
+ u64 *pgd_page;
+ struct kbase_mmu_mode const *mmu_mode;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ KBASE_DEBUG_ASSERT(0 != vpfn);
+ /* 64-bit address range is the max */
+ KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
+
+ lockdep_assert_held(&kctx->mmu_lock);
+ lockdep_assert_held(&kctx->reg_lock);
+
+ mmu_mode = kctx->kbdev->mmu_mode;
+
+ while (nr) {
+ unsigned int i;
+ unsigned int index = vpfn & 0x1FF;
+ unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
+ struct page *p;
+
+ if (count > nr)
+ count = nr;
+
+ pgd = mmu_insert_pages_recover_get_bottom_pgd(kctx, vpfn);
+ KBASE_DEBUG_ASSERT(0 != pgd);
+
+ p = pfn_to_page(PFN_DOWN(pgd));
+
+ pgd_page = kmap_atomic(p);
+ KBASE_DEBUG_ASSERT(NULL != pgd_page);
+
+ /* Invalidate the entries we added */
+ for (i = 0; i < count; i++)
+ mmu_mode->entry_invalidate(&pgd_page[index + i]);
+
+ vpfn += count;
+ nr -= count;
+
+ kbase_mmu_sync_pgd(kctx->kbdev, kbase_dma_addr(p), PAGE_SIZE);
+
+ kunmap_atomic(pgd_page);
+ }
+}
+
+/*
+ * Map the single page 'phys' 'nr' of times, starting at GPU PFN 'vpfn'
+ */
+int kbase_mmu_insert_single_page(struct kbase_context *kctx, u64 vpfn,
+ phys_addr_t phys, size_t nr,
+ unsigned long flags)
+{
+ phys_addr_t pgd;
+ u64 *pgd_page;
+ /* In case the insert_single_page only partially completes we need to be
+ * able to recover */
+ bool recover_required = false;
+ u64 recover_vpfn = vpfn;
+ size_t recover_count = 0;
+ size_t remain = nr;
+ int err;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ KBASE_DEBUG_ASSERT(0 != vpfn);
+ /* 64-bit address range is the max */
+ KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
+
+ /* Early out if there is nothing to do */
+ if (nr == 0)
+ return 0;
+
+ mutex_lock(&kctx->mmu_lock);
+
+ while (remain) {
+ unsigned int i;
+ unsigned int index = vpfn & 0x1FF;
+ unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
+ struct page *p;
+
+ if (count > remain)
+ count = remain;
+
+ /*
+ * Repeatedly calling mmu_get_bottom_pte() is clearly
+ * suboptimal. We don't have to re-parse the whole tree
+ * each time (just cache the l0-l2 sequence).
+ * On the other hand, it's only a gain when we map more than
+ * 256 pages at once (on average). Do we really care?
+ */
+ do {
+ err = mmu_get_bottom_pgd(kctx, vpfn, &pgd);
+ if (err != -ENOMEM)
+ break;
+ /* Fill the memory pool with enough pages for
+ * the page walk to succeed
+ */
+ mutex_unlock(&kctx->mmu_lock);
+ err = kbase_mem_pool_grow(&kctx->mem_pool,
+ MIDGARD_MMU_BOTTOMLEVEL);
+ mutex_lock(&kctx->mmu_lock);
+ } while (!err);
+ if (err) {
+ dev_warn(kctx->kbdev->dev, "kbase_mmu_insert_pages: mmu_get_bottom_pgd failure\n");
+ if (recover_required) {
+ /* Invalidate the pages we have partially
+ * completed */
+ mmu_insert_pages_failure_recovery(kctx,
+ recover_vpfn,
+ recover_count);
+ }
+ goto fail_unlock;
+ }
+
+ p = pfn_to_page(PFN_DOWN(pgd));
+ pgd_page = kmap(p);
+ if (!pgd_page) {
+ dev_warn(kctx->kbdev->dev, "kbase_mmu_insert_pages: kmap failure\n");
+ if (recover_required) {
+ /* Invalidate the pages we have partially
+ * completed */
+ mmu_insert_pages_failure_recovery(kctx,
+ recover_vpfn,
+ recover_count);
+ }
+ err = -ENOMEM;
+ goto fail_unlock;
+ }
+
+ for (i = 0; i < count; i++) {
+ unsigned int ofs = index + i;
+
+ KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));
+ kctx->kbdev->mmu_mode->entry_set_ate(&pgd_page[ofs],
+ phys, flags);
+ }
+
+ vpfn += count;
+ remain -= count;
+
+ kbase_mmu_sync_pgd(kctx->kbdev,
+ kbase_dma_addr(p) + (index * sizeof(u64)),
+ count * sizeof(u64));
+
+ kunmap(p);
+ /* We have started modifying the page table.
+ * If further pages need inserting and fail we need to undo what
+ * has already taken place */
+ recover_required = true;
+ recover_count += count;
+ }
+ mutex_unlock(&kctx->mmu_lock);
+ kbase_mmu_flush_invalidate(kctx, vpfn, nr, false);
+ return 0;
+
+fail_unlock:
+ mutex_unlock(&kctx->mmu_lock);
+ kbase_mmu_flush_invalidate(kctx, vpfn, nr, false);
+ return err;
+}
+
+int kbase_mmu_insert_pages_no_flush(struct kbase_context *kctx, u64 vpfn,
+ phys_addr_t *phys, size_t nr,
+ unsigned long flags)
+{
+ phys_addr_t pgd;
+ u64 *pgd_page;
+ /* In case the insert_pages only partially completes we need to be able
+ * to recover */
+ bool recover_required = false;
+ u64 recover_vpfn = vpfn;
+ size_t recover_count = 0;
+ size_t remain = nr;
+ int err;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ KBASE_DEBUG_ASSERT(0 != vpfn);
+ /* 64-bit address range is the max */
+ KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
+
+ /* Early out if there is nothing to do */
+ if (nr == 0)
+ return 0;
+
+ mutex_lock(&kctx->mmu_lock);
+
+ while (remain) {
+ unsigned int i;
+ unsigned int index = vpfn & 0x1FF;
+ unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
+ struct page *p;
+
+ if (count > remain)
+ count = remain;
+
+ /*
+ * Repeatedly calling mmu_get_bottom_pte() is clearly
+ * suboptimal. We don't have to re-parse the whole tree
+ * each time (just cache the l0-l2 sequence).
+ * On the other hand, it's only a gain when we map more than
+ * 256 pages at once (on average). Do we really care?
+ */
+ do {
+ err = mmu_get_bottom_pgd(kctx, vpfn, &pgd);
+ if (err != -ENOMEM)
+ break;
+ /* Fill the memory pool with enough pages for
+ * the page walk to succeed
+ */
+ mutex_unlock(&kctx->mmu_lock);
+ err = kbase_mem_pool_grow(&kctx->mem_pool,
+ MIDGARD_MMU_BOTTOMLEVEL);
+ mutex_lock(&kctx->mmu_lock);
+ } while (!err);
+ if (err) {
+ dev_warn(kctx->kbdev->dev, "kbase_mmu_insert_pages: mmu_get_bottom_pgd failure\n");
+ if (recover_required) {
+ /* Invalidate the pages we have partially
+ * completed */
+ mmu_insert_pages_failure_recovery(kctx,
+ recover_vpfn,
+ recover_count);
+ }
+ goto fail_unlock;
+ }
+
+ p = pfn_to_page(PFN_DOWN(pgd));
+ pgd_page = kmap(p);
+ if (!pgd_page) {
+ dev_warn(kctx->kbdev->dev, "kbase_mmu_insert_pages: kmap failure\n");
+ if (recover_required) {
+ /* Invalidate the pages we have partially
+ * completed */
+ mmu_insert_pages_failure_recovery(kctx,
+ recover_vpfn,
+ recover_count);
+ }
+ err = -ENOMEM;
+ goto fail_unlock;
+ }
+
+ for (i = 0; i < count; i++) {
+ unsigned int ofs = index + i;
+
+ KBASE_DEBUG_ASSERT(0 == (pgd_page[ofs] & 1UL));
+ kctx->kbdev->mmu_mode->entry_set_ate(&pgd_page[ofs],
+ phys[i], flags);
+ }
+
+ phys += count;
+ vpfn += count;
+ remain -= count;
+
+ kbase_mmu_sync_pgd(kctx->kbdev,
+ kbase_dma_addr(p) + (index * sizeof(u64)),
+ count * sizeof(u64));
+
+ kunmap(p);
+ /* We have started modifying the page table. If further pages
+ * need inserting and fail we need to undo what has already
+ * taken place */
+ recover_required = true;
+ recover_count += count;
+ }
+
+ mutex_unlock(&kctx->mmu_lock);
+ return 0;
+
+fail_unlock:
+ mutex_unlock(&kctx->mmu_lock);
+ return err;
+}
+
+/*
+ * Map 'nr' pages pointed to by 'phys' at GPU PFN 'vpfn'
+ */
+int kbase_mmu_insert_pages(struct kbase_context *kctx, u64 vpfn,
+ phys_addr_t *phys, size_t nr,
+ unsigned long flags)
+{
+ int err;
+
+ err = kbase_mmu_insert_pages_no_flush(kctx, vpfn, phys, nr, flags);
+ kbase_mmu_flush_invalidate(kctx, vpfn, nr, false);
+ return err;
+}
+
+KBASE_EXPORT_TEST_API(kbase_mmu_insert_pages);
+
+/**
+ * kbase_mmu_flush_invalidate_noretain() - Flush and invalidate the GPU caches
+ * without retaining the kbase context.
+ * @kctx: The KBase context.
+ * @vpfn: The virtual page frame number to start the flush on.
+ * @nr: The number of pages to flush.
+ * @sync: Set if the operation should be synchronous or not.
+ *
+ * As per kbase_mmu_flush_invalidate but doesn't retain the kctx or do any
+ * other locking.
+ */
+static void kbase_mmu_flush_invalidate_noretain(struct kbase_context *kctx,
+ u64 vpfn, size_t nr, bool sync)
+{
+ struct kbase_device *kbdev = kctx->kbdev;
+ int err;
+ u32 op;
+
+ /* Early out if there is nothing to do */
+ if (nr == 0)
+ return;
+
+ if (sync)
+ op = AS_COMMAND_FLUSH_MEM;
+ else
+ op = AS_COMMAND_FLUSH_PT;
+
+ err = kbase_mmu_hw_do_operation(kbdev,
+ &kbdev->as[kctx->as_nr],
+ kctx, vpfn, nr, op, 0);
+#if KBASE_GPU_RESET_EN
+ if (err) {
+ /* Flush failed to complete, assume the
+ * GPU has hung and perform a reset to
+ * recover */
+ dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issuing GPU soft-reset to recover\n");
+
+ if (kbase_prepare_to_reset_gpu_locked(kbdev))
+ kbase_reset_gpu_locked(kbdev);
+ }
+#endif /* KBASE_GPU_RESET_EN */
+
+#ifndef CONFIG_MALI_NO_MALI
+ /*
+ * As this function could be called in interrupt context the sync
+ * request can't block. Instead log the request and the next flush
+ * request will pick it up.
+ */
+ if ((!err) && sync &&
+ kbase_hw_has_issue(kctx->kbdev, BASE_HW_ISSUE_6367))
+ atomic_set(&kctx->drain_pending, 1);
+#endif /* !CONFIG_MALI_NO_MALI */
+}
+
+static void kbase_mmu_flush_invalidate(struct kbase_context *kctx,
+ u64 vpfn, size_t nr, bool sync)
+{
+ struct kbase_device *kbdev;
+ bool ctx_is_in_runpool;
+#ifndef CONFIG_MALI_NO_MALI
+ bool drain_pending = false;
+
+ if (atomic_xchg(&kctx->drain_pending, 0))
+ drain_pending = true;
+#endif /* !CONFIG_MALI_NO_MALI */
+
+ /* Early out if there is nothing to do */
+ if (nr == 0)
+ return;
+
+ kbdev = kctx->kbdev;
+ mutex_lock(&kbdev->js_data.queue_mutex);
+ ctx_is_in_runpool = kbasep_js_runpool_retain_ctx(kbdev, kctx);
+ mutex_unlock(&kbdev->js_data.queue_mutex);
+
+ if (ctx_is_in_runpool) {
+ KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
+
+ if (!kbase_pm_context_active_handle_suspend(kbdev,
+ KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
+ int err;
+ u32 op;
+
+ /* AS transaction begin */
+ mutex_lock(&kbdev->mmu_hw_mutex);
+
+ if (sync)
+ op = AS_COMMAND_FLUSH_MEM;
+ else
+ op = AS_COMMAND_FLUSH_PT;
+
+ err = kbase_mmu_hw_do_operation(kbdev,
+ &kbdev->as[kctx->as_nr],
+ kctx, vpfn, nr, op, 0);
+
+#if KBASE_GPU_RESET_EN
+ if (err) {
+ /* Flush failed to complete, assume the
+ * GPU has hung and perform a reset to
+ * recover */
+ dev_err(kbdev->dev, "Flush for GPU page table update did not complete. Issueing GPU soft-reset to recover\n");
+
+ if (kbase_prepare_to_reset_gpu(kbdev))
+ kbase_reset_gpu(kbdev);
+ }
+#endif /* KBASE_GPU_RESET_EN */
+
+ mutex_unlock(&kbdev->mmu_hw_mutex);
+ /* AS transaction end */
+
+#ifndef CONFIG_MALI_NO_MALI
+ /*
+ * The transaction lock must be dropped before here
+ * as kbase_wait_write_flush could take it if
+ * the GPU was powered down (static analysis doesn't
+ * know this can't happen).
+ */
+ drain_pending |= (!err) && sync &&
+ kbase_hw_has_issue(kctx->kbdev,
+ BASE_HW_ISSUE_6367);
+ if (drain_pending) {
+ /* Wait for GPU to flush write buffer */
+ kbase_wait_write_flush(kctx);
+ }
+#endif /* !CONFIG_MALI_NO_MALI */
+
+ kbase_pm_context_idle(kbdev);
+ }
+ kbasep_js_runpool_release_ctx(kbdev, kctx);
+ }
+}
+
+void kbase_mmu_update(struct kbase_context *kctx)
+{
+ lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
+ lockdep_assert_held(&kctx->kbdev->mmu_hw_mutex);
+ /* ASSERT that the context has a valid as_nr, which is only the case
+ * when it's scheduled in.
+ *
+ * as_nr won't change because the caller has the hwaccess_lock */
+ KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
+
+ kctx->kbdev->mmu_mode->update(kctx);
+}
+KBASE_EXPORT_TEST_API(kbase_mmu_update);
+
+void kbase_mmu_disable_as(struct kbase_device *kbdev, int as_nr)
+{
+ lockdep_assert_held(&kbdev->hwaccess_lock);
+ lockdep_assert_held(&kbdev->mmu_hw_mutex);
+
+ kbdev->mmu_mode->disable_as(kbdev, as_nr);
+}
+
+void kbase_mmu_disable(struct kbase_context *kctx)
+{
+ /* ASSERT that the context has a valid as_nr, which is only the case
+ * when it's scheduled in.
+ *
+ * as_nr won't change because the caller has the hwaccess_lock */
+ KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
+
+ lockdep_assert_held(&kctx->kbdev->hwaccess_lock);
+
+ /*
+ * The address space is being disabled, drain all knowledge of it out
+ * from the caches as pages and page tables might be freed after this.
+ *
+ * The job scheduler code will already be holding the locks and context
+ * so just do the flush.
+ */
+ kbase_mmu_flush_invalidate_noretain(kctx, 0, ~0, true);
+
+ kctx->kbdev->mmu_mode->disable_as(kctx->kbdev, kctx->as_nr);
+}
+KBASE_EXPORT_TEST_API(kbase_mmu_disable);
+
+/*
+ * We actually only discard the ATE, and not the page table
+ * pages. There is a potential DoS here, as we'll leak memory by
+ * having PTEs that are potentially unused. Will require physical
+ * page accounting, so MMU pages are part of the process allocation.
+ *
+ * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
+ * currently scheduled into the runpool, and so potentially uses a lot of locks.
+ * These locks must be taken in the correct order with respect to others
+ * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
+ * information.
+ */
+int kbase_mmu_teardown_pages(struct kbase_context *kctx, u64 vpfn, size_t nr)
+{
+ phys_addr_t pgd;
+ u64 *pgd_page;
+ struct kbase_device *kbdev;
+ size_t requested_nr = nr;
+ struct kbase_mmu_mode const *mmu_mode;
+ int err;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ beenthere(kctx, "kctx %p vpfn %lx nr %zd", (void *)kctx, (unsigned long)vpfn, nr);
+
+ if (0 == nr) {
+ /* early out if nothing to do */
+ return 0;
+ }
+
+ mutex_lock(&kctx->mmu_lock);
+
+ kbdev = kctx->kbdev;
+ mmu_mode = kbdev->mmu_mode;
+
+ while (nr) {
+ unsigned int i;
+ unsigned int index = vpfn & 0x1FF;
+ unsigned int count = KBASE_MMU_PAGE_ENTRIES - index;
+ struct page *p;
+
+ if (count > nr)
+ count = nr;
+
+ err = mmu_get_bottom_pgd(kctx, vpfn, &pgd);
+ if (err) {
+ dev_warn(kbdev->dev, "kbase_mmu_teardown_pages: mmu_get_bottom_pgd failure\n");
+ err = -EINVAL;
+ goto fail_unlock;
+ }
+
+ p = pfn_to_page(PFN_DOWN(pgd));
+ pgd_page = kmap(p);
+ if (!pgd_page) {
+ dev_warn(kbdev->dev, "kbase_mmu_teardown_pages: kmap failure\n");
+ err = -ENOMEM;
+ goto fail_unlock;
+ }
+
+ for (i = 0; i < count; i++)
+ mmu_mode->entry_invalidate(&pgd_page[index + i]);
+
+ vpfn += count;
+ nr -= count;
+
+ kbase_mmu_sync_pgd(kctx->kbdev,
+ kbase_dma_addr(p) + (index * sizeof(u64)),
+ count * sizeof(u64));
+
+ kunmap(p);
+ }
+
+ mutex_unlock(&kctx->mmu_lock);
+ kbase_mmu_flush_invalidate(kctx, vpfn, requested_nr, true);
+ return 0;
+
+fail_unlock:
+ mutex_unlock(&kctx->mmu_lock);
+ kbase_mmu_flush_invalidate(kctx, vpfn, requested_nr, true);
+ return err;
+}
+
+KBASE_EXPORT_TEST_API(kbase_mmu_teardown_pages);
+
+/**
+ * Update the entries for specified number of pages pointed to by 'phys' at GPU PFN 'vpfn'.
+ * This call is being triggered as a response to the changes of the mem attributes
+ *
+ * @pre : The caller is responsible for validating the memory attributes
+ *
+ * IMPORTANT: This uses kbasep_js_runpool_release_ctx() when the context is
+ * currently scheduled into the runpool, and so potentially uses a lot of locks.
+ * These locks must be taken in the correct order with respect to others
+ * already held by the caller. Refer to kbasep_js_runpool_release_ctx() for more
+ * information.
+ */
+int kbase_mmu_update_pages(struct kbase_context *kctx, u64 vpfn, phys_addr_t *phys, size_t nr, unsigned long flags)
+{
+ phys_addr_t pgd;
+ u64 *pgd_page;
+ size_t requested_nr = nr;
+ struct kbase_mmu_mode const *mmu_mode;
+ int err;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ KBASE_DEBUG_ASSERT(0 != vpfn);
+ KBASE_DEBUG_ASSERT(vpfn <= (U64_MAX / PAGE_SIZE));
+
+ /* Early out if there is nothing to do */
+ if (nr == 0)
+ return 0;
+
+ mutex_lock(&kctx->mmu_lock);
+
+ mmu_mode = kctx->kbdev->mmu_mode;
+
+ dev_warn(kctx->kbdev->dev, "kbase_mmu_update_pages(): updating page share flags on GPU PFN 0x%llx from phys %p, %zu pages",
+ vpfn, phys, nr);
+
+ while (nr) {
+ unsigned int i;
+ unsigned int index = vpfn & 0x1FF;
+ size_t count = KBASE_MMU_PAGE_ENTRIES - index;
+ struct page *p;
+
+ if (count > nr)
+ count = nr;
+
+ do {
+ err = mmu_get_bottom_pgd(kctx, vpfn, &pgd);
+ if (err != -ENOMEM)
+ break;
+ /* Fill the memory pool with enough pages for
+ * the page walk to succeed
+ */
+ mutex_unlock(&kctx->mmu_lock);
+ err = kbase_mem_pool_grow(&kctx->mem_pool,
+ MIDGARD_MMU_BOTTOMLEVEL);
+ mutex_lock(&kctx->mmu_lock);
+ } while (!err);
+ if (err) {
+ dev_warn(kctx->kbdev->dev, "mmu_get_bottom_pgd failure\n");
+ goto fail_unlock;
+ }
+
+ p = pfn_to_page(PFN_DOWN(pgd));
+ pgd_page = kmap(p);
+ if (!pgd_page) {
+ dev_warn(kctx->kbdev->dev, "kmap failure\n");
+ err = -ENOMEM;
+ goto fail_unlock;
+ }
+
+ for (i = 0; i < count; i++)
+ mmu_mode->entry_set_ate(&pgd_page[index + i], phys[i],
+ flags);
+
+ phys += count;
+ vpfn += count;
+ nr -= count;
+
+ kbase_mmu_sync_pgd(kctx->kbdev,
+ kbase_dma_addr(p) + (index * sizeof(u64)),
+ count * sizeof(u64));
+
+ kunmap(pfn_to_page(PFN_DOWN(pgd)));
+ }
+
+ mutex_unlock(&kctx->mmu_lock);
+ kbase_mmu_flush_invalidate(kctx, vpfn, requested_nr, true);
+ return 0;
+
+fail_unlock:
+ mutex_unlock(&kctx->mmu_lock);
+ kbase_mmu_flush_invalidate(kctx, vpfn, requested_nr, true);
+ return err;
+}
+
+/* This is a debug feature only */
+static void mmu_check_unused(struct kbase_context *kctx, phys_addr_t pgd)
+{
+ u64 *page;
+ int i;
+
+ lockdep_assert_held(&kctx->reg_lock);
+
+ page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
+ /* kmap_atomic should NEVER fail. */
+ KBASE_DEBUG_ASSERT(NULL != page);
+
+ for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
+ if (kctx->kbdev->mmu_mode->ate_is_valid(page[i]))
+ beenthere(kctx, "live pte %016lx", (unsigned long)page[i]);
+ }
+ kunmap_atomic(page);
+}
+
+static void mmu_teardown_level(struct kbase_context *kctx, phys_addr_t pgd, int level, int zap, u64 *pgd_page_buffer)
+{
+ phys_addr_t target_pgd;
+ u64 *pgd_page;
+ int i;
+ struct kbase_mmu_mode const *mmu_mode;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ lockdep_assert_held(&kctx->mmu_lock);
+ lockdep_assert_held(&kctx->reg_lock);
+
+ pgd_page = kmap_atomic(pfn_to_page(PFN_DOWN(pgd)));
+ /* kmap_atomic should NEVER fail. */
+ KBASE_DEBUG_ASSERT(NULL != pgd_page);
+ /* Copy the page to our preallocated buffer so that we can minimize kmap_atomic usage */
+ memcpy(pgd_page_buffer, pgd_page, PAGE_SIZE);
+ kunmap_atomic(pgd_page);
+ pgd_page = pgd_page_buffer;
+
+ mmu_mode = kctx->kbdev->mmu_mode;
+
+ for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
+ target_pgd = mmu_mode->pte_to_phy_addr(pgd_page[i]);
+
+ if (target_pgd) {
+ if (level < (MIDGARD_MMU_BOTTOMLEVEL - 1)) {
+ mmu_teardown_level(kctx, target_pgd, level + 1, zap, pgd_page_buffer + (PAGE_SIZE / sizeof(u64)));
+ } else {
+ /*
+ * So target_pte is a level-3 page.
+ * As a leaf, it is safe to free it.
+ * Unless we have live pages attached to it!
+ */
+ mmu_check_unused(kctx, target_pgd);
+ }
+
+ beenthere(kctx, "pte %lx level %d", (unsigned long)target_pgd, level + 1);
+ if (zap) {
+ struct page *p = phys_to_page(target_pgd);
+
+ kbase_mem_pool_free(&kctx->mem_pool, p, true);
+ kbase_process_page_usage_dec(kctx, 1);
+ kbase_atomic_sub_pages(1, &kctx->used_pages);
+ kbase_atomic_sub_pages(1, &kctx->kbdev->memdev.used_pages);
+ }
+ }
+ }
+}
+
+int kbase_mmu_init(struct kbase_context *kctx)
+{
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ KBASE_DEBUG_ASSERT(NULL == kctx->mmu_teardown_pages);
+
+ mutex_init(&kctx->mmu_lock);
+
+ /* Preallocate MMU depth of four pages for mmu_teardown_level to use */
+ kctx->mmu_teardown_pages = kmalloc(PAGE_SIZE * 4, GFP_KERNEL);
+
+ if (NULL == kctx->mmu_teardown_pages)
+ return -ENOMEM;
+
+ return 0;
+}
+
+void kbase_mmu_term(struct kbase_context *kctx)
+{
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ KBASE_DEBUG_ASSERT(NULL != kctx->mmu_teardown_pages);
+
+ kfree(kctx->mmu_teardown_pages);
+ kctx->mmu_teardown_pages = NULL;
+}
+
+void kbase_mmu_free_pgd(struct kbase_context *kctx)
+{
+ int new_page_count __maybe_unused;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ KBASE_DEBUG_ASSERT(NULL != kctx->mmu_teardown_pages);
+
+ mutex_lock(&kctx->mmu_lock);
+ mmu_teardown_level(kctx, kctx->pgd, MIDGARD_MMU_TOPLEVEL, 1, kctx->mmu_teardown_pages);
+ mutex_unlock(&kctx->mmu_lock);
+
+ beenthere(kctx, "pgd %lx", (unsigned long)kctx->pgd);
+ kbase_mem_pool_free(&kctx->mem_pool, phys_to_page(kctx->pgd), true);
+ kbase_process_page_usage_dec(kctx, 1);
+ new_page_count = kbase_atomic_sub_pages(1, &kctx->used_pages);
+ kbase_atomic_sub_pages(1, &kctx->kbdev->memdev.used_pages);
+
+ KBASE_TLSTREAM_AUX_PAGESALLOC(
+ (u32)kctx->id,
+ (u64)new_page_count);
+}
+
+KBASE_EXPORT_TEST_API(kbase_mmu_free_pgd);
+
+static size_t kbasep_mmu_dump_level(struct kbase_context *kctx, phys_addr_t pgd, int level, char ** const buffer, size_t *size_left)
+{
+ phys_addr_t target_pgd;
+ u64 *pgd_page;
+ int i;
+ size_t size = KBASE_MMU_PAGE_ENTRIES * sizeof(u64) + sizeof(u64);
+ size_t dump_size;
+ struct kbase_mmu_mode const *mmu_mode;
+
+ KBASE_DEBUG_ASSERT(NULL != kctx);
+ lockdep_assert_held(&kctx->mmu_lock);
+
+ mmu_mode = kctx->kbdev->mmu_mode;
+
+ pgd_page = kmap(pfn_to_page(PFN_DOWN(pgd)));
+ if (!pgd_page) {
+ dev_warn(kctx->kbdev->dev, "kbasep_mmu_dump_level: kmap failure\n");
+ return 0;
+ }
+
+ if (*size_left >= size) {
+ /* A modified physical address that contains the page table level */
+ u64 m_pgd = pgd | level;
+
+ /* Put the modified physical address in the output buffer */
+ memcpy(*buffer, &m_pgd, sizeof(m_pgd));
+ *buffer += sizeof(m_pgd);
+
+ /* Followed by the page table itself */
+ memcpy(*buffer, pgd_page, sizeof(u64) * KBASE_MMU_PAGE_ENTRIES);
+ *buffer += sizeof(u64) * KBASE_MMU_PAGE_ENTRIES;
+
+ *size_left -= size;
+ }
+
+ if (level < MIDGARD_MMU_BOTTOMLEVEL) {
+ for (i = 0; i < KBASE_MMU_PAGE_ENTRIES; i++) {
+ if (mmu_mode->pte_is_valid(pgd_page[i])) {
+ target_pgd = mmu_mode->pte_to_phy_addr(
+ pgd_page[i]);
+
+ dump_size = kbasep_mmu_dump_level(kctx,
+ target_pgd, level + 1,
+ buffer, size_left);
+ if (!dump_size) {
+ kunmap(pfn_to_page(PFN_DOWN(pgd)));
+ return 0;
+ }
+ size += dump_size;
+ }
+ }
+ }
+
+ kunmap(pfn_to_page(PFN_DOWN(pgd)));
+
+ return size;
+}
+
+void *kbase_mmu_dump(struct kbase_context *kctx, int nr_pages)
+{
+ void *kaddr;
+ size_t size_left;
+
+ KBASE_DEBUG_ASSERT(kctx);
+
+ if (0 == nr_pages) {
+ /* can't dump in a 0 sized buffer, early out */
+ return NULL;
+ }
+
+ size_left = nr_pages * PAGE_SIZE;
+
+ KBASE_DEBUG_ASSERT(0 != size_left);
+ kaddr = vmalloc_user(size_left);
+
+ mutex_lock(&kctx->mmu_lock);
+
+ if (kaddr) {
+ u64 end_marker = 0xFFULL;
+ char *buffer;
+ char *mmu_dump_buffer;
+ u64 config[3];
+ size_t size;
+
+ buffer = (char *)kaddr;
+ mmu_dump_buffer = buffer;
+
+ if (kctx->api_version >= KBASE_API_VERSION(8, 4)) {
+ struct kbase_mmu_setup as_setup;
+
+ kctx->kbdev->mmu_mode->get_as_setup(kctx, &as_setup);
+ config[0] = as_setup.transtab;
+ config[1] = as_setup.memattr;
+ config[2] = as_setup.transcfg;
+ memcpy(buffer, &config, sizeof(config));
+ mmu_dump_buffer += sizeof(config);
+ size_left -= sizeof(config);
+ }
+
+
+
+ size = kbasep_mmu_dump_level(kctx,
+ kctx->pgd,
+ MIDGARD_MMU_TOPLEVEL,
+ &mmu_dump_buffer,
+ &size_left);
+
+ if (!size)
+ goto fail_free;
+
+ /* Add on the size for the end marker */
+ size += sizeof(u64);
+ /* Add on the size for the config */
+ if (kctx->api_version >= KBASE_API_VERSION(8, 4))
+ size += sizeof(config);
+
+
+ if (size > nr_pages * PAGE_SIZE || size_left < sizeof(u64)) {
+ /* The buffer isn't big enough - free the memory and return failure */
+ goto fail_free;
+ }
+
+ /* Add the end marker */
+ memcpy(mmu_dump_buffer, &end_marker, sizeof(u64));
+ }
+
+ mutex_unlock(&kctx->mmu_lock);
+ return kaddr;
+
+fail_free:
+ vfree(kaddr);
+ mutex_unlock(&kctx->mmu_lock);
+ return NULL;
+}
+KBASE_EXPORT_TEST_API(kbase_mmu_dump);
+
+void bus_fault_worker(struct work_struct *data)
+{
+ struct kbase_as *faulting_as;
+ int as_no;
+ struct kbase_context *kctx;
+ struct kbase_device *kbdev;
+#if KBASE_GPU_RESET_EN
+ bool reset_status = false;
+#endif /* KBASE_GPU_RESET_EN */
+
+ faulting_as = container_of(data, struct kbase_as, work_busfault);
+
+ as_no = faulting_as->number;
+
+ kbdev = container_of(faulting_as, struct kbase_device, as[as_no]);
+
+ /* Grab the context that was already refcounted in kbase_mmu_interrupt().
+ * Therefore, it cannot be scheduled out of this AS until we explicitly release it
+ */
+ kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as_no);
+ if (WARN_ON(!kctx)) {
+ atomic_dec(&kbdev->faults_pending);
+ return;
+ }
+
+ if (unlikely(faulting_as->protected_mode))
+ {
+ kbase_mmu_report_fault_and_kill(kctx, faulting_as,
+ "Permission failure");
+ kbase_mmu_hw_clear_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
+ kbasep_js_runpool_release_ctx(kbdev, kctx);
+ atomic_dec(&kbdev->faults_pending);
+ return;
+
+ }
+
+#if KBASE_GPU_RESET_EN
+ if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
+ /* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode.
+ * We start the reset before switching to UNMAPPED to ensure that unrelated jobs
+ * are evicted from the GPU before the switch.
+ */
+ dev_err(kbdev->dev, "GPU bus error occurred. For this GPU version we now soft-reset as part of bus error recovery\n");
+ reset_status = kbase_prepare_to_reset_gpu(kbdev);
+ }
+#endif /* KBASE_GPU_RESET_EN */
+ /* NOTE: If GPU already powered off for suspend, we don't need to switch to unmapped */
+ if (!kbase_pm_context_active_handle_suspend(kbdev, KBASE_PM_SUSPEND_HANDLER_DONT_REACTIVATE)) {
+ unsigned long flags;
+
+ /* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */
+ /* AS transaction begin */
+ mutex_lock(&kbdev->mmu_hw_mutex);
+
+ /* Set the MMU into unmapped mode */
+ spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
+ kbase_mmu_disable(kctx);
+ spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
+
+ mutex_unlock(&kbdev->mmu_hw_mutex);
+ /* AS transaction end */
+
+ kbase_mmu_hw_clear_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
+ kbase_mmu_hw_enable_fault(kbdev, faulting_as, kctx,
+ KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
+
+ kbase_pm_context_idle(kbdev);
+ }
+
+#if KBASE_GPU_RESET_EN
+ if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status)
+ kbase_reset_gpu(kbdev);
+#endif /* KBASE_GPU_RESET_EN */
+
+ kbasep_js_runpool_release_ctx(kbdev, kctx);
+
+ atomic_dec(&kbdev->faults_pending);
+}
+
+const char *kbase_exception_name(struct kbase_device *kbdev, u32 exception_code)
+{
+ const char *e;
+
+ switch (exception_code) {
+ /* Non-Fault Status code */
+ case 0x00:
+ e = "NOT_STARTED/IDLE/OK";
+ break;
+ case 0x01:
+ e = "DONE";
+ break;
+ case 0x02:
+ e = "INTERRUPTED";
+ break;
+ case 0x03:
+ e = "STOPPED";
+ break;
+ case 0x04:
+ e = "TERMINATED";
+ break;
+ case 0x08:
+ e = "ACTIVE";
+ break;
+ /* Job exceptions */
+ case 0x40:
+ e = "JOB_CONFIG_FAULT";
+ break;
+ case 0x41:
+ e = "JOB_POWER_FAULT";
+ break;
+ case 0x42:
+ e = "JOB_READ_FAULT";
+ break;
+ case 0x43:
+ e = "JOB_WRITE_FAULT";
+ break;
+ case 0x44:
+ e = "JOB_AFFINITY_FAULT";
+ break;
+ case 0x48:
+ e = "JOB_BUS_FAULT";
+ break;
+ case 0x50:
+ e = "INSTR_INVALID_PC";
+ break;
+ case 0x51:
+ e = "INSTR_INVALID_ENC";
+ break;
+ case 0x52:
+ e = "INSTR_TYPE_MISMATCH";
+ break;
+ case 0x53:
+ e = "INSTR_OPERAND_FAULT";
+ break;
+ case 0x54:
+ e = "INSTR_TLS_FAULT";
+ break;
+ case 0x55:
+ e = "INSTR_BARRIER_FAULT";
+ break;
+ case 0x56:
+ e = "INSTR_ALIGN_FAULT";
+ break;
+ case 0x58:
+ e = "DATA_INVALID_FAULT";
+ break;
+ case 0x59:
+ e = "TILE_RANGE_FAULT";
+ break;
+ case 0x5A:
+ e = "ADDR_RANGE_FAULT";
+ break;
+ case 0x60:
+ e = "OUT_OF_MEMORY";
+ break;
+ /* GPU exceptions */
+ case 0x80:
+ e = "DELAYED_BUS_FAULT";
+ break;
+ case 0x88:
+ e = "SHAREABILITY_FAULT";
+ break;
+ /* MMU exceptions */
+ case 0xC0:
+ case 0xC1:
+ case 0xC2:
+ case 0xC3:
+ case 0xC4:
+ case 0xC5:
+ case 0xC6:
+ case 0xC7:
+ e = "TRANSLATION_FAULT";
+ break;
+ case 0xC8:
+#ifdef CONFIG_MALI_GPU_MMU_AARCH64
+ case 0xC9:
+ case 0xCA:
+ case 0xCB:
+ case 0xCC:
+ case 0xCD:
+ case 0xCE:
+ case 0xCF:
+#endif /* CONFIG_MALI_GPU_MMU_AARCH64 */
+ e = "PERMISSION_FAULT";
+ break;
+ case 0xD0:
+ case 0xD1:
+ case 0xD2:
+ case 0xD3:
+ case 0xD4:
+ case 0xD5:
+ case 0xD6:
+ case 0xD7:
+ e = "TRANSTAB_BUS_FAULT";
+ break;
+ case 0xD8:
+#ifdef CONFIG_MALI_GPU_MMU_AARCH64
+ case 0xD9:
+ case 0xDA:
+ case 0xDB:
+ case 0xDC:
+ case 0xDD:
+ case 0xDE:
+ case 0xDF:
+#endif /* CONFIG_MALI_GPU_MMU_AARCH64 */
+ e = "ACCESS_FLAG";
+ break;
+#ifdef CONFIG_MALI_GPU_MMU_AARCH64
+ case 0xE0:
+ case 0xE1:
+ case 0xE2:
+ case 0xE3:
+ case 0xE4:
+ case 0xE5:
+ case 0xE6:
+ case 0xE7:
+ e = "ADDRESS_SIZE_FAULT";
+ break;
+ case 0xE8:
+ case 0xE9:
+ case 0xEA:
+ case 0xEB:
+ case 0xEC:
+ case 0xED:
+ case 0xEE:
+ case 0xEF:
+ e = "MEMORY_ATTRIBUTES_FAULT";
+#endif /* CONFIG_MALI_GPU_MMU_AARCH64 */
+ break;
+ default:
+ e = "UNKNOWN";
+ break;
+ };
+
+ return e;
+}
+
+static const char *access_type_name(struct kbase_device *kbdev,
+ u32 fault_status)
+{
+ switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
+ case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
+#ifdef CONFIG_MALI_GPU_MMU_AARCH64
+ return "ATOMIC";
+#else
+ return "UNKNOWN";
+#endif /* CONFIG_MALI_GPU_MMU_AARCH64 */
+ case AS_FAULTSTATUS_ACCESS_TYPE_READ:
+ return "READ";
+ case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
+ return "WRITE";
+ case AS_FAULTSTATUS_ACCESS_TYPE_EX:
+ return "EXECUTE";
+ default:
+ WARN_ON(1);
+ return NULL;
+ }
+}
+
+/**
+ * The caller must ensure it's retained the ctx to prevent it from being scheduled out whilst it's being worked on.
+ */
+static void kbase_mmu_report_fault_and_kill(struct kbase_context *kctx,
+ struct kbase_as *as, const char *reason_str)
+{
+ unsigned long flags;
+ int exception_type;
+ int access_type;
+ int source_id;
+ int as_no;
+ struct kbase_device *kbdev;
+ struct kbasep_js_device_data *js_devdata;
+
+#if KBASE_GPU_RESET_EN
+ bool reset_status = false;
+#endif
+
+ as_no = as->number;
+ kbdev = kctx->kbdev;
+ js_devdata = &kbdev->js_data;
+
+ /* ASSERT that the context won't leave the runpool */
+ KBASE_DEBUG_ASSERT(kbasep_js_debug_check_ctx_refcount(kbdev, kctx) > 0);
+
+ /* decode the fault status */
+ exception_type = as->fault_status & 0xFF;
+ access_type = (as->fault_status >> 8) & 0x3;
+ source_id = (as->fault_status >> 16);
+
+ /* terminal fault, print info about the fault */
+ dev_err(kbdev->dev,
+ "Unhandled Page fault in AS%d at VA 0x%016llX\n"
+ "Reason: %s\n"
+ "raw fault status: 0x%X\n"
+ "decoded fault status: %s\n"
+ "exception type 0x%X: %s\n"
+ "access type 0x%X: %s\n"
+ "source id 0x%X\n"
+ "pid: %d\n",
+ as_no, as->fault_addr,
+ reason_str,
+ as->fault_status,
+ (as->fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
+ exception_type, kbase_exception_name(kbdev, exception_type),
+ access_type, access_type_name(kbdev, as->fault_status),
+ source_id,
+ kctx->pid);
+
+ /* hardware counters dump fault handling */
+ if ((kbdev->hwcnt.kctx) && (kbdev->hwcnt.kctx->as_nr == as_no) &&
+ (kbdev->hwcnt.backend.state ==
+ KBASE_INSTR_STATE_DUMPING)) {
+ unsigned int num_core_groups = kbdev->gpu_props.num_core_groups;
+
+ if ((as->fault_addr >= kbdev->hwcnt.addr) &&
+ (as->fault_addr < (kbdev->hwcnt.addr +
+ (num_core_groups * 2048))))
+ kbdev->hwcnt.backend.state = KBASE_INSTR_STATE_FAULT;
+ }
+
+ /* Stop the kctx from submitting more jobs and cause it to be scheduled
+ * out/rescheduled - this will occur on releasing the context's refcount */
+ spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
+ kbasep_js_clear_submit_allowed(js_devdata, kctx);
+ spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
+
+ /* Kill any running jobs from the context. Submit is disallowed, so no more jobs from this
+ * context can appear in the job slots from this point on */
+ kbase_backend_jm_kill_jobs_from_kctx(kctx);
+ /* AS transaction begin */
+ mutex_lock(&kbdev->mmu_hw_mutex);
+#if KBASE_GPU_RESET_EN
+ if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
+ /* Due to H/W issue 8245 we need to reset the GPU after using UNMAPPED mode.
+ * We start the reset before switching to UNMAPPED to ensure that unrelated jobs
+ * are evicted from the GPU before the switch.
+ */
+ dev_err(kbdev->dev, "Unhandled page fault. For this GPU version we now soft-reset the GPU as part of page fault recovery.");
+ reset_status = kbase_prepare_to_reset_gpu(kbdev);
+ }
+#endif /* KBASE_GPU_RESET_EN */
+ /* switch to UNMAPPED mode, will abort all jobs and stop any hw counter dumping */
+ spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
+ kbase_mmu_disable(kctx);
+ spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
+
+ mutex_unlock(&kbdev->mmu_hw_mutex);
+ /* AS transaction end */
+ /* Clear down the fault */
+ kbase_mmu_hw_clear_fault(kbdev, as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
+ kbase_mmu_hw_enable_fault(kbdev, as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
+
+#if KBASE_GPU_RESET_EN
+ if (kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245) && reset_status)
+ kbase_reset_gpu(kbdev);
+#endif /* KBASE_GPU_RESET_EN */
+}
+
+void kbasep_as_do_poke(struct work_struct *work)
+{
+ struct kbase_as *as;
+ struct kbase_device *kbdev;
+ struct kbase_context *kctx;
+ unsigned long flags;
+
+ KBASE_DEBUG_ASSERT(work);
+ as = container_of(work, struct kbase_as, poke_work);
+ kbdev = container_of(as, struct kbase_device, as[as->number]);
+ KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);
+
+ /* GPU power will already be active by virtue of the caller holding a JS
+ * reference on the address space, and will not release it until this worker
+ * has finished */
+
+ /* Further to the comment above, we know that while this function is running
+ * the AS will not be released as before the atom is released this workqueue
+ * is flushed (in kbase_as_poking_timer_release_atom)
+ */
+ kctx = kbasep_js_runpool_lookup_ctx_noretain(kbdev, as->number);
+
+ /* AS transaction begin */
+ mutex_lock(&kbdev->mmu_hw_mutex);
+ /* Force a uTLB invalidate */
+ kbase_mmu_hw_do_operation(kbdev, as, kctx, 0, 0,
+ AS_COMMAND_UNLOCK, 0);
+ mutex_unlock(&kbdev->mmu_hw_mutex);
+ /* AS transaction end */
+
+ spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
+ if (as->poke_refcount &&
+ !(as->poke_state & KBASE_AS_POKE_STATE_KILLING_POKE)) {
+ /* Only queue up the timer if we need it, and we're not trying to kill it */
+ hrtimer_start(&as->poke_timer, HR_TIMER_DELAY_MSEC(5), HRTIMER_MODE_REL);
+ }
+ spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
+}
+
+enum hrtimer_restart kbasep_as_poke_timer_callback(struct hrtimer *timer)
+{
+ struct kbase_as *as;
+ int queue_work_ret;
+
+ KBASE_DEBUG_ASSERT(NULL != timer);
+ as = container_of(timer, struct kbase_as, poke_timer);
+ KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);
+
+ queue_work_ret = queue_work(as->poke_wq, &as->poke_work);
+ KBASE_DEBUG_ASSERT(queue_work_ret);
+ return HRTIMER_NORESTART;
+}
+
+/**
+ * Retain the poking timer on an atom's context (if the atom hasn't already
+ * done so), and start the timer (if it's not already started).
+ *
+ * This must only be called on a context that's scheduled in, and an atom
+ * that's running on the GPU.
+ *
+ * The caller must hold hwaccess_lock
+ *
+ * This can be called safely from atomic context
+ */
+void kbase_as_poking_timer_retain_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom)
+{
+ struct kbase_as *as;
+
+ KBASE_DEBUG_ASSERT(kbdev);
+ KBASE_DEBUG_ASSERT(kctx);
+ KBASE_DEBUG_ASSERT(katom);
+ KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
+ lockdep_assert_held(&kbdev->hwaccess_lock);
+
+ if (katom->poking)
+ return;
+
+ katom->poking = 1;
+
+ /* It's safe to work on the as/as_nr without an explicit reference,
+ * because the caller holds the hwaccess_lock, and the atom itself
+ * was also running and had already taken a reference */
+ as = &kbdev->as[kctx->as_nr];
+
+ if (++(as->poke_refcount) == 1) {
+ /* First refcount for poke needed: check if not already in flight */
+ if (!as->poke_state) {
+ /* need to start poking */
+ as->poke_state |= KBASE_AS_POKE_STATE_IN_FLIGHT;
+ queue_work(as->poke_wq, &as->poke_work);
+ }
+ }
+}
+
+/**
+ * If an atom holds a poking timer, release it and wait for it to finish
+ *
+ * This must only be called on a context that's scheduled in, and an atom
+ * that still has a JS reference on the context
+ *
+ * This must \b not be called from atomic context, since it can sleep.
+ */
+void kbase_as_poking_timer_release_atom(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_jd_atom *katom)
+{
+ struct kbase_as *as;
+ unsigned long flags;
+
+ KBASE_DEBUG_ASSERT(kbdev);
+ KBASE_DEBUG_ASSERT(kctx);
+ KBASE_DEBUG_ASSERT(katom);
+ KBASE_DEBUG_ASSERT(kctx->as_nr != KBASEP_AS_NR_INVALID);
+
+ if (!katom->poking)
+ return;
+
+ as = &kbdev->as[kctx->as_nr];
+
+ spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
+ KBASE_DEBUG_ASSERT(as->poke_refcount > 0);
+ KBASE_DEBUG_ASSERT(as->poke_state & KBASE_AS_POKE_STATE_IN_FLIGHT);
+
+ if (--(as->poke_refcount) == 0) {
+ as->poke_state |= KBASE_AS_POKE_STATE_KILLING_POKE;
+ spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
+
+ hrtimer_cancel(&as->poke_timer);
+ flush_workqueue(as->poke_wq);
+
+ spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
+
+ /* Re-check whether it's still needed */
+ if (as->poke_refcount) {
+ int queue_work_ret;
+ /* Poking still needed:
+ * - Another retain will not be starting the timer or queueing work,
+ * because it's still marked as in-flight
+ * - The hrtimer has finished, and has not started a new timer or
+ * queued work because it's been marked as killing
+ *
+ * So whatever happens now, just queue the work again */
+ as->poke_state &= ~((kbase_as_poke_state)KBASE_AS_POKE_STATE_KILLING_POKE);
+ queue_work_ret = queue_work(as->poke_wq, &as->poke_work);
+ KBASE_DEBUG_ASSERT(queue_work_ret);
+ } else {
+ /* It isn't - so mark it as not in flight, and not killing */
+ as->poke_state = 0u;
+
+ /* The poke associated with the atom has now finished. If this is
+ * also the last atom on the context, then we can guarentee no more
+ * pokes (and thus no more poking register accesses) will occur on
+ * the context until new atoms are run */
+ }
+ }
+ spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
+
+ katom->poking = 0;
+}
+
+void kbase_mmu_interrupt_process(struct kbase_device *kbdev, struct kbase_context *kctx, struct kbase_as *as)
+{
+ struct kbasep_js_device_data *js_devdata = &kbdev->js_data;
+
+ lockdep_assert_held(&kbdev->hwaccess_lock);
+
+ if (!kctx) {
+ dev_warn(kbdev->dev, "%s in AS%d at 0x%016llx with no context present! Suprious IRQ or SW Design Error?\n",
+ kbase_as_has_bus_fault(as) ? "Bus error" : "Page fault",
+ as->number, as->fault_addr);
+
+ /* Since no ctx was found, the MMU must be disabled. */
+ WARN_ON(as->current_setup.transtab);
+
+ if (kbase_as_has_bus_fault(as)) {
+ kbase_mmu_hw_clear_fault(kbdev, as, kctx,
+ KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
+ kbase_mmu_hw_enable_fault(kbdev, as, kctx,
+ KBASE_MMU_FAULT_TYPE_BUS_UNEXPECTED);
+ } else if (kbase_as_has_page_fault(as)) {
+ kbase_mmu_hw_clear_fault(kbdev, as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
+ kbase_mmu_hw_enable_fault(kbdev, as, kctx,
+ KBASE_MMU_FAULT_TYPE_PAGE_UNEXPECTED);
+ }
+
+#if KBASE_GPU_RESET_EN
+ if (kbase_as_has_bus_fault(as) &&
+ kbase_hw_has_issue(kbdev, BASE_HW_ISSUE_8245)) {
+ bool reset_status;
+ /*
+ * Reset the GPU, like in bus_fault_worker, in case an
+ * earlier error hasn't been properly cleared by this
+ * point.
+ */
+ dev_err(kbdev->dev, "GPU bus error occurred. For this GPU version we now soft-reset as part of bus error recovery\n");
+ reset_status = kbase_prepare_to_reset_gpu_locked(kbdev);
+ if (reset_status)
+ kbase_reset_gpu_locked(kbdev);
+ }
+#endif /* KBASE_GPU_RESET_EN */
+
+ return;
+ }
+
+ if (kbase_as_has_bus_fault(as)) {
+ /*
+ * hw counters dumping in progress, signal the
+ * other thread that it failed
+ */
+ if ((kbdev->hwcnt.kctx == kctx) &&
+ (kbdev->hwcnt.backend.state ==
+ KBASE_INSTR_STATE_DUMPING))
+ kbdev->hwcnt.backend.state =
+ KBASE_INSTR_STATE_FAULT;
+
+ /*
+ * Stop the kctx from submitting more jobs and cause it
+ * to be scheduled out/rescheduled when all references
+ * to it are released
+ */
+ kbasep_js_clear_submit_allowed(js_devdata, kctx);
+
+#ifdef CONFIG_MALI_GPU_MMU_AARCH64
+ dev_warn(kbdev->dev,
+ "Bus error in AS%d at VA=0x%016llx, IPA=0x%016llx\n",
+ as->number, as->fault_addr,
+ as->fault_extra_addr);
+#else
+ dev_warn(kbdev->dev, "Bus error in AS%d at 0x%016llx\n",
+ as->number, as->fault_addr);
+#endif /* CONFIG_MALI_GPU_MMU_AARCH64 */
+
+ /*
+ * We need to switch to UNMAPPED mode - but we do this in a
+ * worker so that we can sleep
+ */
+ KBASE_DEBUG_ASSERT(0 == object_is_on_stack(&as->work_busfault));
+ WARN_ON(work_pending(&as->work_busfault));
+ queue_work(as->pf_wq, &as->work_busfault);
+ atomic_inc(&kbdev->faults_pending);
+ } else {
+ KBASE_DEBUG_ASSERT(0 == object_is_on_stack(&as->work_pagefault));
+ WARN_ON(work_pending(&as->work_pagefault));
+ queue_work(as->pf_wq, &as->work_pagefault);
+ atomic_inc(&kbdev->faults_pending);
+ }
+}
+
+void kbase_flush_mmu_wqs(struct kbase_device *kbdev)
+{
+ int i;
+
+ for (i = 0; i < kbdev->nr_hw_address_spaces; i++) {
+ struct kbase_as *as = &kbdev->as[i];
+
+ flush_workqueue(as->pf_wq);
+ }
+}