summaryrefslogtreecommitdiff
path: root/driver/product/kernel/drivers/gpu/arm/midgard/mali_kbase_mem_pool.c
blob: b5a7b8c1233664d725db44f9610b1dd9e966832c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/*
 *
 * (C) COPYRIGHT 2015-2016 ARM Limited. All rights reserved.
 *
 * This program is free software and is provided to you under the terms of the
 * GNU General Public License version 2 as published by the Free Software
 * Foundation, and any use by you of this program is subject to the terms
 * of such GNU licence.
 *
 * A copy of the licence is included with the program, and can also be obtained
 * from Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA  02110-1301, USA.
 *
 */



#include <mali_kbase.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/shrinker.h>
#include <linux/atomic.h>
#include <linux/version.h>

#define pool_dbg(pool, format, ...) \
	dev_dbg(pool->kbdev->dev, "%s-pool [%zu/%zu]: " format,	\
		(pool->next_pool) ? "kctx" : "kbdev",	\
		kbase_mem_pool_size(pool),	\
		kbase_mem_pool_max_size(pool),	\
		##__VA_ARGS__)

#define NOT_DIRTY false
#define NOT_RECLAIMED false

static inline void kbase_mem_pool_lock(struct kbase_mem_pool *pool)
{
	spin_lock(&pool->pool_lock);
}

static inline void kbase_mem_pool_unlock(struct kbase_mem_pool *pool)
{
	spin_unlock(&pool->pool_lock);
}

static size_t kbase_mem_pool_capacity(struct kbase_mem_pool *pool)
{
	ssize_t max_size = kbase_mem_pool_max_size(pool);
	ssize_t cur_size = kbase_mem_pool_size(pool);

	return max(max_size - cur_size, (ssize_t)0);
}

static bool kbase_mem_pool_is_full(struct kbase_mem_pool *pool)
{
	return kbase_mem_pool_size(pool) >= kbase_mem_pool_max_size(pool);
}

static bool kbase_mem_pool_is_empty(struct kbase_mem_pool *pool)
{
	return kbase_mem_pool_size(pool) == 0;
}

static void kbase_mem_pool_add_locked(struct kbase_mem_pool *pool,
		struct page *p)
{
	lockdep_assert_held(&pool->pool_lock);

	list_add(&p->lru, &pool->page_list);
	pool->cur_size++;

	zone_page_state_add(1, page_zone(p), NR_SLAB_RECLAIMABLE);

	pool_dbg(pool, "added page\n");
}

static void kbase_mem_pool_add(struct kbase_mem_pool *pool, struct page *p)
{
	kbase_mem_pool_lock(pool);
	kbase_mem_pool_add_locked(pool, p);
	kbase_mem_pool_unlock(pool);
}

static void kbase_mem_pool_add_list_locked(struct kbase_mem_pool *pool,
		struct list_head *page_list, size_t nr_pages)
{
	struct page *p;

	lockdep_assert_held(&pool->pool_lock);

	list_for_each_entry(p, page_list, lru) {
		zone_page_state_add(1, page_zone(p), NR_SLAB_RECLAIMABLE);
	}

	list_splice(page_list, &pool->page_list);
	pool->cur_size += nr_pages;

	pool_dbg(pool, "added %zu pages\n", nr_pages);
}

static void kbase_mem_pool_add_list(struct kbase_mem_pool *pool,
		struct list_head *page_list, size_t nr_pages)
{
	kbase_mem_pool_lock(pool);
	kbase_mem_pool_add_list_locked(pool, page_list, nr_pages);
	kbase_mem_pool_unlock(pool);
}

static struct page *kbase_mem_pool_remove_locked(struct kbase_mem_pool *pool)
{
	struct page *p;

	lockdep_assert_held(&pool->pool_lock);

	if (kbase_mem_pool_is_empty(pool))
		return NULL;

	p = list_first_entry(&pool->page_list, struct page, lru);
	list_del_init(&p->lru);
	pool->cur_size--;

	zone_page_state_add(-1, page_zone(p), NR_SLAB_RECLAIMABLE);

	pool_dbg(pool, "removed page\n");

	return p;
}

static struct page *kbase_mem_pool_remove(struct kbase_mem_pool *pool)
{
	struct page *p;

	kbase_mem_pool_lock(pool);
	p = kbase_mem_pool_remove_locked(pool);
	kbase_mem_pool_unlock(pool);

	return p;
}

static void kbase_mem_pool_sync_page(struct kbase_mem_pool *pool,
		struct page *p)
{
	struct device *dev = pool->kbdev->dev;

	dma_sync_single_for_device(dev, kbase_dma_addr(p),
			PAGE_SIZE, DMA_BIDIRECTIONAL);
}

static void kbase_mem_pool_zero_page(struct kbase_mem_pool *pool,
		struct page *p)
{
	clear_highpage(p);
	kbase_mem_pool_sync_page(pool, p);
}

static void kbase_mem_pool_spill(struct kbase_mem_pool *next_pool,
		struct page *p)
{
	/* Zero page before spilling */
	kbase_mem_pool_zero_page(next_pool, p);

	kbase_mem_pool_add(next_pool, p);
}

struct page *kbase_mem_alloc_page(struct kbase_device *kbdev)
{
	struct page *p;
	gfp_t gfp;
	struct device *dev = kbdev->dev;
	dma_addr_t dma_addr;

#if defined(CONFIG_ARM) && !defined(CONFIG_HAVE_DMA_ATTRS) && \
	LINUX_VERSION_CODE < KERNEL_VERSION(3, 5, 0)
	/* DMA cache sync fails for HIGHMEM before 3.5 on ARM */
	gfp = GFP_USER | __GFP_ZERO;
#else
	gfp = GFP_HIGHUSER | __GFP_ZERO;
#endif

	if (current->flags & PF_KTHREAD) {
		/* Don't trigger OOM killer from kernel threads, e.g. when
		 * growing memory on GPU page fault */
		gfp |= __GFP_NORETRY;
	}

	p = alloc_page(gfp);
	if (!p)
		return NULL;

	dma_addr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
	if (dma_mapping_error(dev, dma_addr)) {
		__free_page(p);
		return NULL;
	}

	WARN_ON(dma_addr != page_to_phys(p));

	kbase_set_dma_addr(p, dma_addr);

	return p;
}

static void kbase_mem_pool_free_page(struct kbase_mem_pool *pool,
		struct page *p)
{
	struct device *dev = pool->kbdev->dev;
	dma_addr_t dma_addr = kbase_dma_addr(p);

	dma_unmap_page(dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
	kbase_clear_dma_addr(p);
	__free_page(p);

	pool_dbg(pool, "freed page to kernel\n");
}

static size_t kbase_mem_pool_shrink_locked(struct kbase_mem_pool *pool,
		size_t nr_to_shrink)
{
	struct page *p;
	size_t i;

	lockdep_assert_held(&pool->pool_lock);

	for (i = 0; i < nr_to_shrink && !kbase_mem_pool_is_empty(pool); i++) {
		p = kbase_mem_pool_remove_locked(pool);
		kbase_mem_pool_free_page(pool, p);
	}

	return i;
}

static size_t kbase_mem_pool_shrink(struct kbase_mem_pool *pool,
		size_t nr_to_shrink)
{
	size_t nr_freed;

	kbase_mem_pool_lock(pool);
	nr_freed = kbase_mem_pool_shrink_locked(pool, nr_to_shrink);
	kbase_mem_pool_unlock(pool);

	return nr_freed;
}

int kbase_mem_pool_grow(struct kbase_mem_pool *pool,
		size_t nr_to_grow)
{
	struct page *p;
	size_t i;

	for (i = 0; i < nr_to_grow; i++) {
		p = kbase_mem_alloc_page(pool->kbdev);
		if (!p)
			return -ENOMEM;
		kbase_mem_pool_add(pool, p);
	}

	return 0;
}

void kbase_mem_pool_trim(struct kbase_mem_pool *pool, size_t new_size)
{
	size_t cur_size;

	cur_size = kbase_mem_pool_size(pool);

	if (new_size > pool->max_size)
		new_size = pool->max_size;

	if (new_size < cur_size)
		kbase_mem_pool_shrink(pool, cur_size - new_size);
	else if (new_size > cur_size)
		kbase_mem_pool_grow(pool, new_size - cur_size);
}

void kbase_mem_pool_set_max_size(struct kbase_mem_pool *pool, size_t max_size)
{
	size_t cur_size;
	size_t nr_to_shrink;

	kbase_mem_pool_lock(pool);

	pool->max_size = max_size;

	cur_size = kbase_mem_pool_size(pool);
	if (max_size < cur_size) {
		nr_to_shrink = cur_size - max_size;
		kbase_mem_pool_shrink_locked(pool, nr_to_shrink);
	}

	kbase_mem_pool_unlock(pool);
}


static unsigned long kbase_mem_pool_reclaim_count_objects(struct shrinker *s,
		struct shrink_control *sc)
{
	struct kbase_mem_pool *pool;

	pool = container_of(s, struct kbase_mem_pool, reclaim);
	pool_dbg(pool, "reclaim count: %zu\n", kbase_mem_pool_size(pool));
	return kbase_mem_pool_size(pool);
}

static unsigned long kbase_mem_pool_reclaim_scan_objects(struct shrinker *s,
		struct shrink_control *sc)
{
	struct kbase_mem_pool *pool;
	unsigned long freed;

	pool = container_of(s, struct kbase_mem_pool, reclaim);

	pool_dbg(pool, "reclaim scan %ld:\n", sc->nr_to_scan);

	freed = kbase_mem_pool_shrink(pool, sc->nr_to_scan);

	pool_dbg(pool, "reclaim freed %ld pages\n", freed);

	return freed;
}

#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
static int kbase_mem_pool_reclaim_shrink(struct shrinker *s,
		struct shrink_control *sc)
{
	if (sc->nr_to_scan == 0)
		return kbase_mem_pool_reclaim_count_objects(s, sc);

	return kbase_mem_pool_reclaim_scan_objects(s, sc);
}
#endif

int kbase_mem_pool_init(struct kbase_mem_pool *pool,
		size_t max_size,
		struct kbase_device *kbdev,
		struct kbase_mem_pool *next_pool)
{
	pool->cur_size = 0;
	pool->max_size = max_size;
	pool->kbdev = kbdev;
	pool->next_pool = next_pool;

	spin_lock_init(&pool->pool_lock);
	INIT_LIST_HEAD(&pool->page_list);

	/* Register shrinker */
#if LINUX_VERSION_CODE < KERNEL_VERSION(3, 12, 0)
	pool->reclaim.shrink = kbase_mem_pool_reclaim_shrink;
#else
	pool->reclaim.count_objects = kbase_mem_pool_reclaim_count_objects;
	pool->reclaim.scan_objects = kbase_mem_pool_reclaim_scan_objects;
#endif
	pool->reclaim.seeks = DEFAULT_SEEKS;
	/* Kernel versions prior to 3.1 :
	 * struct shrinker does not define batch */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 1, 0)
	pool->reclaim.batch = 0;
#endif
	register_shrinker(&pool->reclaim);

	pool_dbg(pool, "initialized\n");

	return 0;
}

void kbase_mem_pool_term(struct kbase_mem_pool *pool)
{
	struct kbase_mem_pool *next_pool = pool->next_pool;
	struct page *p;
	size_t nr_to_spill = 0;
	LIST_HEAD(spill_list);
	int i;

	pool_dbg(pool, "terminate()\n");

	unregister_shrinker(&pool->reclaim);

	kbase_mem_pool_lock(pool);
	pool->max_size = 0;

	if (next_pool && !kbase_mem_pool_is_full(next_pool)) {
		/* Spill to next pool (may overspill) */
		nr_to_spill = kbase_mem_pool_capacity(next_pool);
		nr_to_spill = min(kbase_mem_pool_size(pool), nr_to_spill);

		/* Zero pages first without holding the next_pool lock */
		for (i = 0; i < nr_to_spill; i++) {
			p = kbase_mem_pool_remove_locked(pool);
			kbase_mem_pool_zero_page(pool, p);
			list_add(&p->lru, &spill_list);
		}
	}

	while (!kbase_mem_pool_is_empty(pool)) {
		/* Free remaining pages to kernel */
		p = kbase_mem_pool_remove_locked(pool);
		kbase_mem_pool_free_page(pool, p);
	}

	kbase_mem_pool_unlock(pool);

	if (next_pool && nr_to_spill) {
		/* Add new page list to next_pool */
		kbase_mem_pool_add_list(next_pool, &spill_list, nr_to_spill);

		pool_dbg(pool, "terminate() spilled %zu pages\n", nr_to_spill);
	}

	pool_dbg(pool, "terminated\n");
}

struct page *kbase_mem_pool_alloc(struct kbase_mem_pool *pool)
{
	struct page *p;

	do {
		pool_dbg(pool, "alloc()\n");
		p = kbase_mem_pool_remove(pool);

		if (p)
			return p;

		pool = pool->next_pool;
	} while (pool);

	return NULL;
}

void kbase_mem_pool_free(struct kbase_mem_pool *pool, struct page *p,
		bool dirty)
{
	struct kbase_mem_pool *next_pool = pool->next_pool;

	pool_dbg(pool, "free()\n");

	if (!kbase_mem_pool_is_full(pool)) {
		/* Add to our own pool */
		if (dirty)
			kbase_mem_pool_sync_page(pool, p);

		kbase_mem_pool_add(pool, p);
	} else if (next_pool && !kbase_mem_pool_is_full(next_pool)) {
		/* Spill to next pool */
		kbase_mem_pool_spill(next_pool, p);
	} else {
		/* Free page */
		kbase_mem_pool_free_page(pool, p);
	}
}

int kbase_mem_pool_alloc_pages(struct kbase_mem_pool *pool, size_t nr_pages,
		phys_addr_t *pages)
{
	struct page *p;
	size_t nr_from_pool;
	size_t i;
	int err = -ENOMEM;

	pool_dbg(pool, "alloc_pages(%zu):\n", nr_pages);

	/* Get pages from this pool */
	kbase_mem_pool_lock(pool);
	nr_from_pool = min(nr_pages, kbase_mem_pool_size(pool));
	for (i = 0; i < nr_from_pool; i++) {
		p = kbase_mem_pool_remove_locked(pool);
		pages[i] = page_to_phys(p);
	}
	kbase_mem_pool_unlock(pool);

	if (i != nr_pages && pool->next_pool) {
		/* Allocate via next pool */
		err = kbase_mem_pool_alloc_pages(pool->next_pool,
				nr_pages - i, pages + i);

		if (err)
			goto err_rollback;

		i += nr_pages - i;
	}

	/* Get any remaining pages from kernel */
	for (; i < nr_pages; i++) {
		p = kbase_mem_alloc_page(pool->kbdev);
		if (!p)
			goto err_rollback;
		pages[i] = page_to_phys(p);
	}

	pool_dbg(pool, "alloc_pages(%zu) done\n", nr_pages);

	return 0;

err_rollback:
	kbase_mem_pool_free_pages(pool, i, pages, NOT_DIRTY, NOT_RECLAIMED);
	return err;
}

static void kbase_mem_pool_add_array(struct kbase_mem_pool *pool,
		size_t nr_pages, phys_addr_t *pages, bool zero, bool sync)
{
	struct page *p;
	size_t nr_to_pool = 0;
	LIST_HEAD(new_page_list);
	size_t i;

	if (!nr_pages)
		return;

	pool_dbg(pool, "add_array(%zu, zero=%d, sync=%d):\n",
			nr_pages, zero, sync);

	/* Zero/sync pages first without holding the pool lock */
	for (i = 0; i < nr_pages; i++) {
		if (unlikely(!pages[i]))
			continue;

		p = phys_to_page(pages[i]);

		if (zero)
			kbase_mem_pool_zero_page(pool, p);
		else if (sync)
			kbase_mem_pool_sync_page(pool, p);

		list_add(&p->lru, &new_page_list);
		nr_to_pool++;
		pages[i] = 0;
	}

	/* Add new page list to pool */
	kbase_mem_pool_add_list(pool, &new_page_list, nr_to_pool);

	pool_dbg(pool, "add_array(%zu) added %zu pages\n",
			nr_pages, nr_to_pool);
}

void kbase_mem_pool_free_pages(struct kbase_mem_pool *pool, size_t nr_pages,
		phys_addr_t *pages, bool dirty, bool reclaimed)
{
	struct kbase_mem_pool *next_pool = pool->next_pool;
	struct page *p;
	size_t nr_to_pool;
	LIST_HEAD(to_pool_list);
	size_t i = 0;

	pool_dbg(pool, "free_pages(%zu):\n", nr_pages);

	if (!reclaimed) {
		/* Add to this pool */
		nr_to_pool = kbase_mem_pool_capacity(pool);
		nr_to_pool = min(nr_pages, nr_to_pool);

		kbase_mem_pool_add_array(pool, nr_to_pool, pages, false, dirty);

		i += nr_to_pool;

		if (i != nr_pages && next_pool) {
			/* Spill to next pool (may overspill) */
			nr_to_pool = kbase_mem_pool_capacity(next_pool);
			nr_to_pool = min(nr_pages - i, nr_to_pool);

			kbase_mem_pool_add_array(next_pool, nr_to_pool,
					pages + i, true, dirty);
			i += nr_to_pool;
		}
	}

	/* Free any remaining pages to kernel */
	for (; i < nr_pages; i++) {
		if (unlikely(!pages[i]))
			continue;

		p = phys_to_page(pages[i]);
		if (reclaimed)
			zone_page_state_add(-1, page_zone(p),
					NR_SLAB_RECLAIMABLE);

		kbase_mem_pool_free_page(pool, p);
		pages[i] = 0;
	}

	pool_dbg(pool, "free_pages(%zu) done\n", nr_pages);
}