aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vrp.c
blob: b9c0e65bd989379428ca5d0fdf1a30f11c7a1ca3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
/* Support routines for Value Range Propagation (VRP).
   Copyright (C) 2005-2021 Free Software Foundation, Inc.
   Contributed by Diego Novillo <dnovillo@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "flags.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "tree-chrec.h"
#include "tree-ssa-threadupdate.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "omp-general.h"
#include "target.h"
#include "case-cfn-macros.h"
#include "alloc-pool.h"
#include "domwalk.h"
#include "tree-cfgcleanup.h"
#include "stringpool.h"
#include "attribs.h"
#include "vr-values.h"
#include "builtins.h"
#include "range-op.h"
#include "value-range-equiv.h"
#include "gimple-array-bounds.h"

/* Set of SSA names found live during the RPO traversal of the function
   for still active basic-blocks.  */
class live_names
{
public:
  live_names ();
  ~live_names ();
  void set (tree, basic_block);
  void clear (tree, basic_block);
  void merge (basic_block dest, basic_block src);
  bool live_on_block_p (tree, basic_block);
  bool live_on_edge_p (tree, edge);
  bool block_has_live_names_p (basic_block);
  void clear_block (basic_block);

private:
  sbitmap *live;
  unsigned num_blocks;
  void init_bitmap_if_needed (basic_block);
};

void
live_names::init_bitmap_if_needed (basic_block bb)
{
  unsigned i = bb->index;
  if (!live[i])
    {
      live[i] = sbitmap_alloc (num_ssa_names);
      bitmap_clear (live[i]);
    }
}

bool
live_names::block_has_live_names_p (basic_block bb)
{
  unsigned i = bb->index;
  return live[i] && bitmap_empty_p (live[i]);
}

void
live_names::clear_block (basic_block bb)
{
  unsigned i = bb->index;
  if (live[i])
    {
      sbitmap_free (live[i]);
      live[i] = NULL;
    }
}

void
live_names::merge (basic_block dest, basic_block src)
{
  init_bitmap_if_needed (dest);
  init_bitmap_if_needed (src);
  bitmap_ior (live[dest->index], live[dest->index], live[src->index]);
}

void
live_names::set (tree name, basic_block bb)
{
  init_bitmap_if_needed (bb);
  bitmap_set_bit (live[bb->index], SSA_NAME_VERSION (name));
}

void
live_names::clear (tree name, basic_block bb)
{
  unsigned i = bb->index;
  if (live[i])
    bitmap_clear_bit (live[i], SSA_NAME_VERSION (name));
}

live_names::live_names ()
{
  num_blocks = last_basic_block_for_fn (cfun);
  live = XCNEWVEC (sbitmap, num_blocks);
}

live_names::~live_names ()
{
  for (unsigned i = 0; i < num_blocks; ++i)
    if (live[i])
      sbitmap_free (live[i]);
  XDELETEVEC (live);
}

bool
live_names::live_on_block_p (tree name, basic_block bb)
{
  return (live[bb->index]
	  && bitmap_bit_p (live[bb->index], SSA_NAME_VERSION (name)));
}

/* Return true if the SSA name NAME is live on the edge E.  */

bool
live_names::live_on_edge_p (tree name, edge e)
{
  return live_on_block_p (name, e->dest);
}


/* VR_TYPE describes a range with mininum value *MIN and maximum
   value *MAX.  Restrict the range to the set of values that have
   no bits set outside NONZERO_BITS.  Update *MIN and *MAX and
   return the new range type.

   SGN gives the sign of the values described by the range.  */

enum value_range_kind
intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
				   wide_int *min, wide_int *max,
				   const wide_int &nonzero_bits,
				   signop sgn)
{
  if (vr_type == VR_ANTI_RANGE)
    {
      /* The VR_ANTI_RANGE is equivalent to the union of the ranges
	 A: [-INF, *MIN) and B: (*MAX, +INF].  First use NONZERO_BITS
	 to create an inclusive upper bound for A and an inclusive lower
	 bound for B.  */
      wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
      wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);

      /* If the calculation of A_MAX wrapped, A is effectively empty
	 and A_MAX is the highest value that satisfies NONZERO_BITS.
	 Likewise if the calculation of B_MIN wrapped, B is effectively
	 empty and B_MIN is the lowest value that satisfies NONZERO_BITS.  */
      bool a_empty = wi::ge_p (a_max, *min, sgn);
      bool b_empty = wi::le_p (b_min, *max, sgn);

      /* If both A and B are empty, there are no valid values.  */
      if (a_empty && b_empty)
	return VR_UNDEFINED;

      /* If exactly one of A or B is empty, return a VR_RANGE for the
	 other one.  */
      if (a_empty || b_empty)
	{
	  *min = b_min;
	  *max = a_max;
	  gcc_checking_assert (wi::le_p (*min, *max, sgn));
	  return VR_RANGE;
	}

      /* Update the VR_ANTI_RANGE bounds.  */
      *min = a_max + 1;
      *max = b_min - 1;
      gcc_checking_assert (wi::le_p (*min, *max, sgn));

      /* Now check whether the excluded range includes any values that
	 satisfy NONZERO_BITS.  If not, switch to a full VR_RANGE.  */
      if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
	{
	  unsigned int precision = min->get_precision ();
	  *min = wi::min_value (precision, sgn);
	  *max = wi::max_value (precision, sgn);
	  vr_type = VR_RANGE;
	}
    }
  if (vr_type == VR_RANGE || vr_type == VR_VARYING)
    {
      *max = wi::round_down_for_mask (*max, nonzero_bits);

      /* Check that the range contains at least one valid value.  */
      if (wi::gt_p (*min, *max, sgn))
	return VR_UNDEFINED;

      *min = wi::round_up_for_mask (*min, nonzero_bits);
      gcc_checking_assert (wi::le_p (*min, *max, sgn));
    }
  return vr_type;
}

/* Return true if max and min of VR are INTEGER_CST.  It's not necessary
   a singleton.  */

bool
range_int_cst_p (const value_range *vr)
{
  return (vr->kind () == VR_RANGE && range_has_numeric_bounds_p (vr));
}

/* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
   otherwise.  We only handle additive operations and set NEG to true if the
   symbol is negated and INV to the invariant part, if any.  */

tree
get_single_symbol (tree t, bool *neg, tree *inv)
{
  bool neg_;
  tree inv_;

  *inv = NULL_TREE;
  *neg = false;

  if (TREE_CODE (t) == PLUS_EXPR
      || TREE_CODE (t) == POINTER_PLUS_EXPR
      || TREE_CODE (t) == MINUS_EXPR)
    {
      if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
	{
	  neg_ = (TREE_CODE (t) == MINUS_EXPR);
	  inv_ = TREE_OPERAND (t, 0);
	  t = TREE_OPERAND (t, 1);
	}
      else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
	{
	  neg_ = false;
	  inv_ = TREE_OPERAND (t, 1);
	  t = TREE_OPERAND (t, 0);
	}
      else
        return NULL_TREE;
    }
  else
    {
      neg_ = false;
      inv_ = NULL_TREE;
    }

  if (TREE_CODE (t) == NEGATE_EXPR)
    {
      t = TREE_OPERAND (t, 0);
      neg_ = !neg_;
    }

  if (TREE_CODE (t) != SSA_NAME)
    return NULL_TREE;

  if (inv_ && TREE_OVERFLOW_P (inv_))
    inv_ = drop_tree_overflow (inv_);

  *neg = neg_;
  *inv = inv_;
  return t;
}

/* The reverse operation: build a symbolic expression with TYPE
   from symbol SYM, negated according to NEG, and invariant INV.  */

static tree
build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
{
  const bool pointer_p = POINTER_TYPE_P (type);
  tree t = sym;

  if (neg)
    t = build1 (NEGATE_EXPR, type, t);

  if (integer_zerop (inv))
    return t;

  return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
}

/* Return
   1 if VAL < VAL2
   0 if !(VAL < VAL2)
   -2 if those are incomparable.  */
int
operand_less_p (tree val, tree val2)
{
  /* LT is folded faster than GE and others.  Inline the common case.  */
  if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
    return tree_int_cst_lt (val, val2);
  else if (TREE_CODE (val) == SSA_NAME && TREE_CODE (val2) == SSA_NAME)
    return val == val2 ? 0 : -2;
  else
    {
      int cmp = compare_values (val, val2);
      if (cmp == -1)
	return 1;
      else if (cmp == 0 || cmp == 1)
	return 0;
      else
	return -2;
    }

  return 0;
}

/* Compare two values VAL1 and VAL2.  Return

   	-2 if VAL1 and VAL2 cannot be compared at compile-time,
   	-1 if VAL1 < VAL2,
   	 0 if VAL1 == VAL2,
	+1 if VAL1 > VAL2, and
	+2 if VAL1 != VAL2

   This is similar to tree_int_cst_compare but supports pointer values
   and values that cannot be compared at compile time.

   If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
   true if the return value is only valid if we assume that signed
   overflow is undefined.  */

int
compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
{
  if (val1 == val2)
    return 0;

  /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
     both integers.  */
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
	      == POINTER_TYPE_P (TREE_TYPE (val2)));

  /* Convert the two values into the same type.  This is needed because
     sizetype causes sign extension even for unsigned types.  */
  if (!useless_type_conversion_p (TREE_TYPE (val1), TREE_TYPE (val2)))
    val2 = fold_convert (TREE_TYPE (val1), val2);

  const bool overflow_undefined
    = INTEGRAL_TYPE_P (TREE_TYPE (val1))
      && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
  tree inv1, inv2;
  bool neg1, neg2;
  tree sym1 = get_single_symbol (val1, &neg1, &inv1);
  tree sym2 = get_single_symbol (val2, &neg2, &inv2);

  /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
     accordingly.  If VAL1 and VAL2 don't use the same name, return -2.  */
  if (sym1 && sym2)
    {
      /* Both values must use the same name with the same sign.  */
      if (sym1 != sym2 || neg1 != neg2)
	return -2;

      /* [-]NAME + CST == [-]NAME + CST.  */
      if (inv1 == inv2)
	return 0;

      /* If overflow is defined we cannot simplify more.  */
      if (!overflow_undefined)
	return -2;

      if (strict_overflow_p != NULL
	  /* Symbolic range building sets TREE_NO_WARNING to declare
	     that overflow doesn't happen.  */
	  && (!inv1 || !TREE_NO_WARNING (val1))
	  && (!inv2 || !TREE_NO_WARNING (val2)))
	*strict_overflow_p = true;

      if (!inv1)
	inv1 = build_int_cst (TREE_TYPE (val1), 0);
      if (!inv2)
	inv2 = build_int_cst (TREE_TYPE (val2), 0);

      return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
		      TYPE_SIGN (TREE_TYPE (val1)));
    }

  const bool cst1 = is_gimple_min_invariant (val1);
  const bool cst2 = is_gimple_min_invariant (val2);

  /* If one is of the form '[-]NAME + CST' and the other is constant, then
     it might be possible to say something depending on the constants.  */
  if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
    {
      if (!overflow_undefined)
	return -2;

      if (strict_overflow_p != NULL
	  /* Symbolic range building sets TREE_NO_WARNING to declare
	     that overflow doesn't happen.  */
	  && (!sym1 || !TREE_NO_WARNING (val1))
	  && (!sym2 || !TREE_NO_WARNING (val2)))
	*strict_overflow_p = true;

      const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
      tree cst = cst1 ? val1 : val2;
      tree inv = cst1 ? inv2 : inv1;

      /* Compute the difference between the constants.  If it overflows or
	 underflows, this means that we can trivially compare the NAME with
	 it and, consequently, the two values with each other.  */
      wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
      if (wi::cmp (0, wi::to_wide (inv), sgn)
	  != wi::cmp (diff, wi::to_wide (cst), sgn))
	{
	  const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
	  return cst1 ? res : -res;
	}

      return -2;
    }

  /* We cannot say anything more for non-constants.  */
  if (!cst1 || !cst2)
    return -2;

  if (!POINTER_TYPE_P (TREE_TYPE (val1)))
    {
      /* We cannot compare overflowed values.  */
      if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
	return -2;

      if (TREE_CODE (val1) == INTEGER_CST
	  && TREE_CODE (val2) == INTEGER_CST)
	return tree_int_cst_compare (val1, val2);

      if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
	{
	  if (known_eq (wi::to_poly_widest (val1),
			wi::to_poly_widest (val2)))
	    return 0;
	  if (known_lt (wi::to_poly_widest (val1),
			wi::to_poly_widest (val2)))
	    return -1;
	  if (known_gt (wi::to_poly_widest (val1),
			wi::to_poly_widest (val2)))
	    return 1;
	}

      return -2;
    }
  else
    {
      if (TREE_CODE (val1) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
	{
	  /* We cannot compare overflowed values.  */
	  if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
	    return -2;

	  return tree_int_cst_compare (val1, val2);
	}

      /* First see if VAL1 and VAL2 are not the same.  */
      if (operand_equal_p (val1, val2, 0))
	return 0;

      fold_defer_overflow_warnings ();

      /* If VAL1 is a lower address than VAL2, return -1.  */
      tree t = fold_binary_to_constant (LT_EXPR, boolean_type_node, val1, val2);
      if (t && integer_onep (t))
	{
	  fold_undefer_and_ignore_overflow_warnings ();
	  return -1;
	}

      /* If VAL1 is a higher address than VAL2, return +1.  */
      t = fold_binary_to_constant (LT_EXPR, boolean_type_node, val2, val1);
      if (t && integer_onep (t))
	{
	  fold_undefer_and_ignore_overflow_warnings ();
	  return 1;
	}

      /* If VAL1 is different than VAL2, return +2.  */
      t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
      fold_undefer_and_ignore_overflow_warnings ();
      if (t && integer_onep (t))
	return 2;

      return -2;
    }
}

/* Compare values like compare_values_warnv.  */

int
compare_values (tree val1, tree val2)
{
  bool sop;
  return compare_values_warnv (val1, val2, &sop);
}

/* If BOUND will include a symbolic bound, adjust it accordingly,
   otherwise leave it as is.

   CODE is the original operation that combined the bounds (PLUS_EXPR
   or MINUS_EXPR).

   TYPE is the type of the original operation.

   SYM_OPn is the symbolic for OPn if it has a symbolic.

   NEG_OPn is TRUE if the OPn was negated.  */

static void
adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
		       tree sym_op0, tree sym_op1,
		       bool neg_op0, bool neg_op1)
{
  bool minus_p = (code == MINUS_EXPR);
  /* If the result bound is constant, we're done; otherwise, build the
     symbolic lower bound.  */
  if (sym_op0 == sym_op1)
    ;
  else if (sym_op0)
    bound = build_symbolic_expr (type, sym_op0,
				 neg_op0, bound);
  else if (sym_op1)
    {
      /* We may not negate if that might introduce
	 undefined overflow.  */
      if (!minus_p
	  || neg_op1
	  || TYPE_OVERFLOW_WRAPS (type))
	bound = build_symbolic_expr (type, sym_op1,
				     neg_op1 ^ minus_p, bound);
      else
	bound = NULL_TREE;
    }
}

/* Combine OP1 and OP1, which are two parts of a bound, into one wide
   int bound according to CODE.  CODE is the operation combining the
   bound (either a PLUS_EXPR or a MINUS_EXPR).

   TYPE is the type of the combine operation.

   WI is the wide int to store the result.

   OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
   if over/underflow occurred.  */

static void
combine_bound (enum tree_code code, wide_int &wi, wi::overflow_type &ovf,
	       tree type, tree op0, tree op1)
{
  bool minus_p = (code == MINUS_EXPR);
  const signop sgn = TYPE_SIGN (type);
  const unsigned int prec = TYPE_PRECISION (type);

  /* Combine the bounds, if any.  */
  if (op0 && op1)
    {
      if (minus_p)
	wi = wi::sub (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
      else
	wi = wi::add (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
    }
  else if (op0)
    wi = wi::to_wide (op0);
  else if (op1)
    {
      if (minus_p)
	wi = wi::neg (wi::to_wide (op1), &ovf);
      else
	wi = wi::to_wide (op1);
    }
  else
    wi = wi::shwi (0, prec);
}

/* Given a range in [WMIN, WMAX], adjust it for possible overflow and
   put the result in VR.

   TYPE is the type of the range.

   MIN_OVF and MAX_OVF indicate what type of overflow, if any,
   occurred while originally calculating WMIN or WMAX.  -1 indicates
   underflow.  +1 indicates overflow.  0 indicates neither.  */

static void
set_value_range_with_overflow (value_range_kind &kind, tree &min, tree &max,
			       tree type,
			       const wide_int &wmin, const wide_int &wmax,
			       wi::overflow_type min_ovf,
			       wi::overflow_type max_ovf)
{
  const signop sgn = TYPE_SIGN (type);
  const unsigned int prec = TYPE_PRECISION (type);

  /* For one bit precision if max < min, then the swapped
     range covers all values.  */
  if (prec == 1 && wi::lt_p (wmax, wmin, sgn))
    {
      kind = VR_VARYING;
      return;
    }

  if (TYPE_OVERFLOW_WRAPS (type))
    {
      /* If overflow wraps, truncate the values and adjust the
	 range kind and bounds appropriately.  */
      wide_int tmin = wide_int::from (wmin, prec, sgn);
      wide_int tmax = wide_int::from (wmax, prec, sgn);
      if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
	{
	  /* If the limits are swapped, we wrapped around and cover
	     the entire range.  */
	  if (wi::gt_p (tmin, tmax, sgn))
	    kind = VR_VARYING;
	  else
	    {
	      kind = VR_RANGE;
	      /* No overflow or both overflow or underflow.  The
		 range kind stays VR_RANGE.  */
	      min = wide_int_to_tree (type, tmin);
	      max = wide_int_to_tree (type, tmax);
	    }
	  return;
	}
      else if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
	       || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
	{
	  /* Min underflow or max overflow.  The range kind
	     changes to VR_ANTI_RANGE.  */
	  bool covers = false;
	  wide_int tem = tmin;
	  tmin = tmax + 1;
	  if (wi::cmp (tmin, tmax, sgn) < 0)
	    covers = true;
	  tmax = tem - 1;
	  if (wi::cmp (tmax, tem, sgn) > 0)
	    covers = true;
	  /* If the anti-range would cover nothing, drop to varying.
	     Likewise if the anti-range bounds are outside of the
	     types values.  */
	  if (covers || wi::cmp (tmin, tmax, sgn) > 0)
	    {
	      kind = VR_VARYING;
	      return;
	    }
	  kind = VR_ANTI_RANGE;
	  min = wide_int_to_tree (type, tmin);
	  max = wide_int_to_tree (type, tmax);
	  return;
	}
      else
	{
	  /* Other underflow and/or overflow, drop to VR_VARYING.  */
	  kind = VR_VARYING;
	  return;
	}
    }
  else
    {
      /* If overflow does not wrap, saturate to the types min/max
	 value.  */
      wide_int type_min = wi::min_value (prec, sgn);
      wide_int type_max = wi::max_value (prec, sgn);
      kind = VR_RANGE;
      if (min_ovf == wi::OVF_UNDERFLOW)
	min = wide_int_to_tree (type, type_min);
      else if (min_ovf == wi::OVF_OVERFLOW)
	min = wide_int_to_tree (type, type_max);
      else
	min = wide_int_to_tree (type, wmin);

      if (max_ovf == wi::OVF_UNDERFLOW)
	max = wide_int_to_tree (type, type_min);
      else if (max_ovf == wi::OVF_OVERFLOW)
	max = wide_int_to_tree (type, type_max);
      else
	max = wide_int_to_tree (type, wmax);
    }
}

/* Fold two value range's of a POINTER_PLUS_EXPR into VR.  */

static void
extract_range_from_pointer_plus_expr (value_range *vr,
				      enum tree_code code,
				      tree expr_type,
				      const value_range *vr0,
				      const value_range *vr1)
{
  gcc_checking_assert (POINTER_TYPE_P (expr_type)
		       && code == POINTER_PLUS_EXPR);
  /* For pointer types, we are really only interested in asserting
     whether the expression evaluates to non-NULL.
     With -fno-delete-null-pointer-checks we need to be more
     conservative.  As some object might reside at address 0,
     then some offset could be added to it and the same offset
     subtracted again and the result would be NULL.
     E.g.
     static int a[12]; where &a[0] is NULL and
     ptr = &a[6];
     ptr -= 6;
     ptr will be NULL here, even when there is POINTER_PLUS_EXPR
     where the first range doesn't include zero and the second one
     doesn't either.  As the second operand is sizetype (unsigned),
     consider all ranges where the MSB could be set as possible
     subtractions where the result might be NULL.  */
  if ((!range_includes_zero_p (vr0)
       || !range_includes_zero_p (vr1))
      && !TYPE_OVERFLOW_WRAPS (expr_type)
      && (flag_delete_null_pointer_checks
	  || (range_int_cst_p (vr1)
	      && !tree_int_cst_sign_bit (vr1->max ()))))
    vr->set_nonzero (expr_type);
  else if (vr0->zero_p () && vr1->zero_p ())
    vr->set_zero (expr_type);
  else
    vr->set_varying (expr_type);
}

/* Extract range information from a PLUS/MINUS_EXPR and store the
   result in *VR.  */

static void
extract_range_from_plus_minus_expr (value_range *vr,
				    enum tree_code code,
				    tree expr_type,
				    const value_range *vr0_,
				    const value_range *vr1_)
{
  gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);

  value_range vr0 = *vr0_, vr1 = *vr1_;
  value_range vrtem0, vrtem1;

  /* Now canonicalize anti-ranges to ranges when they are not symbolic
     and express ~[] op X as ([]' op X) U ([]'' op X).  */
  if (vr0.kind () == VR_ANTI_RANGE
      && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
    {
      extract_range_from_plus_minus_expr (vr, code, expr_type, &vrtem0, vr1_);
      if (!vrtem1.undefined_p ())
	{
	  value_range vrres;
	  extract_range_from_plus_minus_expr (&vrres, code, expr_type,
					      &vrtem1, vr1_);
	  vr->union_ (&vrres);
	}
      return;
    }
  /* Likewise for X op ~[].  */
  if (vr1.kind () == VR_ANTI_RANGE
      && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
    {
      extract_range_from_plus_minus_expr (vr, code, expr_type, vr0_, &vrtem0);
      if (!vrtem1.undefined_p ())
	{
	  value_range vrres;
	  extract_range_from_plus_minus_expr (&vrres, code, expr_type,
					      vr0_, &vrtem1);
	  vr->union_ (&vrres);
	}
      return;
    }

  value_range_kind kind;
  value_range_kind vr0_kind = vr0.kind (), vr1_kind = vr1.kind ();
  tree vr0_min = vr0.min (), vr0_max = vr0.max ();
  tree vr1_min = vr1.min (), vr1_max = vr1.max ();
  tree min = NULL_TREE, max = NULL_TREE;

  /* This will normalize things such that calculating
     [0,0] - VR_VARYING is not dropped to varying, but is
     calculated as [MIN+1, MAX].  */
  if (vr0.varying_p ())
    {
      vr0_kind = VR_RANGE;
      vr0_min = vrp_val_min (expr_type);
      vr0_max = vrp_val_max (expr_type);
    }
  if (vr1.varying_p ())
    {
      vr1_kind = VR_RANGE;
      vr1_min = vrp_val_min (expr_type);
      vr1_max = vrp_val_max (expr_type);
    }

  const bool minus_p = (code == MINUS_EXPR);
  tree min_op0 = vr0_min;
  tree min_op1 = minus_p ? vr1_max : vr1_min;
  tree max_op0 = vr0_max;
  tree max_op1 = minus_p ? vr1_min : vr1_max;
  tree sym_min_op0 = NULL_TREE;
  tree sym_min_op1 = NULL_TREE;
  tree sym_max_op0 = NULL_TREE;
  tree sym_max_op1 = NULL_TREE;
  bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;

  neg_min_op0 = neg_min_op1 = neg_max_op0 = neg_max_op1 = false;

  /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
     single-symbolic ranges, try to compute the precise resulting range,
     but only if we know that this resulting range will also be constant
     or single-symbolic.  */
  if (vr0_kind == VR_RANGE && vr1_kind == VR_RANGE
      && (TREE_CODE (min_op0) == INTEGER_CST
	  || (sym_min_op0
	      = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
      && (TREE_CODE (min_op1) == INTEGER_CST
	  || (sym_min_op1
	      = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
      && (!(sym_min_op0 && sym_min_op1)
	  || (sym_min_op0 == sym_min_op1
	      && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
      && (TREE_CODE (max_op0) == INTEGER_CST
	  || (sym_max_op0
	      = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
      && (TREE_CODE (max_op1) == INTEGER_CST
	  || (sym_max_op1
	      = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
      && (!(sym_max_op0 && sym_max_op1)
	  || (sym_max_op0 == sym_max_op1
	      && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
    {
      wide_int wmin, wmax;
      wi::overflow_type min_ovf = wi::OVF_NONE;
      wi::overflow_type max_ovf = wi::OVF_NONE;

      /* Build the bounds.  */
      combine_bound (code, wmin, min_ovf, expr_type, min_op0, min_op1);
      combine_bound (code, wmax, max_ovf, expr_type, max_op0, max_op1);

      /* If the resulting range will be symbolic, we need to eliminate any
	 explicit or implicit overflow introduced in the above computation
	 because compare_values could make an incorrect use of it.  That's
	 why we require one of the ranges to be a singleton.  */
      if ((sym_min_op0 != sym_min_op1 || sym_max_op0 != sym_max_op1)
	  && ((bool)min_ovf || (bool)max_ovf
	      || (min_op0 != max_op0 && min_op1 != max_op1)))
	{
	  vr->set_varying (expr_type);
	  return;
	}

      /* Adjust the range for possible overflow.  */
      set_value_range_with_overflow (kind, min, max, expr_type,
				     wmin, wmax, min_ovf, max_ovf);
      if (kind == VR_VARYING)
	{
	  vr->set_varying (expr_type);
	  return;
	}

      /* Build the symbolic bounds if needed.  */
      adjust_symbolic_bound (min, code, expr_type,
			     sym_min_op0, sym_min_op1,
			     neg_min_op0, neg_min_op1);
      adjust_symbolic_bound (max, code, expr_type,
			     sym_max_op0, sym_max_op1,
			     neg_max_op0, neg_max_op1);
    }
  else
    {
      /* For other cases, for example if we have a PLUS_EXPR with two
	 VR_ANTI_RANGEs, drop to VR_VARYING.  It would take more effort
	 to compute a precise range for such a case.
	 ???  General even mixed range kind operations can be expressed
	 by for example transforming ~[3, 5] + [1, 2] to range-only
	 operations and a union primitive:
	 [-INF, 2] + [1, 2]  U  [5, +INF] + [1, 2]
	 [-INF+1, 4]     U    [6, +INF(OVF)]
	 though usually the union is not exactly representable with
	 a single range or anti-range as the above is
	 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
	 but one could use a scheme similar to equivalences for this. */
      vr->set_varying (expr_type);
      return;
    }

  /* If either MIN or MAX overflowed, then set the resulting range to
     VARYING.  */
  if (min == NULL_TREE
      || TREE_OVERFLOW_P (min)
      || max == NULL_TREE
      || TREE_OVERFLOW_P (max))
    {
      vr->set_varying (expr_type);
      return;
    }

  int cmp = compare_values (min, max);
  if (cmp == -2 || cmp == 1)
    {
      /* If the new range has its limits swapped around (MIN > MAX),
	 then the operation caused one of them to wrap around, mark
	 the new range VARYING.  */
      vr->set_varying (expr_type);
    }
  else
    vr->set (min, max, kind);
}

/* Return the range-ops handler for CODE and EXPR_TYPE.  If no
   suitable operator is found, return NULL and set VR to VARYING.  */

static const range_operator *
get_range_op_handler (value_range *vr,
		      enum tree_code code,
		      tree expr_type)
{
  const range_operator *op = range_op_handler (code, expr_type);
  if (!op)
    vr->set_varying (expr_type);
  return op;
}

/* If the types passed are supported, return TRUE, otherwise set VR to
   VARYING and return FALSE.  */

static bool
supported_types_p (value_range *vr,
		   tree type0,
		   tree type1 = NULL)
{
  if (!value_range::supports_type_p (type0)
      || (type1 && !value_range::supports_type_p (type1)))
    {
      vr->set_varying (type0);
      return false;
    }
  return true;
}

/* If any of the ranges passed are defined, return TRUE, otherwise set
   VR to UNDEFINED and return FALSE.  */

static bool
defined_ranges_p (value_range *vr,
		  const value_range *vr0, const value_range *vr1 = NULL)
{
  if (vr0->undefined_p () && (!vr1 || vr1->undefined_p ()))
    {
      vr->set_undefined ();
      return false;
    }
  return true;
}

static value_range
drop_undefines_to_varying (const value_range *vr, tree expr_type)
{
  if (vr->undefined_p ())
    return value_range (expr_type);
  else
    return *vr;
}

/* If any operand is symbolic, perform a binary operation on them and
   return TRUE, otherwise return FALSE.  */

static bool
range_fold_binary_symbolics_p (value_range *vr,
			       tree_code code,
			       tree expr_type,
			       const value_range *vr0_,
			       const value_range *vr1_)
{
  if (vr0_->symbolic_p () || vr1_->symbolic_p ())
    {
      value_range vr0 = drop_undefines_to_varying (vr0_, expr_type);
      value_range vr1 = drop_undefines_to_varying (vr1_, expr_type);
      if ((code == PLUS_EXPR || code == MINUS_EXPR))
	{
	  extract_range_from_plus_minus_expr (vr, code, expr_type,
					      &vr0, &vr1);
	  return true;
	}
      if (POINTER_TYPE_P (expr_type) && code == POINTER_PLUS_EXPR)
	{
	  extract_range_from_pointer_plus_expr (vr, code, expr_type,
						&vr0, &vr1);
	  return true;
	}
      const range_operator *op = get_range_op_handler (vr, code, expr_type);
      vr0.normalize_symbolics ();
      vr1.normalize_symbolics ();
      return op->fold_range (*vr, expr_type, vr0, vr1);
    }
  return false;
}

/* If operand is symbolic, perform a unary operation on it and return
   TRUE, otherwise return FALSE.  */

static bool
range_fold_unary_symbolics_p (value_range *vr,
			      tree_code code,
			      tree expr_type,
			      const value_range *vr0)
{
  if (vr0->symbolic_p ())
    {
      if (code == NEGATE_EXPR)
	{
	  /* -X is simply 0 - X.  */
	  value_range zero;
	  zero.set_zero (vr0->type ());
	  range_fold_binary_expr (vr, MINUS_EXPR, expr_type, &zero, vr0);
	  return true;
	}
      if (code == BIT_NOT_EXPR)
	{
	  /* ~X is simply -1 - X.  */
	  value_range minusone;
	  minusone.set (build_int_cst (vr0->type (), -1));
	  range_fold_binary_expr (vr, MINUS_EXPR, expr_type, &minusone, vr0);
	  return true;
	}
      const range_operator *op = get_range_op_handler (vr, code, expr_type);
      value_range vr0_cst (*vr0);
      vr0_cst.normalize_symbolics ();
      return op->fold_range (*vr, expr_type, vr0_cst, value_range (expr_type));
    }
  return false;
}

/* Perform a binary operation on a pair of ranges.  */

void
range_fold_binary_expr (value_range *vr,
			enum tree_code code,
			tree expr_type,
			const value_range *vr0_,
			const value_range *vr1_)
{
  if (!supported_types_p (vr, expr_type)
      || !defined_ranges_p (vr, vr0_, vr1_))
    return;
  const range_operator *op = get_range_op_handler (vr, code, expr_type);
  if (!op)
    return;

  if (range_fold_binary_symbolics_p (vr, code, expr_type, vr0_, vr1_))
    return;

  value_range vr0 (*vr0_);
  value_range vr1 (*vr1_);
  if (vr0.undefined_p ())
    vr0.set_varying (expr_type);
  if (vr1.undefined_p ())
    vr1.set_varying (expr_type);
  vr0.normalize_addresses ();
  vr1.normalize_addresses ();
  op->fold_range (*vr, expr_type, vr0, vr1);
}

/* Perform a unary operation on a range.  */

void
range_fold_unary_expr (value_range *vr,
		       enum tree_code code, tree expr_type,
		       const value_range *vr0,
		       tree vr0_type)
{
  if (!supported_types_p (vr, expr_type, vr0_type)
      || !defined_ranges_p (vr, vr0))
    return;
  const range_operator *op = get_range_op_handler (vr, code, expr_type);
  if (!op)
    return;

  if (range_fold_unary_symbolics_p (vr, code, expr_type, vr0))
    return;

  value_range vr0_cst (*vr0);
  vr0_cst.normalize_addresses ();
  op->fold_range (*vr, expr_type, vr0_cst, value_range (expr_type));
}

/* If the range of values taken by OP can be inferred after STMT executes,
   return the comparison code (COMP_CODE_P) and value (VAL_P) that
   describes the inferred range.  Return true if a range could be
   inferred.  */

bool
infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
{
  *val_p = NULL_TREE;
  *comp_code_p = ERROR_MARK;

  /* Do not attempt to infer anything in names that flow through
     abnormal edges.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
    return false;

  /* If STMT is the last statement of a basic block with no normal
     successors, there is no point inferring anything about any of its
     operands.  We would not be able to find a proper insertion point
     for the assertion, anyway.  */
  if (stmt_ends_bb_p (stmt))
    {
      edge_iterator ei;
      edge e;

      FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
	if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
	  break;
      if (e == NULL)
	return false;
    }

  if (infer_nonnull_range (stmt, op))
    {
      *val_p = build_int_cst (TREE_TYPE (op), 0);
      *comp_code_p = NE_EXPR;
      return true;
    }

  return false;
}

/* Dump assert_info structure.  */

void
dump_assert_info (FILE *file, const assert_info &assert)
{
  fprintf (file, "Assert for: ");
  print_generic_expr (file, assert.name);
  fprintf (file, "\n\tPREDICATE: expr=[");
  print_generic_expr (file, assert.expr);
  fprintf (file, "] %s ", get_tree_code_name (assert.comp_code));
  fprintf (file, "val=[");
  print_generic_expr (file, assert.val);
  fprintf (file, "]\n\n");
}

DEBUG_FUNCTION void
debug (const assert_info &assert)
{
  dump_assert_info (stderr, assert);
}

/* Dump a vector of assert_info's.  */

void
dump_asserts_info (FILE *file, const vec<assert_info> &asserts)
{
  for (unsigned i = 0; i < asserts.length (); ++i)
    {
      dump_assert_info (file, asserts[i]);
      fprintf (file, "\n");
    }
}

DEBUG_FUNCTION void
debug (const vec<assert_info> &asserts)
{
  dump_asserts_info (stderr, asserts);
}

/* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS.  */

static void
add_assert_info (vec<assert_info> &asserts,
		 tree name, tree expr, enum tree_code comp_code, tree val)
{
  assert_info info;
  info.comp_code = comp_code;
  info.name = name;
  if (TREE_OVERFLOW_P (val))
    val = drop_tree_overflow (val);
  info.val = val;
  info.expr = expr;
  asserts.safe_push (info);
  if (dump_enabled_p ())
    dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
		 "Adding assert for %T from %T %s %T\n",
		 name, expr, op_symbol_code (comp_code), val);
}

/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
   Extract a suitable test code and value and store them into *CODE_P and
   *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.

   If no extraction was possible, return FALSE, otherwise return TRUE.

   If INVERT is true, then we invert the result stored into *CODE_P.  */

static bool
extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
					 tree cond_op0, tree cond_op1,
					 bool invert, enum tree_code *code_p,
					 tree *val_p)
{
  enum tree_code comp_code;
  tree val;

  /* Otherwise, we have a comparison of the form NAME COMP VAL
     or VAL COMP NAME.  */
  if (name == cond_op1)
    {
      /* If the predicate is of the form VAL COMP NAME, flip
	 COMP around because we need to register NAME as the
	 first operand in the predicate.  */
      comp_code = swap_tree_comparison (cond_code);
      val = cond_op0;
    }
  else if (name == cond_op0)
    {
      /* The comparison is of the form NAME COMP VAL, so the
	 comparison code remains unchanged.  */
      comp_code = cond_code;
      val = cond_op1;
    }
  else
    gcc_unreachable ();

  /* Invert the comparison code as necessary.  */
  if (invert)
    comp_code = invert_tree_comparison (comp_code, 0);

  /* VRP only handles integral and pointer types.  */
  if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
      && ! POINTER_TYPE_P (TREE_TYPE (val)))
    return false;

  /* Do not register always-false predicates.
     FIXME:  this works around a limitation in fold() when dealing with
     enumerations.  Given 'enum { N1, N2 } x;', fold will not
     fold 'if (x > N2)' to 'if (0)'.  */
  if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
      && INTEGRAL_TYPE_P (TREE_TYPE (val)))
    {
      tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
      tree max = TYPE_MAX_VALUE (TREE_TYPE (val));

      if (comp_code == GT_EXPR
	  && (!max
	      || compare_values (val, max) == 0))
	return false;

      if (comp_code == LT_EXPR
	  && (!min
	      || compare_values (val, min) == 0))
	return false;
    }
  *code_p = comp_code;
  *val_p = val;
  return true;
}

/* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
   (otherwise return VAL).  VAL and MASK must be zero-extended for
   precision PREC.  If SGNBIT is non-zero, first xor VAL with SGNBIT
   (to transform signed values into unsigned) and at the end xor
   SGNBIT back.  */

wide_int
masked_increment (const wide_int &val_in, const wide_int &mask,
		  const wide_int &sgnbit, unsigned int prec)
{
  wide_int bit = wi::one (prec), res;
  unsigned int i;

  wide_int val = val_in ^ sgnbit;
  for (i = 0; i < prec; i++, bit += bit)
    {
      res = mask;
      if ((res & bit) == 0)
	continue;
      res = bit - 1;
      res = wi::bit_and_not (val + bit, res);
      res &= mask;
      if (wi::gtu_p (res, val))
	return res ^ sgnbit;
    }
  return val ^ sgnbit;
}

/* Helper for overflow_comparison_p

   OP0 CODE OP1 is a comparison.  Examine the comparison and potentially
   OP1's defining statement to see if it ultimately has the form
   OP0 CODE (OP0 PLUS INTEGER_CST)

   If so, return TRUE indicating this is an overflow test and store into
   *NEW_CST an updated constant that can be used in a narrowed range test.

   REVERSED indicates if the comparison was originally:

   OP1 CODE' OP0.

   This affects how we build the updated constant.  */

static bool
overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
		         bool follow_assert_exprs, bool reversed, tree *new_cst)
{
  /* See if this is a relational operation between two SSA_NAMES with
     unsigned, overflow wrapping values.  If so, check it more deeply.  */
  if ((code == LT_EXPR || code == LE_EXPR
       || code == GE_EXPR || code == GT_EXPR)
      && TREE_CODE (op0) == SSA_NAME
      && TREE_CODE (op1) == SSA_NAME
      && INTEGRAL_TYPE_P (TREE_TYPE (op0))
      && TYPE_UNSIGNED (TREE_TYPE (op0))
      && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
    {
      gimple *op1_def = SSA_NAME_DEF_STMT (op1);

      /* If requested, follow any ASSERT_EXPRs backwards for OP1.  */
      if (follow_assert_exprs)
	{
	  while (gimple_assign_single_p (op1_def)
		 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
	    {
	      op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
	      if (TREE_CODE (op1) != SSA_NAME)
		break;
	      op1_def = SSA_NAME_DEF_STMT (op1);
	    }
	}

      /* Now look at the defining statement of OP1 to see if it adds
	 or subtracts a nonzero constant from another operand.  */
      if (op1_def
	  && is_gimple_assign (op1_def)
	  && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
	  && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
	  && !integer_zerop (gimple_assign_rhs2 (op1_def)))
	{
	  tree target = gimple_assign_rhs1 (op1_def);

	  /* If requested, follow ASSERT_EXPRs backwards for op0 looking
	     for one where TARGET appears on the RHS.  */
	  if (follow_assert_exprs)
	    {
	      /* Now see if that "other operand" is op0, following the chain
		 of ASSERT_EXPRs if necessary.  */
	      gimple *op0_def = SSA_NAME_DEF_STMT (op0);
	      while (op0 != target
		     && gimple_assign_single_p (op0_def)
		     && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
		{
		  op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
		  if (TREE_CODE (op0) != SSA_NAME)
		    break;
		  op0_def = SSA_NAME_DEF_STMT (op0);
		}
	    }

	  /* If we did not find our target SSA_NAME, then this is not
	     an overflow test.  */
	  if (op0 != target)
	    return false;

	  tree type = TREE_TYPE (op0);
	  wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
	  tree inc = gimple_assign_rhs2 (op1_def);
	  if (reversed)
	    *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
	  else
	    *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
	  return true;
	}
    }
  return false;
}

/* OP0 CODE OP1 is a comparison.  Examine the comparison and potentially
   OP1's defining statement to see if it ultimately has the form
   OP0 CODE (OP0 PLUS INTEGER_CST)

   If so, return TRUE indicating this is an overflow test and store into
   *NEW_CST an updated constant that can be used in a narrowed range test.

   These statements are left as-is in the IL to facilitate discovery of
   {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline.  But
   the alternate range representation is often useful within VRP.  */

bool
overflow_comparison_p (tree_code code, tree name, tree val,
		       bool use_equiv_p, tree *new_cst)
{
  if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
    return true;
  return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
				  use_equiv_p, true, new_cst);
}


/* Try to register an edge assertion for SSA name NAME on edge E for
   the condition COND contributing to the conditional jump pointed to by BSI.
   Invert the condition COND if INVERT is true.  */

static void
register_edge_assert_for_2 (tree name, edge e,
			    enum tree_code cond_code,
			    tree cond_op0, tree cond_op1, bool invert,
			    vec<assert_info> &asserts)
{
  tree val;
  enum tree_code comp_code;

  if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
						cond_op0,
						cond_op1,
						invert, &comp_code, &val))
    return;

  /* Queue the assert.  */
  tree x;
  if (overflow_comparison_p (comp_code, name, val, false, &x))
    {
      enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
				 ? GT_EXPR : LE_EXPR);
      add_assert_info (asserts, name, name, new_code, x);
    }
  add_assert_info (asserts, name, name, comp_code, val);

  /* In the case of NAME <= CST and NAME being defined as
     NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
     and NAME2 <= CST - CST2.  We can do the same for NAME > CST.
     This catches range and anti-range tests.  */
  if ((comp_code == LE_EXPR
       || comp_code == GT_EXPR)
      && TREE_CODE (val) == INTEGER_CST
      && TYPE_UNSIGNED (TREE_TYPE (val)))
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (name);
      tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;

      /* Extract CST2 from the (optional) addition.  */
      if (is_gimple_assign (def_stmt)
	  && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
	{
	  name2 = gimple_assign_rhs1 (def_stmt);
	  cst2 = gimple_assign_rhs2 (def_stmt);
	  if (TREE_CODE (name2) == SSA_NAME
	      && TREE_CODE (cst2) == INTEGER_CST)
	    def_stmt = SSA_NAME_DEF_STMT (name2);
	}

      /* Extract NAME2 from the (optional) sign-changing cast.  */
      if (gimple_assign_cast_p (def_stmt))
	{
	  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
	      && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
	      && (TYPE_PRECISION (gimple_expr_type (def_stmt))
		  == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
	    name3 = gimple_assign_rhs1 (def_stmt);
	}

      /* If name3 is used later, create an ASSERT_EXPR for it.  */
      if (name3 != NULL_TREE
      	  && TREE_CODE (name3) == SSA_NAME
	  && (cst2 == NULL_TREE
	      || TREE_CODE (cst2) == INTEGER_CST)
	  && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
	{
	  tree tmp;

	  /* Build an expression for the range test.  */
	  tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
	  if (cst2 != NULL_TREE)
	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
	  add_assert_info (asserts, name3, tmp, comp_code, val);
	}

      /* If name2 is used later, create an ASSERT_EXPR for it.  */
      if (name2 != NULL_TREE
      	  && TREE_CODE (name2) == SSA_NAME
	  && TREE_CODE (cst2) == INTEGER_CST
	  && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
	{
	  tree tmp;

	  /* Build an expression for the range test.  */
	  tmp = name2;
	  if (TREE_TYPE (name) != TREE_TYPE (name2))
	    tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
	  if (cst2 != NULL_TREE)
	    tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
	  add_assert_info (asserts, name2, tmp, comp_code, val);
	}
    }

  /* In the case of post-in/decrement tests like if (i++) ... and uses
     of the in/decremented value on the edge the extra name we want to
     assert for is not on the def chain of the name compared.  Instead
     it is in the set of use stmts.
     Similar cases happen for conversions that were simplified through
     fold_{sign_changed,widened}_comparison.  */
  if ((comp_code == NE_EXPR
       || comp_code == EQ_EXPR)
      && TREE_CODE (val) == INTEGER_CST)
    {
      imm_use_iterator ui;
      gimple *use_stmt;
      FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
	{
	  if (!is_gimple_assign (use_stmt))
	    continue;

	  /* Cut off to use-stmts that are dominating the predecessor.  */
	  if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
	    continue;

	  tree name2 = gimple_assign_lhs (use_stmt);
	  if (TREE_CODE (name2) != SSA_NAME)
	    continue;

	  enum tree_code code = gimple_assign_rhs_code (use_stmt);
	  tree cst;
	  if (code == PLUS_EXPR
	      || code == MINUS_EXPR)
	    {
	      cst = gimple_assign_rhs2 (use_stmt);
	      if (TREE_CODE (cst) != INTEGER_CST)
		continue;
	      cst = int_const_binop (code, val, cst);
	    }
	  else if (CONVERT_EXPR_CODE_P (code))
	    {
	      /* For truncating conversions we cannot record
		 an inequality.  */
	      if (comp_code == NE_EXPR
		  && (TYPE_PRECISION (TREE_TYPE (name2))
		      < TYPE_PRECISION (TREE_TYPE (name))))
		continue;
	      cst = fold_convert (TREE_TYPE (name2), val);
	    }
	  else
	    continue;

	  if (TREE_OVERFLOW_P (cst))
	    cst = drop_tree_overflow (cst);
	  add_assert_info (asserts, name2, name2, comp_code, cst);
	}
    }
 
  if (TREE_CODE_CLASS (comp_code) == tcc_comparison
      && TREE_CODE (val) == INTEGER_CST)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (name);
      tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
      tree val2 = NULL_TREE;
      unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
      wide_int mask = wi::zero (prec);
      unsigned int nprec = prec;
      enum tree_code rhs_code = ERROR_MARK;

      if (is_gimple_assign (def_stmt))
	rhs_code = gimple_assign_rhs_code (def_stmt);

      /* In the case of NAME != CST1 where NAME = A +- CST2 we can
         assert that A != CST1 -+ CST2.  */
      if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
	  && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
	{
	  tree op0 = gimple_assign_rhs1 (def_stmt);
	  tree op1 = gimple_assign_rhs2 (def_stmt);
	  if (TREE_CODE (op0) == SSA_NAME
	      && TREE_CODE (op1) == INTEGER_CST)
	    {
	      enum tree_code reverse_op = (rhs_code == PLUS_EXPR
					   ? MINUS_EXPR : PLUS_EXPR);
	      op1 = int_const_binop (reverse_op, val, op1);
	      if (TREE_OVERFLOW (op1))
		op1 = drop_tree_overflow (op1);
	      add_assert_info (asserts, op0, op0, comp_code, op1);
	    }
	}

      /* Add asserts for NAME cmp CST and NAME being defined
	 as NAME = (int) NAME2.  */
      if (!TYPE_UNSIGNED (TREE_TYPE (val))
	  && (comp_code == LE_EXPR || comp_code == LT_EXPR
	      || comp_code == GT_EXPR || comp_code == GE_EXPR)
	  && gimple_assign_cast_p (def_stmt))
	{
	  name2 = gimple_assign_rhs1 (def_stmt);
	  if (CONVERT_EXPR_CODE_P (rhs_code)
	      && TREE_CODE (name2) == SSA_NAME
	      && INTEGRAL_TYPE_P (TREE_TYPE (name2))
	      && TYPE_UNSIGNED (TREE_TYPE (name2))
	      && prec == TYPE_PRECISION (TREE_TYPE (name2))
	      && (comp_code == LE_EXPR || comp_code == GT_EXPR
		  || !tree_int_cst_equal (val,
					  TYPE_MIN_VALUE (TREE_TYPE (val)))))
	    {
	      tree tmp, cst;
	      enum tree_code new_comp_code = comp_code;

	      cst = fold_convert (TREE_TYPE (name2),
				  TYPE_MIN_VALUE (TREE_TYPE (val)));
	      /* Build an expression for the range test.  */
	      tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
	      cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
				 fold_convert (TREE_TYPE (name2), val));
	      if (comp_code == LT_EXPR || comp_code == GE_EXPR)
		{
		  new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
		  cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
				     build_int_cst (TREE_TYPE (name2), 1));
		}
	      add_assert_info (asserts, name2, tmp, new_comp_code, cst);
	    }
	}

      /* Add asserts for NAME cmp CST and NAME being defined as
	 NAME = NAME2 >> CST2.

	 Extract CST2 from the right shift.  */
      if (rhs_code == RSHIFT_EXPR)
	{
	  name2 = gimple_assign_rhs1 (def_stmt);
	  cst2 = gimple_assign_rhs2 (def_stmt);
	  if (TREE_CODE (name2) == SSA_NAME
	      && tree_fits_uhwi_p (cst2)
	      && INTEGRAL_TYPE_P (TREE_TYPE (name2))
	      && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
	      && type_has_mode_precision_p (TREE_TYPE (val)))
	    {
	      mask = wi::mask (tree_to_uhwi (cst2), false, prec);
	      val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
	    }
	}
      if (val2 != NULL_TREE
	  && TREE_CODE (val2) == INTEGER_CST
	  && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
					    TREE_TYPE (val),
					    val2, cst2), val))
	{
	  enum tree_code new_comp_code = comp_code;
	  tree tmp, new_val;

	  tmp = name2;
	  if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
	    {
	      if (!TYPE_UNSIGNED (TREE_TYPE (val)))
		{
		  tree type = build_nonstandard_integer_type (prec, 1);
		  tmp = build1 (NOP_EXPR, type, name2);
		  val2 = fold_convert (type, val2);
		}
	      tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
	      new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
	      new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
	    }
	  else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
	    {
	      wide_int minval
		= wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
	      new_val = val2;
	      if (minval == wi::to_wide (new_val))
		new_val = NULL_TREE;
	    }
	  else
	    {
	      wide_int maxval
		= wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
	      mask |= wi::to_wide (val2);
	      if (wi::eq_p (mask, maxval))
		new_val = NULL_TREE;
	      else
		new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
	    }

	  if (new_val)
	    add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
	}

      /* If we have a conversion that doesn't change the value of the source
         simply register the same assert for it.  */
      if (CONVERT_EXPR_CODE_P (rhs_code))
	{
	  value_range vr;
	  tree rhs1 = gimple_assign_rhs1 (def_stmt);
	  if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
	      && TREE_CODE (rhs1) == SSA_NAME
	      /* Make sure the relation preserves the upper/lower boundary of
	         the range conservatively.  */
	      && (comp_code == NE_EXPR
		  || comp_code == EQ_EXPR
		  || (TYPE_SIGN (TREE_TYPE (name))
		      == TYPE_SIGN (TREE_TYPE (rhs1)))
		  || ((comp_code == LE_EXPR
		       || comp_code == LT_EXPR)
		      && !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
		  || ((comp_code == GE_EXPR
		       || comp_code == GT_EXPR)
		      && TYPE_UNSIGNED (TREE_TYPE (rhs1))))
	      /* And the conversion does not alter the value we compare
	         against and all values in rhs1 can be represented in
		 the converted to type.  */
	      && int_fits_type_p (val, TREE_TYPE (rhs1))
	      && ((TYPE_PRECISION (TREE_TYPE (name))
		   > TYPE_PRECISION (TREE_TYPE (rhs1)))
		  || ((get_range_query (cfun)->range_of_expr (vr, rhs1)
		       && vr.kind () == VR_RANGE)
		      && wi::fits_to_tree_p
			   (widest_int::from (vr.lower_bound (),
					      TYPE_SIGN (TREE_TYPE (rhs1))),
			    TREE_TYPE (name))
		      && wi::fits_to_tree_p
			   (widest_int::from (vr.upper_bound (),
					      TYPE_SIGN (TREE_TYPE (rhs1))),
			    TREE_TYPE (name)))))
	    add_assert_info (asserts, rhs1, rhs1,
		 	     comp_code, fold_convert (TREE_TYPE (rhs1), val));
	}

      /* Add asserts for NAME cmp CST and NAME being defined as
	 NAME = NAME2 & CST2.

	 Extract CST2 from the and.

	 Also handle
	 NAME = (unsigned) NAME2;
	 casts where NAME's type is unsigned and has smaller precision
	 than NAME2's type as if it was NAME = NAME2 & MASK.  */
      names[0] = NULL_TREE;
      names[1] = NULL_TREE;
      cst2 = NULL_TREE;
      if (rhs_code == BIT_AND_EXPR
	  || (CONVERT_EXPR_CODE_P (rhs_code)
	      && INTEGRAL_TYPE_P (TREE_TYPE (val))
	      && TYPE_UNSIGNED (TREE_TYPE (val))
	      && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
		 > prec))
	{
	  name2 = gimple_assign_rhs1 (def_stmt);
	  if (rhs_code == BIT_AND_EXPR)
	    cst2 = gimple_assign_rhs2 (def_stmt);
	  else
	    {
	      cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
	      nprec = TYPE_PRECISION (TREE_TYPE (name2));
	    }
	  if (TREE_CODE (name2) == SSA_NAME
	      && INTEGRAL_TYPE_P (TREE_TYPE (name2))
	      && TREE_CODE (cst2) == INTEGER_CST
	      && !integer_zerop (cst2)
	      && (nprec > 1
		  || TYPE_UNSIGNED (TREE_TYPE (val))))
	    {
	      gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
	      if (gimple_assign_cast_p (def_stmt2))
		{
		  names[1] = gimple_assign_rhs1 (def_stmt2);
		  if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
		      || TREE_CODE (names[1]) != SSA_NAME
		      || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
		      || (TYPE_PRECISION (TREE_TYPE (name2))
			  != TYPE_PRECISION (TREE_TYPE (names[1]))))
		    names[1] = NULL_TREE;
		}
	      names[0] = name2;
	    }
	}
      if (names[0] || names[1])
	{
	  wide_int minv, maxv, valv, cst2v;
	  wide_int tem, sgnbit;
	  bool valid_p = false, valn, cst2n;
	  enum tree_code ccode = comp_code;

	  valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED);
	  cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED);
	  valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
	  cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
	  /* If CST2 doesn't have most significant bit set,
	     but VAL is negative, we have comparison like
	     if ((x & 0x123) > -4) (always true).  Just give up.  */
	  if (!cst2n && valn)
	    ccode = ERROR_MARK;
	  if (cst2n)
	    sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
	  else
	    sgnbit = wi::zero (nprec);
	  minv = valv & cst2v;
	  switch (ccode)
	    {
	    case EQ_EXPR:
	      /* Minimum unsigned value for equality is VAL & CST2
		 (should be equal to VAL, otherwise we probably should
		 have folded the comparison into false) and
		 maximum unsigned value is VAL | ~CST2.  */
	      maxv = valv | ~cst2v;
	      valid_p = true;
	      break;

	    case NE_EXPR:
	      tem = valv | ~cst2v;
	      /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U.  */
	      if (valv == 0)
		{
		  cst2n = false;
		  sgnbit = wi::zero (nprec);
		  goto gt_expr;
		}
	      /* If (VAL | ~CST2) is all ones, handle it as
		 (X & CST2) < VAL.  */
	      if (tem == -1)
		{
		  cst2n = false;
		  valn = false;
		  sgnbit = wi::zero (nprec);
		  goto lt_expr;
		}
	      if (!cst2n && wi::neg_p (cst2v))
		sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
	      if (sgnbit != 0)
		{
		  if (valv == sgnbit)
		    {
		      cst2n = true;
		      valn = true;
		      goto gt_expr;
		    }
		  if (tem == wi::mask (nprec - 1, false, nprec))
		    {
		      cst2n = true;
		      goto lt_expr;
		    }
		  if (!cst2n)
		    sgnbit = wi::zero (nprec);
		}
	      break;

	    case GE_EXPR:
	      /* Minimum unsigned value for >= if (VAL & CST2) == VAL
		 is VAL and maximum unsigned value is ~0.  For signed
		 comparison, if CST2 doesn't have most significant bit
		 set, handle it similarly.  If CST2 has MSB set,
		 the minimum is the same, and maximum is ~0U/2.  */
	      if (minv != valv)
		{
		  /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
		     VAL.  */
		  minv = masked_increment (valv, cst2v, sgnbit, nprec);
		  if (minv == valv)
		    break;
		}
	      maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
	      valid_p = true;
	      break;

	    case GT_EXPR:
	    gt_expr:
	      /* Find out smallest MINV where MINV > VAL
		 && (MINV & CST2) == MINV, if any.  If VAL is signed and
		 CST2 has MSB set, compute it biased by 1 << (nprec - 1).  */
	      minv = masked_increment (valv, cst2v, sgnbit, nprec);
	      if (minv == valv)
		break;
	      maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
	      valid_p = true;
	      break;

	    case LE_EXPR:
	      /* Minimum unsigned value for <= is 0 and maximum
		 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
		 Otherwise, find smallest VAL2 where VAL2 > VAL
		 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
		 as maximum.
		 For signed comparison, if CST2 doesn't have most
		 significant bit set, handle it similarly.  If CST2 has
		 MSB set, the maximum is the same and minimum is INT_MIN.  */
	      if (minv == valv)
		maxv = valv;
	      else
		{
		  maxv = masked_increment (valv, cst2v, sgnbit, nprec);
		  if (maxv == valv)
		    break;
		  maxv -= 1;
		}
	      maxv |= ~cst2v;
	      minv = sgnbit;
	      valid_p = true;
	      break;

	    case LT_EXPR:
	    lt_expr:
	      /* Minimum unsigned value for < is 0 and maximum
		 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
		 Otherwise, find smallest VAL2 where VAL2 > VAL
		 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
		 as maximum.
		 For signed comparison, if CST2 doesn't have most
		 significant bit set, handle it similarly.  If CST2 has
		 MSB set, the maximum is the same and minimum is INT_MIN.  */
	      if (minv == valv)
		{
		  if (valv == sgnbit)
		    break;
		  maxv = valv;
		}
	      else
		{
		  maxv = masked_increment (valv, cst2v, sgnbit, nprec);
		  if (maxv == valv)
		    break;
		}
	      maxv -= 1;
	      maxv |= ~cst2v;
	      minv = sgnbit;
	      valid_p = true;
	      break;

	    default:
	      break;
	    }
	  if (valid_p
	      && (maxv - minv) != -1)
	    {
	      tree tmp, new_val, type;
	      int i;

	      for (i = 0; i < 2; i++)
		if (names[i])
		  {
		    wide_int maxv2 = maxv;
		    tmp = names[i];
		    type = TREE_TYPE (names[i]);
		    if (!TYPE_UNSIGNED (type))
		      {
			type = build_nonstandard_integer_type (nprec, 1);
			tmp = build1 (NOP_EXPR, type, names[i]);
		      }
		    if (minv != 0)
		      {
			tmp = build2 (PLUS_EXPR, type, tmp,
				      wide_int_to_tree (type, -minv));
			maxv2 = maxv - minv;
		      }
		    new_val = wide_int_to_tree (type, maxv2);
		    add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
		  }
	    }
	}
    }
}

/* OP is an operand of a truth value expression which is known to have
   a particular value.  Register any asserts for OP and for any
   operands in OP's defining statement.

   If CODE is EQ_EXPR, then we want to register OP is zero (false),
   if CODE is NE_EXPR, then we want to register OP is nonzero (true).   */

static void
register_edge_assert_for_1 (tree op, enum tree_code code,
			    edge e, vec<assert_info> &asserts)
{
  gimple *op_def;
  tree val;
  enum tree_code rhs_code;

  /* We only care about SSA_NAMEs.  */
  if (TREE_CODE (op) != SSA_NAME)
    return;

  /* We know that OP will have a zero or nonzero value.  */
  val = build_int_cst (TREE_TYPE (op), 0);
  add_assert_info (asserts, op, op, code, val);

  /* Now look at how OP is set.  If it's set from a comparison,
     a truth operation or some bit operations, then we may be able
     to register information about the operands of that assignment.  */
  op_def = SSA_NAME_DEF_STMT (op);
  if (gimple_code (op_def) != GIMPLE_ASSIGN)
    return;

  rhs_code = gimple_assign_rhs_code (op_def);

  if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
    {
      bool invert = (code == EQ_EXPR ? true : false);
      tree op0 = gimple_assign_rhs1 (op_def);
      tree op1 = gimple_assign_rhs2 (op_def);

      if (TREE_CODE (op0) == SSA_NAME)
        register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
      if (TREE_CODE (op1) == SSA_NAME)
        register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
    }
  else if ((code == NE_EXPR
	    && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
	   || (code == EQ_EXPR
	       && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
    {
      /* Recurse on each operand.  */
      tree op0 = gimple_assign_rhs1 (op_def);
      tree op1 = gimple_assign_rhs2 (op_def);
      if (TREE_CODE (op0) == SSA_NAME
	  && has_single_use (op0))
	register_edge_assert_for_1 (op0, code, e, asserts);
      if (TREE_CODE (op1) == SSA_NAME
	  && has_single_use (op1))
	register_edge_assert_for_1 (op1, code, e, asserts);
    }
  else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
	   && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
    {
      /* Recurse, flipping CODE.  */
      code = invert_tree_comparison (code, false);
      register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
    }
  else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
    {
      /* Recurse through the copy.  */
      register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
    }
  else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
    {
      /* Recurse through the type conversion, unless it is a narrowing
	 conversion or conversion from non-integral type.  */
      tree rhs = gimple_assign_rhs1 (op_def);
      if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
	  && (TYPE_PRECISION (TREE_TYPE (rhs))
	      <= TYPE_PRECISION (TREE_TYPE (op))))
	register_edge_assert_for_1 (rhs, code, e, asserts);
    }
}

/* Check if comparison
     NAME COND_OP INTEGER_CST
   has a form of
     (X & 11...100..0) COND_OP XX...X00...0
   Such comparison can yield assertions like
     X >= XX...X00...0
     X <= XX...X11...1
   in case of COND_OP being EQ_EXPR or
     X < XX...X00...0
     X > XX...X11...1
   in case of NE_EXPR.  */

static bool
is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
		      tree *new_name, tree *low, enum tree_code *low_code,
		      tree *high, enum tree_code *high_code)
{
  gimple *def_stmt = SSA_NAME_DEF_STMT (name);

  if (!is_gimple_assign (def_stmt)
      || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
    return false;

  tree t = gimple_assign_rhs1 (def_stmt);
  tree maskt = gimple_assign_rhs2 (def_stmt);
  if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
    return false;

  wi::tree_to_wide_ref mask = wi::to_wide (maskt);
  wide_int inv_mask = ~mask;
  /* Must have been removed by now so don't bother optimizing.  */
  if (mask == 0 || inv_mask == 0)
    return false;

  /* Assume VALT is INTEGER_CST.  */
  wi::tree_to_wide_ref val = wi::to_wide (valt);

  if ((inv_mask & (inv_mask + 1)) != 0
      || (val & mask) != val)
    return false;

  bool is_range = cond_code == EQ_EXPR;

  tree type = TREE_TYPE (t);
  wide_int min = wi::min_value (type),
    max = wi::max_value (type);

  if (is_range)
    {
      *low_code = val == min ? ERROR_MARK : GE_EXPR;
      *high_code = val == max ? ERROR_MARK : LE_EXPR;
    }
  else
    {
      /* We can still generate assertion if one of alternatives
	 is known to always be false.  */
      if (val == min)
	{
	  *low_code = (enum tree_code) 0;
	  *high_code = GT_EXPR;
	}
      else if ((val | inv_mask) == max)
	{
	  *low_code = LT_EXPR;
	  *high_code = (enum tree_code) 0;
	}
      else
	return false;
    }

  *new_name = t;
  *low = wide_int_to_tree (type, val);
  *high = wide_int_to_tree (type, val | inv_mask);

  return true;
}

/* Try to register an edge assertion for SSA name NAME on edge E for
   the condition COND contributing to the conditional jump pointed to by
   SI.  */

void
register_edge_assert_for (tree name, edge e,
			  enum tree_code cond_code, tree cond_op0,
			  tree cond_op1, vec<assert_info> &asserts)
{
  tree val;
  enum tree_code comp_code;
  bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;

  /* Do not attempt to infer anything in names that flow through
     abnormal edges.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
    return;

  if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
						cond_op0, cond_op1,
						is_else_edge,
						&comp_code, &val))
    return;

  /* Register ASSERT_EXPRs for name.  */
  register_edge_assert_for_2 (name, e, cond_code, cond_op0,
			      cond_op1, is_else_edge, asserts);


  /* If COND is effectively an equality test of an SSA_NAME against
     the value zero or one, then we may be able to assert values
     for SSA_NAMEs which flow into COND.  */

  /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
     statement of NAME we can assert both operands of the BIT_AND_EXPR
     have nonzero value.  */
  if ((comp_code == EQ_EXPR && integer_onep (val))
      || (comp_code == NE_EXPR && integer_zerop (val)))
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (name);

      if (is_gimple_assign (def_stmt)
	  && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
	{
	  tree op0 = gimple_assign_rhs1 (def_stmt);
	  tree op1 = gimple_assign_rhs2 (def_stmt);
	  register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
	  register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
	}
      else if (is_gimple_assign (def_stmt)
	       && (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
		   == tcc_comparison))
	register_edge_assert_for_1 (name, NE_EXPR, e, asserts);
    }

  /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
     statement of NAME we can assert both operands of the BIT_IOR_EXPR
     have zero value.  */
  if ((comp_code == EQ_EXPR && integer_zerop (val))
      || (comp_code == NE_EXPR
	  && integer_onep (val)
	  && TYPE_PRECISION (TREE_TYPE (name)) == 1))
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (name);

      /* For BIT_IOR_EXPR only if NAME == 0 both operands have
	 necessarily zero value, or if type-precision is one.  */
      if (is_gimple_assign (def_stmt)
	  && gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
	{
	  tree op0 = gimple_assign_rhs1 (def_stmt);
	  tree op1 = gimple_assign_rhs2 (def_stmt);
	  register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
	  register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
	}
      else if (is_gimple_assign (def_stmt)
	       && (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
		   == tcc_comparison))
	register_edge_assert_for_1 (name, EQ_EXPR, e, asserts);
    }

  /* Sometimes we can infer ranges from (NAME & MASK) == VALUE.  */
  if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
      && TREE_CODE (val) == INTEGER_CST)
    {
      enum tree_code low_code, high_code;
      tree low, high;
      if (is_masked_range_test (name, val, comp_code, &name, &low,
				&low_code, &high, &high_code))
	{
	  if (low_code != ERROR_MARK)
	    register_edge_assert_for_2 (name, e, low_code, name,
					low, /*invert*/false, asserts);
	  if (high_code != ERROR_MARK)
	    register_edge_assert_for_2 (name, e, high_code, name,
					high, /*invert*/false, asserts);
	}
    }
}

/* Handle
   _4 = x_3 & 31;
   if (_4 != 0)
     goto <bb 6>;
   else
     goto <bb 7>;
   <bb 6>:
   __builtin_unreachable ();
   <bb 7>:
   x_5 = ASSERT_EXPR <x_3, ...>;
   If x_3 has no other immediate uses (checked by caller),
   var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
   from the non-zero bitmask.  */

void
maybe_set_nonzero_bits (edge e, tree var)
{
  basic_block cond_bb = e->src;
  gimple *stmt = last_stmt (cond_bb);
  tree cst;

  if (stmt == NULL
      || gimple_code (stmt) != GIMPLE_COND
      || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
				     ? EQ_EXPR : NE_EXPR)
      || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
      || !integer_zerop (gimple_cond_rhs (stmt)))
    return;

  stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
  if (!is_gimple_assign (stmt)
      || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
      || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
    return;
  if (gimple_assign_rhs1 (stmt) != var)
    {
      gimple *stmt2;

      if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
	return;
      stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
      if (!gimple_assign_cast_p (stmt2)
	  || gimple_assign_rhs1 (stmt2) != var
	  || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
	  || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
			      != TYPE_PRECISION (TREE_TYPE (var))))
	return;
    }
  cst = gimple_assign_rhs2 (stmt);
  set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
					  wi::to_wide (cst)));
}

/* Return true if STMT is interesting for VRP.  */

bool
stmt_interesting_for_vrp (gimple *stmt)
{
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
      tree res = gimple_phi_result (stmt);
      return (!virtual_operand_p (res)
	      && (INTEGRAL_TYPE_P (TREE_TYPE (res))
		  || POINTER_TYPE_P (TREE_TYPE (res))));
    }
  else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
    {
      tree lhs = gimple_get_lhs (stmt);

      /* In general, assignments with virtual operands are not useful
	 for deriving ranges, with the obvious exception of calls to
	 builtin functions.  */
      if (lhs && TREE_CODE (lhs) == SSA_NAME
	  && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
	      || POINTER_TYPE_P (TREE_TYPE (lhs)))
	  && (is_gimple_call (stmt)
	      || !gimple_vuse (stmt)))
	return true;
      else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
	switch (gimple_call_internal_fn (stmt))
	  {
	  case IFN_ADD_OVERFLOW:
	  case IFN_SUB_OVERFLOW:
	  case IFN_MUL_OVERFLOW:
	  case IFN_ATOMIC_COMPARE_EXCHANGE:
	    /* These internal calls return _Complex integer type,
	       but are interesting to VRP nevertheless.  */
	    if (lhs && TREE_CODE (lhs) == SSA_NAME)
	      return true;
	    break;
	  default:
	    break;
	  }
    }
  else if (gimple_code (stmt) == GIMPLE_COND
	   || gimple_code (stmt) == GIMPLE_SWITCH)
    return true;

  return false;
}


/* Return the LHS of any ASSERT_EXPR where OP appears as the first
   argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
   BB.  If no such ASSERT_EXPR is found, return OP.  */

static tree
lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
{
  imm_use_iterator imm_iter;
  gimple *use_stmt;
  use_operand_p use_p;

  if (TREE_CODE (op) == SSA_NAME)
    {
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
	{
	  use_stmt = USE_STMT (use_p);
	  if (use_stmt != stmt
	      && gimple_assign_single_p (use_stmt)
	      && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
	      && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
	      && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
	    return gimple_assign_lhs (use_stmt);
	}
    }
  return op;
}

/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
   that includes the value VAL.  The search is restricted to the range
   [START_IDX, n - 1] where n is the size of VEC.

   If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
   returned.

   If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
   it is placed in IDX and false is returned.

   If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
   returned. */

bool
find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
{
  size_t n = gimple_switch_num_labels (stmt);
  size_t low, high;

  /* Find case label for minimum of the value range or the next one.
     At each iteration we are searching in [low, high - 1]. */

  for (low = start_idx, high = n; high != low; )
    {
      tree t;
      int cmp;
      /* Note that i != high, so we never ask for n. */
      size_t i = (high + low) / 2;
      t = gimple_switch_label (stmt, i);

      /* Cache the result of comparing CASE_LOW and val.  */
      cmp = tree_int_cst_compare (CASE_LOW (t), val);

      if (cmp == 0)
	{
	  /* Ranges cannot be empty. */
	  *idx = i;
	  return true;
	}
      else if (cmp > 0)
        high = i;
      else
	{
	  low = i + 1;
	  if (CASE_HIGH (t) != NULL
	      && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
	    {
	      *idx = i;
	      return true;
	    }
        }
    }

  *idx = high;
  return false;
}

/* Searches the case label vector VEC for the range of CASE_LABELs that is used
   for values between MIN and MAX. The first index is placed in MIN_IDX. The
   last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
   then MAX_IDX < MIN_IDX.
   Returns true if the default label is not needed. */

bool
find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
		       size_t *max_idx)
{
  size_t i, j;
  bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
  bool max_take_default = !find_case_label_index (stmt, i, max, &j);

  if (i == j
      && min_take_default
      && max_take_default)
    {
      /* Only the default case label reached.
         Return an empty range. */
      *min_idx = 1;
      *max_idx = 0;
      return false;
    }
  else
    {
      bool take_default = min_take_default || max_take_default;
      tree low, high;
      size_t k;

      if (max_take_default)
	j--;

      /* If the case label range is continuous, we do not need
	 the default case label.  Verify that.  */
      high = CASE_LOW (gimple_switch_label (stmt, i));
      if (CASE_HIGH (gimple_switch_label (stmt, i)))
	high = CASE_HIGH (gimple_switch_label (stmt, i));
      for (k = i + 1; k <= j; ++k)
	{
	  low = CASE_LOW (gimple_switch_label (stmt, k));
	  if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
	    {
	      take_default = true;
	      break;
	    }
	  high = low;
	  if (CASE_HIGH (gimple_switch_label (stmt, k)))
	    high = CASE_HIGH (gimple_switch_label (stmt, k));
	}

      *min_idx = i;
      *max_idx = j;
      return !take_default;
    }
}

/* Given a SWITCH_STMT, return the case label that encompasses the
   known possible values for the switch operand.  RANGE_OF_OP is a
   range for the known values of the switch operand.  */

tree
find_case_label_range (gswitch *switch_stmt, const irange *range_of_op)
{
  if (range_of_op->undefined_p ()
      || range_of_op->varying_p ()
      || range_of_op->symbolic_p ())
    return NULL_TREE;

  size_t i, j;
  tree op = gimple_switch_index (switch_stmt);
  tree type = TREE_TYPE (op);
  tree tmin = wide_int_to_tree (type, range_of_op->lower_bound ());
  tree tmax = wide_int_to_tree (type, range_of_op->upper_bound ());
  find_case_label_range (switch_stmt, tmin, tmax, &i, &j);
  if (i == j)
    {
      /* Look for exactly one label that encompasses the range of
	 the operand.  */
      tree label = gimple_switch_label (switch_stmt, i);
      tree case_high
	= CASE_HIGH (label) ? CASE_HIGH (label) : CASE_LOW (label);
      int_range_max label_range (CASE_LOW (label), case_high);
      if (!types_compatible_p (label_range.type (), range_of_op->type ()))
	range_cast (label_range, range_of_op->type ());
      label_range.intersect (range_of_op);
      if (label_range == *range_of_op)
	return label;
    }
  else if (i > j)
    {
      /* If there are no labels at all, take the default.  */
      return gimple_switch_label (switch_stmt, 0);
    }
  else
    {
      /* Otherwise, there are various labels that can encompass
	 the range of operand.  In which case, see if the range of
	 the operand is entirely *outside* the bounds of all the
	 (non-default) case labels.  If so, take the default.  */
      unsigned n = gimple_switch_num_labels (switch_stmt);
      tree min_label = gimple_switch_label (switch_stmt, 1);
      tree max_label = gimple_switch_label (switch_stmt, n - 1);
      tree case_high = CASE_HIGH (max_label);
      if (!case_high)
	case_high = CASE_LOW (max_label);
      int_range_max label_range (CASE_LOW (min_label), case_high);
      if (!types_compatible_p (label_range.type (), range_of_op->type ()))
	range_cast (label_range, range_of_op->type ());
      label_range.intersect (range_of_op);
      if (label_range.undefined_p ())
	return gimple_switch_label (switch_stmt, 0);
    }
  return NULL_TREE;
}

struct case_info
{
  tree expr;
  basic_block bb;
};

/* Location information for ASSERT_EXPRs.  Each instance of this
   structure describes an ASSERT_EXPR for an SSA name.  Since a single
   SSA name may have more than one assertion associated with it, these
   locations are kept in a linked list attached to the corresponding
   SSA name.  */
struct assert_locus
{
  /* Basic block where the assertion would be inserted.  */
  basic_block bb;

  /* Some assertions need to be inserted on an edge (e.g., assertions
     generated by COND_EXPRs).  In those cases, BB will be NULL.  */
  edge e;

  /* Pointer to the statement that generated this assertion.  */
  gimple_stmt_iterator si;

  /* Predicate code for the ASSERT_EXPR.  Must be COMPARISON_CLASS_P.  */
  enum tree_code comp_code;

  /* Value being compared against.  */
  tree val;

  /* Expression to compare.  */
  tree expr;

  /* Next node in the linked list.  */
  assert_locus *next;
};

/* Class to traverse the flowgraph looking for conditional jumps to
   insert ASSERT_EXPR range expressions.  These range expressions are
   meant to provide information to optimizations that need to reason
   in terms of value ranges.  They will not be expanded into RTL.  */

class vrp_asserts
{
public:
  vrp_asserts (struct function *fn) : fun (fn) { }

  void insert_range_assertions ();

  /* Convert range assertion expressions into the implied copies and
     copy propagate away the copies.  */
  void remove_range_assertions ();

  /* Dump all the registered assertions for all the names to FILE.  */
  void dump (FILE *);

  /* Dump all the registered assertions for NAME to FILE.  */
  void dump (FILE *file, tree name);

  /* Dump all the registered assertions for NAME to stderr.  */
  void debug (tree name)
  {
    dump (stderr, name);
  }

  /* Dump all the registered assertions for all the names to stderr.  */
  void debug ()
  {
    dump (stderr);
  }

private:
  /* Set of SSA names found live during the RPO traversal of the function
     for still active basic-blocks.  */
  live_names live;

  /* Function to work on.  */
  struct function *fun;

  /* If bit I is present, it means that SSA name N_i has a list of
     assertions that should be inserted in the IL.  */
  bitmap need_assert_for;

  /* Array of locations lists where to insert assertions.  ASSERTS_FOR[I]
     holds a list of ASSERT_LOCUS_T nodes that describe where
     ASSERT_EXPRs for SSA name N_I should be inserted.  */
  assert_locus **asserts_for;

  /* Finish found ASSERTS for E and register them at GSI.  */
  void finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
					vec<assert_info> &asserts);

  /* Determine whether the outgoing edges of BB should receive an
     ASSERT_EXPR for each of the operands of BB's LAST statement.  The
     last statement of BB must be a SWITCH_EXPR.

     If any of the sub-graphs rooted at BB have an interesting use of
     the predicate operands, an assert location node is added to the
     list of assertions for the corresponding operands.  */
  void find_switch_asserts (basic_block bb, gswitch *last);

  /* Do an RPO walk over the function computing SSA name liveness
     on-the-fly and deciding on assert expressions to insert.  */
  void find_assert_locations ();

  /* Traverse all the statements in block BB looking for statements that
     may generate useful assertions for the SSA names in their operand.
     See method implementation comentary for more information.  */
  void find_assert_locations_in_bb (basic_block bb);

  /* Determine whether the outgoing edges of BB should receive an
     ASSERT_EXPR for each of the operands of BB's LAST statement.
     The last statement of BB must be a COND_EXPR.

     If any of the sub-graphs rooted at BB have an interesting use of
     the predicate operands, an assert location node is added to the
     list of assertions for the corresponding operands.  */
  void find_conditional_asserts (basic_block bb, gcond *last);

  /* Process all the insertions registered for every name N_i registered
     in NEED_ASSERT_FOR.  The list of assertions to be inserted are
     found in ASSERTS_FOR[i].  */
  void process_assert_insertions ();

  /* If NAME doesn't have an ASSERT_EXPR registered for asserting
     'EXPR COMP_CODE VAL' at a location that dominates block BB or
     E->DEST, then register this location as a possible insertion point
     for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.

     BB, E and SI provide the exact insertion point for the new
     ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
     on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
     BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
     must not be NULL.  */
  void register_new_assert_for (tree name, tree expr,
				enum tree_code comp_code,
				tree val, basic_block bb,
				edge e, gimple_stmt_iterator si);

  /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
     create a new SSA name N and return the assertion assignment
     'N = ASSERT_EXPR <V, V OP W>'.  */
  gimple *build_assert_expr_for (tree cond, tree v);

  /* Create an ASSERT_EXPR for NAME and insert it in the location
     indicated by LOC.  Return true if we made any edge insertions.  */
  bool process_assert_insertions_for (tree name, assert_locus *loc);

  /* Qsort callback for sorting assert locations.  */
  template <bool stable> static int compare_assert_loc (const void *,
							const void *);

  /* Return false if EXPR is a predicate expression involving floating
     point values.  */
  bool fp_predicate (gimple *stmt)
  {
    GIMPLE_CHECK (stmt, GIMPLE_COND);
    return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
  }

  bool all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt,
					  basic_block cond_bb);

  static int compare_case_labels (const void *, const void *);
};

/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
   create a new SSA name N and return the assertion assignment
   'N = ASSERT_EXPR <V, V OP W>'.  */

gimple *
vrp_asserts::build_assert_expr_for (tree cond, tree v)
{
  tree a;
  gassign *assertion;

  gcc_assert (TREE_CODE (v) == SSA_NAME
	      && COMPARISON_CLASS_P (cond));

  a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
  assertion = gimple_build_assign (NULL_TREE, a);

  /* The new ASSERT_EXPR, creates a new SSA name that replaces the
     operand of the ASSERT_EXPR.  Create it so the new name and the old one
     are registered in the replacement table so that we can fix the SSA web
     after adding all the ASSERT_EXPRs.  */
  tree new_def = create_new_def_for (v, assertion, NULL);
  /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
     given we have to be able to fully propagate those out to re-create
     valid SSA when removing the asserts.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
    SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;

  return assertion;
}

/* Dump all the registered assertions for NAME to FILE.  */

void
vrp_asserts::dump (FILE *file, tree name)
{
  assert_locus *loc;

  fprintf (file, "Assertions to be inserted for ");
  print_generic_expr (file, name);
  fprintf (file, "\n");

  loc = asserts_for[SSA_NAME_VERSION (name)];
  while (loc)
    {
      fprintf (file, "\t");
      print_gimple_stmt (file, gsi_stmt (loc->si), 0);
      fprintf (file, "\n\tBB #%d", loc->bb->index);
      if (loc->e)
	{
	  fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
	           loc->e->dest->index);
	  dump_edge_info (file, loc->e, dump_flags, 0);
	}
      fprintf (file, "\n\tPREDICATE: ");
      print_generic_expr (file, loc->expr);
      fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
      print_generic_expr (file, loc->val);
      fprintf (file, "\n\n");
      loc = loc->next;
    }

  fprintf (file, "\n");
}

/* Dump all the registered assertions for all the names to FILE.  */

void
vrp_asserts::dump (FILE *file)
{
  unsigned i;
  bitmap_iterator bi;

  fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
    dump (file, ssa_name (i));
  fprintf (file, "\n");
}

/* If NAME doesn't have an ASSERT_EXPR registered for asserting
   'EXPR COMP_CODE VAL' at a location that dominates block BB or
   E->DEST, then register this location as a possible insertion point
   for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.

   BB, E and SI provide the exact insertion point for the new
   ASSERT_EXPR.  If BB is NULL, then the ASSERT_EXPR is to be inserted
   on edge E.  Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
   BB.  If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
   must not be NULL.  */

void
vrp_asserts::register_new_assert_for (tree name, tree expr,
				      enum tree_code comp_code,
				      tree val,
				      basic_block bb,
				      edge e,
				      gimple_stmt_iterator si)
{
  assert_locus *n, *loc, *last_loc;
  basic_block dest_bb;

  gcc_checking_assert (bb == NULL || e == NULL);

  if (e == NULL)
    gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
			 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);

  /* Never build an assert comparing against an integer constant with
     TREE_OVERFLOW set.  This confuses our undefined overflow warning
     machinery.  */
  if (TREE_OVERFLOW_P (val))
    val = drop_tree_overflow (val);

  /* The new assertion A will be inserted at BB or E.  We need to
     determine if the new location is dominated by a previously
     registered location for A.  If we are doing an edge insertion,
     assume that A will be inserted at E->DEST.  Note that this is not
     necessarily true.

     If E is a critical edge, it will be split.  But even if E is
     split, the new block will dominate the same set of blocks that
     E->DEST dominates.

     The reverse, however, is not true, blocks dominated by E->DEST
     will not be dominated by the new block created to split E.  So,
     if the insertion location is on a critical edge, we will not use
     the new location to move another assertion previously registered
     at a block dominated by E->DEST.  */
  dest_bb = (bb) ? bb : e->dest;

  /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
     VAL at a block dominating DEST_BB, then we don't need to insert a new
     one.  Similarly, if the same assertion already exists at a block
     dominated by DEST_BB and the new location is not on a critical
     edge, then update the existing location for the assertion (i.e.,
     move the assertion up in the dominance tree).

     Note, this is implemented as a simple linked list because there
     should not be more than a handful of assertions registered per
     name.  If this becomes a performance problem, a table hashed by
     COMP_CODE and VAL could be implemented.  */
  loc = asserts_for[SSA_NAME_VERSION (name)];
  last_loc = loc;
  while (loc)
    {
      if (loc->comp_code == comp_code
	  && (loc->val == val
	      || operand_equal_p (loc->val, val, 0))
	  && (loc->expr == expr
	      || operand_equal_p (loc->expr, expr, 0)))
	{
	  /* If E is not a critical edge and DEST_BB
	     dominates the existing location for the assertion, move
	     the assertion up in the dominance tree by updating its
	     location information.  */
	  if ((e == NULL || !EDGE_CRITICAL_P (e))
	      && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
	    {
	      loc->bb = dest_bb;
	      loc->e = e;
	      loc->si = si;
	      return;
	    }
	}

      /* Update the last node of the list and move to the next one.  */
      last_loc = loc;
      loc = loc->next;
    }

  /* If we didn't find an assertion already registered for
     NAME COMP_CODE VAL, add a new one at the end of the list of
     assertions associated with NAME.  */
  n = XNEW (struct assert_locus);
  n->bb = dest_bb;
  n->e = e;
  n->si = si;
  n->comp_code = comp_code;
  n->val = val;
  n->expr = expr;
  n->next = NULL;

  if (last_loc)
    last_loc->next = n;
  else
    asserts_for[SSA_NAME_VERSION (name)] = n;

  bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
}

/* Finish found ASSERTS for E and register them at GSI.  */

void
vrp_asserts::finish_register_edge_assert_for (edge e,
					      gimple_stmt_iterator gsi,
					      vec<assert_info> &asserts)
{
  for (unsigned i = 0; i < asserts.length (); ++i)
    /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
       reachable from E.  */
    if (live.live_on_edge_p (asserts[i].name, e))
      register_new_assert_for (asserts[i].name, asserts[i].expr,
			       asserts[i].comp_code, asserts[i].val,
			       NULL, e, gsi);
}

/* Determine whether the outgoing edges of BB should receive an
   ASSERT_EXPR for each of the operands of BB's LAST statement.
   The last statement of BB must be a COND_EXPR.

   If any of the sub-graphs rooted at BB have an interesting use of
   the predicate operands, an assert location node is added to the
   list of assertions for the corresponding operands.  */

void
vrp_asserts::find_conditional_asserts (basic_block bb, gcond *last)
{
  gimple_stmt_iterator bsi;
  tree op;
  edge_iterator ei;
  edge e;
  ssa_op_iter iter;

  bsi = gsi_for_stmt (last);

  /* Look for uses of the operands in each of the sub-graphs
     rooted at BB.  We need to check each of the outgoing edges
     separately, so that we know what kind of ASSERT_EXPR to
     insert.  */
  FOR_EACH_EDGE (e, ei, bb->succs)
    {
      if (e->dest == bb)
	continue;

      /* Register the necessary assertions for each operand in the
	 conditional predicate.  */
      auto_vec<assert_info, 8> asserts;
      FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
	register_edge_assert_for (op, e,
				  gimple_cond_code (last),
				  gimple_cond_lhs (last),
				  gimple_cond_rhs (last), asserts);
      finish_register_edge_assert_for (e, bsi, asserts);
    }
}

/* Compare two case labels sorting first by the destination bb index
   and then by the case value.  */

int
vrp_asserts::compare_case_labels (const void *p1, const void *p2)
{
  const struct case_info *ci1 = (const struct case_info *) p1;
  const struct case_info *ci2 = (const struct case_info *) p2;
  int idx1 = ci1->bb->index;
  int idx2 = ci2->bb->index;

  if (idx1 < idx2)
    return -1;
  else if (idx1 == idx2)
    {
      /* Make sure the default label is first in a group.  */
      if (!CASE_LOW (ci1->expr))
	return -1;
      else if (!CASE_LOW (ci2->expr))
	return 1;
      else
	return tree_int_cst_compare (CASE_LOW (ci1->expr),
				     CASE_LOW (ci2->expr));
    }
  else
    return 1;
}

/* Determine whether the outgoing edges of BB should receive an
   ASSERT_EXPR for each of the operands of BB's LAST statement.
   The last statement of BB must be a SWITCH_EXPR.

   If any of the sub-graphs rooted at BB have an interesting use of
   the predicate operands, an assert location node is added to the
   list of assertions for the corresponding operands.  */

void
vrp_asserts::find_switch_asserts (basic_block bb, gswitch *last)
{
  gimple_stmt_iterator bsi;
  tree op;
  edge e;
  struct case_info *ci;
  size_t n = gimple_switch_num_labels (last);
#if GCC_VERSION >= 4000
  unsigned int idx;
#else
  /* Work around GCC 3.4 bug (PR 37086).  */
  volatile unsigned int idx;
#endif

  bsi = gsi_for_stmt (last);
  op = gimple_switch_index (last);
  if (TREE_CODE (op) != SSA_NAME)
    return;

  /* Build a vector of case labels sorted by destination label.  */
  ci = XNEWVEC (struct case_info, n);
  for (idx = 0; idx < n; ++idx)
    {
      ci[idx].expr = gimple_switch_label (last, idx);
      ci[idx].bb = label_to_block (fun, CASE_LABEL (ci[idx].expr));
    }
  edge default_edge = find_edge (bb, ci[0].bb);
  qsort (ci, n, sizeof (struct case_info), compare_case_labels);

  for (idx = 0; idx < n; ++idx)
    {
      tree min, max;
      tree cl = ci[idx].expr;
      basic_block cbb = ci[idx].bb;

      min = CASE_LOW (cl);
      max = CASE_HIGH (cl);

      /* If there are multiple case labels with the same destination
	 we need to combine them to a single value range for the edge.  */
      if (idx + 1 < n && cbb == ci[idx + 1].bb)
	{
	  /* Skip labels until the last of the group.  */
	  do {
	    ++idx;
	  } while (idx < n && cbb == ci[idx].bb);
	  --idx;

	  /* Pick up the maximum of the case label range.  */
	  if (CASE_HIGH (ci[idx].expr))
	    max = CASE_HIGH (ci[idx].expr);
	  else
	    max = CASE_LOW (ci[idx].expr);
	}

      /* Can't extract a useful assertion out of a range that includes the
	 default label.  */
      if (min == NULL_TREE)
	continue;

      /* Find the edge to register the assert expr on.  */
      e = find_edge (bb, cbb);

      /* Register the necessary assertions for the operand in the
	 SWITCH_EXPR.  */
      auto_vec<assert_info, 8> asserts;
      register_edge_assert_for (op, e,
				max ? GE_EXPR : EQ_EXPR,
				op, fold_convert (TREE_TYPE (op), min),
				asserts);
      if (max)
	register_edge_assert_for (op, e, LE_EXPR, op,
				  fold_convert (TREE_TYPE (op), max),
				  asserts);
      finish_register_edge_assert_for (e, bsi, asserts);
    }

  XDELETEVEC (ci);

  if (!live.live_on_edge_p (op, default_edge))
    return;

  /* Now register along the default label assertions that correspond to the
     anti-range of each label.  */
  int insertion_limit = param_max_vrp_switch_assertions;
  if (insertion_limit == 0)
    return;

  /* We can't do this if the default case shares a label with another case.  */
  tree default_cl = gimple_switch_default_label (last);
  for (idx = 1; idx < n; idx++)
    {
      tree min, max;
      tree cl = gimple_switch_label (last, idx);
      if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
	continue;

      min = CASE_LOW (cl);
      max = CASE_HIGH (cl);

      /* Combine contiguous case ranges to reduce the number of assertions
	 to insert.  */
      for (idx = idx + 1; idx < n; idx++)
	{
	  tree next_min, next_max;
	  tree next_cl = gimple_switch_label (last, idx);
	  if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
	    break;

	  next_min = CASE_LOW (next_cl);
	  next_max = CASE_HIGH (next_cl);

	  wide_int difference = (wi::to_wide (next_min)
				 - wi::to_wide (max ? max : min));
	  if (wi::eq_p (difference, 1))
	    max = next_max ? next_max : next_min;
	  else
	    break;
	}
      idx--;

      if (max == NULL_TREE)
	{
	  /* Register the assertion OP != MIN.  */
	  auto_vec<assert_info, 8> asserts;
	  min = fold_convert (TREE_TYPE (op), min);
	  register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
				    asserts);
	  finish_register_edge_assert_for (default_edge, bsi, asserts);
	}
      else
	{
	  /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
	     which will give OP the anti-range ~[MIN,MAX].  */
	  tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
	  min = fold_convert (TREE_TYPE (uop), min);
	  max = fold_convert (TREE_TYPE (uop), max);

	  tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
	  tree rhs = int_const_binop (MINUS_EXPR, max, min);
	  register_new_assert_for (op, lhs, GT_EXPR, rhs,
				   NULL, default_edge, bsi);
	}

      if (--insertion_limit == 0)
	break;
    }
}

/* Traverse all the statements in block BB looking for statements that
   may generate useful assertions for the SSA names in their operand.
   If a statement produces a useful assertion A for name N_i, then the
   list of assertions already generated for N_i is scanned to
   determine if A is actually needed.

   If N_i already had the assertion A at a location dominating the
   current location, then nothing needs to be done.  Otherwise, the
   new location for A is recorded instead.

   1- For every statement S in BB, all the variables used by S are
      added to bitmap FOUND_IN_SUBGRAPH.

   2- If statement S uses an operand N in a way that exposes a known
      value range for N, then if N was not already generated by an
      ASSERT_EXPR, create a new assert location for N.  For instance,
      if N is a pointer and the statement dereferences it, we can
      assume that N is not NULL.

   3- COND_EXPRs are a special case of #2.  We can derive range
      information from the predicate but need to insert different
      ASSERT_EXPRs for each of the sub-graphs rooted at the
      conditional block.  If the last statement of BB is a conditional
      expression of the form 'X op Y', then

      a) Remove X and Y from the set FOUND_IN_SUBGRAPH.

      b) If the conditional is the only entry point to the sub-graph
	 corresponding to the THEN_CLAUSE, recurse into it.  On
	 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
	 an ASSERT_EXPR is added for the corresponding variable.

      c) Repeat step (b) on the ELSE_CLAUSE.

      d) Mark X and Y in FOUND_IN_SUBGRAPH.

      For instance,

	    if (a == 9)
	      b = a;
	    else
	      b = c + 1;

      In this case, an assertion on the THEN clause is useful to
      determine that 'a' is always 9 on that edge.  However, an assertion
      on the ELSE clause would be unnecessary.

   4- If BB does not end in a conditional expression, then we recurse
      into BB's dominator children.

   At the end of the recursive traversal, every SSA name will have a
   list of locations where ASSERT_EXPRs should be added.  When a new
   location for name N is found, it is registered by calling
   register_new_assert_for.  That function keeps track of all the
   registered assertions to prevent adding unnecessary assertions.
   For instance, if a pointer P_4 is dereferenced more than once in a
   dominator tree, only the location dominating all the dereference of
   P_4 will receive an ASSERT_EXPR.  */

void
vrp_asserts::find_assert_locations_in_bb (basic_block bb)
{
  gimple *last;

  last = last_stmt (bb);

  /* If BB's last statement is a conditional statement involving integer
     operands, determine if we need to add ASSERT_EXPRs.  */
  if (last
      && gimple_code (last) == GIMPLE_COND
      && !fp_predicate (last)
      && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
    find_conditional_asserts (bb, as_a <gcond *> (last));

  /* If BB's last statement is a switch statement involving integer
     operands, determine if we need to add ASSERT_EXPRs.  */
  if (last
      && gimple_code (last) == GIMPLE_SWITCH
      && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
    find_switch_asserts (bb, as_a <gswitch *> (last));

  /* Traverse all the statements in BB marking used names and looking
     for statements that may infer assertions for their used operands.  */
  for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
       gsi_prev (&si))
    {
      gimple *stmt;
      tree op;
      ssa_op_iter i;

      stmt = gsi_stmt (si);

      if (is_gimple_debug (stmt))
	continue;

      /* See if we can derive an assertion for any of STMT's operands.  */
      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
	{
	  tree value;
	  enum tree_code comp_code;

	  /* If op is not live beyond this stmt, do not bother to insert
	     asserts for it.  */
	  if (!live.live_on_block_p (op, bb))
	    continue;

	  /* If OP is used in such a way that we can infer a value
	     range for it, and we don't find a previous assertion for
	     it, create a new assertion location node for OP.  */
	  if (infer_value_range (stmt, op, &comp_code, &value))
	    {
	      /* If we are able to infer a nonzero value range for OP,
		 then walk backwards through the use-def chain to see if OP
		 was set via a typecast.

		 If so, then we can also infer a nonzero value range
		 for the operand of the NOP_EXPR.  */
	      if (comp_code == NE_EXPR && integer_zerop (value))
		{
		  tree t = op;
		  gimple *def_stmt = SSA_NAME_DEF_STMT (t);

		  while (is_gimple_assign (def_stmt)
			 && CONVERT_EXPR_CODE_P
			     (gimple_assign_rhs_code (def_stmt))
			 && TREE_CODE
			     (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
			 && POINTER_TYPE_P
			     (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
		    {
		      t = gimple_assign_rhs1 (def_stmt);
		      def_stmt = SSA_NAME_DEF_STMT (t);

		      /* Note we want to register the assert for the
			 operand of the NOP_EXPR after SI, not after the
			 conversion.  */
		      if (live.live_on_block_p (t, bb))
			register_new_assert_for (t, t, comp_code, value,
						 bb, NULL, si);
		    }
		}

	      register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
	    }
	}

      /* Update live.  */
      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
	live.set (op, bb);
      FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
	live.clear (op, bb);
    }

  /* Traverse all PHI nodes in BB, updating live.  */
  for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
       gsi_next (&si))
    {
      use_operand_p arg_p;
      ssa_op_iter i;
      gphi *phi = si.phi ();
      tree res = gimple_phi_result (phi);

      if (virtual_operand_p (res))
	continue;

      FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
	{
	  tree arg = USE_FROM_PTR (arg_p);
	  if (TREE_CODE (arg) == SSA_NAME)
	    live.set (arg, bb);
	}

      live.clear (res, bb);
    }
}

/* Do an RPO walk over the function computing SSA name liveness
   on-the-fly and deciding on assert expressions to insert.  */

void
vrp_asserts::find_assert_locations (void)
{
  int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
  int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
  int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (fun));
  int rpo_cnt, i;

  rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
  for (i = 0; i < rpo_cnt; ++i)
    bb_rpo[rpo[i]] = i;

  /* Pre-seed loop latch liveness from loop header PHI nodes.  Due to
     the order we compute liveness and insert asserts we otherwise
     fail to insert asserts into the loop latch.  */
  loop_p loop;
  FOR_EACH_LOOP (loop, 0)
    {
      i = loop->latch->index;
      unsigned int j = single_succ_edge (loop->latch)->dest_idx;
      for (gphi_iterator gsi = gsi_start_phis (loop->header);
	   !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gphi *phi = gsi.phi ();
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    continue;
	  tree arg = gimple_phi_arg_def (phi, j);
	  if (TREE_CODE (arg) == SSA_NAME)
	    live.set (arg, loop->latch);
	}
    }

  for (i = rpo_cnt - 1; i >= 0; --i)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (fun, rpo[i]);
      edge e;
      edge_iterator ei;

      /* Process BB and update the live information with uses in
         this block.  */
      find_assert_locations_in_bb (bb);

      /* Merge liveness into the predecessor blocks and free it.  */
      if (!live.block_has_live_names_p (bb))
	{
	  int pred_rpo = i;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    {
	      int pred = e->src->index;
	      if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
		continue;

	      live.merge (e->src, bb);

	      if (bb_rpo[pred] < pred_rpo)
		pred_rpo = bb_rpo[pred];
	    }

	  /* Record the RPO number of the last visited block that needs
	     live information from this block.  */
	  last_rpo[rpo[i]] = pred_rpo;
	}
      else
	live.clear_block (bb);

      /* We can free all successors live bitmaps if all their
         predecessors have been visited already.  */
      FOR_EACH_EDGE (e, ei, bb->succs)
	if (last_rpo[e->dest->index] == i)
	  live.clear_block (e->dest);
    }

  XDELETEVEC (rpo);
  XDELETEVEC (bb_rpo);
  XDELETEVEC (last_rpo);
}

/* Create an ASSERT_EXPR for NAME and insert it in the location
   indicated by LOC.  Return true if we made any edge insertions.  */

bool
vrp_asserts::process_assert_insertions_for (tree name, assert_locus *loc)
{
  /* Build the comparison expression NAME_i COMP_CODE VAL.  */
  gimple *stmt;
  tree cond;
  gimple *assert_stmt;
  edge_iterator ei;
  edge e;

  /* If we have X <=> X do not insert an assert expr for that.  */
  if (loc->expr == loc->val)
    return false;

  cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
  assert_stmt = build_assert_expr_for (cond, name);
  if (loc->e)
    {
      /* We have been asked to insert the assertion on an edge.  This
	 is used only by COND_EXPR and SWITCH_EXPR assertions.  */
      gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
			   || (gimple_code (gsi_stmt (loc->si))
			       == GIMPLE_SWITCH));

      gsi_insert_on_edge (loc->e, assert_stmt);
      return true;
    }

  /* If the stmt iterator points at the end then this is an insertion
     at the beginning of a block.  */
  if (gsi_end_p (loc->si))
    {
      gimple_stmt_iterator si = gsi_after_labels (loc->bb);
      gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
      return false;

    }
  /* Otherwise, we can insert right after LOC->SI iff the
     statement must not be the last statement in the block.  */
  stmt = gsi_stmt (loc->si);
  if (!stmt_ends_bb_p (stmt))
    {
      gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
      return false;
    }

  /* If STMT must be the last statement in BB, we can only insert new
     assertions on the non-abnormal edge out of BB.  Note that since
     STMT is not control flow, there may only be one non-abnormal/eh edge
     out of BB.  */
  FOR_EACH_EDGE (e, ei, loc->bb->succs)
    if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
      {
	gsi_insert_on_edge (e, assert_stmt);
	return true;
      }

  gcc_unreachable ();
}

/* Qsort helper for sorting assert locations.  If stable is true, don't
   use iterative_hash_expr because it can be unstable for -fcompare-debug,
   on the other side some pointers might be NULL.  */

template <bool stable>
int
vrp_asserts::compare_assert_loc (const void *pa, const void *pb)
{
  assert_locus * const a = *(assert_locus * const *)pa;
  assert_locus * const b = *(assert_locus * const *)pb;

  /* If stable, some asserts might be optimized away already, sort
     them last.  */
  if (stable)
    {
      if (a == NULL)
	return b != NULL;
      else if (b == NULL)
	return -1;
    }

  if (a->e == NULL && b->e != NULL)
    return 1;
  else if (a->e != NULL && b->e == NULL)
    return -1;

  /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
     no need to test both a->e and b->e.  */

  /* Sort after destination index.  */
  if (a->e == NULL)
    ;
  else if (a->e->dest->index > b->e->dest->index)
    return 1;
  else if (a->e->dest->index < b->e->dest->index)
    return -1;

  /* Sort after comp_code.  */
  if (a->comp_code > b->comp_code)
    return 1;
  else if (a->comp_code < b->comp_code)
    return -1;

  hashval_t ha, hb;

  /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
     uses DECL_UID of the VAR_DECL, so sorting might differ between
     -g and -g0.  When doing the removal of redundant assert exprs
     and commonization to successors, this does not matter, but for
     the final sort needs to be stable.  */
  if (stable)
    {
      ha = 0;
      hb = 0;
    }
  else
    {
      ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
      hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
    }

  /* Break the tie using hashing and source/bb index.  */
  if (ha == hb)
    return (a->e != NULL
	    ? a->e->src->index - b->e->src->index
	    : a->bb->index - b->bb->index);
  return ha > hb ? 1 : -1;
}

/* Process all the insertions registered for every name N_i registered
   in NEED_ASSERT_FOR.  The list of assertions to be inserted are
   found in ASSERTS_FOR[i].  */

void
vrp_asserts::process_assert_insertions ()
{
  unsigned i;
  bitmap_iterator bi;
  bool update_edges_p = false;
  int num_asserts = 0;

  if (dump_file && (dump_flags & TDF_DETAILS))
    dump (dump_file);

  EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
    {
      assert_locus *loc = asserts_for[i];
      gcc_assert (loc);

      auto_vec<assert_locus *, 16> asserts;
      for (; loc; loc = loc->next)
	asserts.safe_push (loc);
      asserts.qsort (compare_assert_loc<false>);

      /* Push down common asserts to successors and remove redundant ones.  */
      unsigned ecnt = 0;
      assert_locus *common = NULL;
      unsigned commonj = 0;
      for (unsigned j = 0; j < asserts.length (); ++j)
	{
	  loc = asserts[j];
	  if (! loc->e)
	    common = NULL;
	  else if (! common
		   || loc->e->dest != common->e->dest
		   || loc->comp_code != common->comp_code
		   || ! operand_equal_p (loc->val, common->val, 0)
		   || ! operand_equal_p (loc->expr, common->expr, 0))
	    {
	      commonj = j;
	      common = loc;
	      ecnt = 1;
	    }
	  else if (loc->e == asserts[j-1]->e)
	    {
	      /* Remove duplicate asserts.  */
	      if (commonj == j - 1)
		{
		  commonj = j;
		  common = loc;
		}
	      free (asserts[j-1]);
	      asserts[j-1] = NULL;
	    }
	  else
	    {
	      ecnt++;
	      if (EDGE_COUNT (common->e->dest->preds) == ecnt)
		{
		  /* We have the same assertion on all incoming edges of a BB.
		     Insert it at the beginning of that block.  */
		  loc->bb = loc->e->dest;
		  loc->e = NULL;
		  loc->si = gsi_none ();
		  common = NULL;
		  /* Clear asserts commoned.  */
		  for (; commonj != j; ++commonj)
		    if (asserts[commonj])
		      {
			free (asserts[commonj]);
			asserts[commonj] = NULL;
		      }
		}
	    }
	}

      /* The asserts vector sorting above might be unstable for
	 -fcompare-debug, sort again to ensure a stable sort.  */
      asserts.qsort (compare_assert_loc<true>);
      for (unsigned j = 0; j < asserts.length (); ++j)
	{
	  loc = asserts[j];
	  if (! loc)
	    break;
	  update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
	  num_asserts++;
	  free (loc);
	}
    }

  if (update_edges_p)
    gsi_commit_edge_inserts ();

  statistics_counter_event (fun, "Number of ASSERT_EXPR expressions inserted",
			    num_asserts);
}

/* Traverse the flowgraph looking for conditional jumps to insert range
   expressions.  These range expressions are meant to provide information
   to optimizations that need to reason in terms of value ranges.  They
   will not be expanded into RTL.  For instance, given:

   x = ...
   y = ...
   if (x < y)
     y = x - 2;
   else
     x = y + 3;

   this pass will transform the code into:

   x = ...
   y = ...
   if (x < y)
    {
      x = ASSERT_EXPR <x, x < y>
      y = x - 2
    }
   else
    {
      y = ASSERT_EXPR <y, x >= y>
      x = y + 3
    }

   The idea is that once copy and constant propagation have run, other
   optimizations will be able to determine what ranges of values can 'x'
   take in different paths of the code, simply by checking the reaching
   definition of 'x'.  */

void
vrp_asserts::insert_range_assertions (void)
{
  need_assert_for = BITMAP_ALLOC (NULL);
  asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);

  calculate_dominance_info (CDI_DOMINATORS);

  find_assert_locations ();
  if (!bitmap_empty_p (need_assert_for))
    {
      process_assert_insertions ();
      update_ssa (TODO_update_ssa_no_phi);
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
      dump_function_to_file (current_function_decl, dump_file, dump_flags);
    }

  free (asserts_for);
  BITMAP_FREE (need_assert_for);
}

/* Return true if all imm uses of VAR are either in STMT, or
   feed (optionally through a chain of single imm uses) GIMPLE_COND
   in basic block COND_BB.  */

bool
vrp_asserts::all_imm_uses_in_stmt_or_feed_cond (tree var,
						gimple *stmt,
						basic_block cond_bb)
{
  use_operand_p use_p, use2_p;
  imm_use_iterator iter;

  FOR_EACH_IMM_USE_FAST (use_p, iter, var)
    if (USE_STMT (use_p) != stmt)
      {
	gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
	if (is_gimple_debug (use_stmt))
	  continue;
	while (is_gimple_assign (use_stmt)
	       && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
	       && single_imm_use (gimple_assign_lhs (use_stmt),
				  &use2_p, &use_stmt2))
	  use_stmt = use_stmt2;
	if (gimple_code (use_stmt) != GIMPLE_COND
	    || gimple_bb (use_stmt) != cond_bb)
	  return false;
      }
  return true;
}

/* Convert range assertion expressions into the implied copies and
   copy propagate away the copies.  Doing the trivial copy propagation
   here avoids the need to run the full copy propagation pass after
   VRP.

   FIXME, this will eventually lead to copy propagation removing the
   names that had useful range information attached to them.  For
   instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
   then N_i will have the range [3, +INF].

   However, by converting the assertion into the implied copy
   operation N_i = N_j, we will then copy-propagate N_j into the uses
   of N_i and lose the range information.  We may want to hold on to
   ASSERT_EXPRs a little while longer as the ranges could be used in
   things like jump threading.

   The problem with keeping ASSERT_EXPRs around is that passes after
   VRP need to handle them appropriately.

   Another approach would be to make the range information a first
   class property of the SSA_NAME so that it can be queried from
   any pass.  This is made somewhat more complex by the need for
   multiple ranges to be associated with one SSA_NAME.  */

void
vrp_asserts::remove_range_assertions ()
{
  basic_block bb;
  gimple_stmt_iterator si;
  /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
     a basic block preceeded by GIMPLE_COND branching to it and
     __builtin_trap, -1 if not yet checked, 0 otherwise.  */
  int is_unreachable;

  /* Note that the BSI iterator bump happens at the bottom of the
     loop and no bump is necessary if we're removing the statement
     referenced by the current BSI.  */
  FOR_EACH_BB_FN (bb, fun)
    for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
      {
	gimple *stmt = gsi_stmt (si);

	if (is_gimple_assign (stmt)
	    && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
	  {
	    tree lhs = gimple_assign_lhs (stmt);
	    tree rhs = gimple_assign_rhs1 (stmt);
	    tree var;

	    var = ASSERT_EXPR_VAR (rhs);

	    if (TREE_CODE (var) == SSA_NAME
		&& !POINTER_TYPE_P (TREE_TYPE (lhs))
		&& SSA_NAME_RANGE_INFO (lhs))
	      {
		if (is_unreachable == -1)
		  {
		    is_unreachable = 0;
		    if (single_pred_p (bb)
			&& assert_unreachable_fallthru_edge_p
						    (single_pred_edge (bb)))
		      is_unreachable = 1;
		  }
		/* Handle
		   if (x_7 >= 10 && x_7 < 20)
		     __builtin_unreachable ();
		   x_8 = ASSERT_EXPR <x_7, ...>;
		   if the only uses of x_7 are in the ASSERT_EXPR and
		   in the condition.  In that case, we can copy the
		   range info from x_8 computed in this pass also
		   for x_7.  */
		if (is_unreachable
		    && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
							  single_pred (bb)))
		  {
		    set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
				    SSA_NAME_RANGE_INFO (lhs)->get_min (),
				    SSA_NAME_RANGE_INFO (lhs)->get_max ());
		    maybe_set_nonzero_bits (single_pred_edge (bb), var);
		  }
	      }

	    /* Propagate the RHS into every use of the LHS.  For SSA names
	       also propagate abnormals as it merely restores the original
	       IL in this case (an replace_uses_by would assert).  */
	    if (TREE_CODE (var) == SSA_NAME)
	      {
		imm_use_iterator iter;
		use_operand_p use_p;
		gimple *use_stmt;
		FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
		  FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
		    SET_USE (use_p, var);
	      }
	    else
	      replace_uses_by (lhs, var);

	    /* And finally, remove the copy, it is not needed.  */
	    gsi_remove (&si, true);
	    release_defs (stmt);
	  }
	else
	  {
	    if (!is_gimple_debug (gsi_stmt (si)))
	      is_unreachable = 0;
	    gsi_next (&si);
	  }
      }
}

class vrp_prop : public ssa_propagation_engine
{
public:
  vrp_prop (vr_values *v)
    : ssa_propagation_engine (),
      m_vr_values (v) { }

  void initialize (struct function *);
  void finalize ();

private:
  enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
  enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;

  struct function *fun;
  vr_values *m_vr_values;
};

/* Initialization required by ssa_propagate engine.  */

void
vrp_prop::initialize (struct function *fn)
{
  basic_block bb;
  fun = fn;

  FOR_EACH_BB_FN (bb, fun)
    {
      for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
	   gsi_next (&si))
	{
	  gphi *phi = si.phi ();
	  if (!stmt_interesting_for_vrp (phi))
	    {
	      tree lhs = PHI_RESULT (phi);
	      m_vr_values->set_def_to_varying (lhs);
	      prop_set_simulate_again (phi, false);
	    }
	  else
	    prop_set_simulate_again (phi, true);
	}

      for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
	   gsi_next (&si))
        {
	  gimple *stmt = gsi_stmt (si);

 	  /* If the statement is a control insn, then we do not
 	     want to avoid simulating the statement once.  Failure
 	     to do so means that those edges will never get added.  */
	  if (stmt_ends_bb_p (stmt))
	    prop_set_simulate_again (stmt, true);
	  else if (!stmt_interesting_for_vrp (stmt))
	    {
	      m_vr_values->set_defs_to_varying (stmt);
	      prop_set_simulate_again (stmt, false);
	    }
	  else
	    prop_set_simulate_again (stmt, true);
	}
    }
}

/* Evaluate statement STMT.  If the statement produces a useful range,
   return SSA_PROP_INTERESTING and record the SSA name with the
   interesting range into *OUTPUT_P.

   If STMT is a conditional branch and we can determine its truth
   value, the taken edge is recorded in *TAKEN_EDGE_P.

   If STMT produces a varying value, return SSA_PROP_VARYING.  */

enum ssa_prop_result
vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
{
  tree lhs = gimple_get_lhs (stmt);
  value_range_equiv vr;
  m_vr_values->extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);

  if (*output_p)
    {
      if (m_vr_values->update_value_range (*output_p, &vr))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Found new range for ");
	      print_generic_expr (dump_file, *output_p);
	      fprintf (dump_file, ": ");
	      dump_value_range (dump_file, &vr);
	      fprintf (dump_file, "\n");
	    }

	  if (vr.varying_p ())
	    return SSA_PROP_VARYING;

	  return SSA_PROP_INTERESTING;
	}
      return SSA_PROP_NOT_INTERESTING;
    }

  if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
    switch (gimple_call_internal_fn (stmt))
      {
      case IFN_ADD_OVERFLOW:
      case IFN_SUB_OVERFLOW:
      case IFN_MUL_OVERFLOW:
      case IFN_ATOMIC_COMPARE_EXCHANGE:
	/* These internal calls return _Complex integer type,
	   which VRP does not track, but the immediate uses
	   thereof might be interesting.  */
	if (lhs && TREE_CODE (lhs) == SSA_NAME)
	  {
	    imm_use_iterator iter;
	    use_operand_p use_p;
	    enum ssa_prop_result res = SSA_PROP_VARYING;

	    m_vr_values->set_def_to_varying (lhs);

	    FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
	      {
		gimple *use_stmt = USE_STMT (use_p);
		if (!is_gimple_assign (use_stmt))
		  continue;
		enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
		if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
		  continue;
		tree rhs1 = gimple_assign_rhs1 (use_stmt);
		tree use_lhs = gimple_assign_lhs (use_stmt);
		if (TREE_CODE (rhs1) != rhs_code
		    || TREE_OPERAND (rhs1, 0) != lhs
		    || TREE_CODE (use_lhs) != SSA_NAME
		    || !stmt_interesting_for_vrp (use_stmt)
		    || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
			|| !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
			|| !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
		  continue;

		/* If there is a change in the value range for any of the
		   REALPART_EXPR/IMAGPART_EXPR immediate uses, return
		   SSA_PROP_INTERESTING.  If there are any REALPART_EXPR
		   or IMAGPART_EXPR immediate uses, but none of them have
		   a change in their value ranges, return
		   SSA_PROP_NOT_INTERESTING.  If there are no
		   {REAL,IMAG}PART_EXPR uses at all,
		   return SSA_PROP_VARYING.  */
		value_range_equiv new_vr;
		m_vr_values->extract_range_basic (&new_vr, use_stmt);
		const value_range_equiv *old_vr
		  = m_vr_values->get_value_range (use_lhs);
		if (!old_vr->equal_p (new_vr, /*ignore_equivs=*/false))
		  res = SSA_PROP_INTERESTING;
		else
		  res = SSA_PROP_NOT_INTERESTING;
		new_vr.equiv_clear ();
		if (res == SSA_PROP_INTERESTING)
		  {
		    *output_p = lhs;
		    return res;
		  }
	      }

	    return res;
	  }
	break;
      default:
	break;
      }

  /* All other statements produce nothing of interest for VRP, so mark
     their outputs varying and prevent further simulation.  */
  m_vr_values->set_defs_to_varying (stmt);

  return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
}

/* Visit all arguments for PHI node PHI that flow through executable
   edges.  If a valid value range can be derived from all the incoming
   value ranges, set a new range for the LHS of PHI.  */

enum ssa_prop_result
vrp_prop::visit_phi (gphi *phi)
{
  tree lhs = PHI_RESULT (phi);
  value_range_equiv vr_result;
  m_vr_values->extract_range_from_phi_node (phi, &vr_result);
  if (m_vr_values->update_value_range (lhs, &vr_result))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Found new range for ");
	  print_generic_expr (dump_file, lhs);
	  fprintf (dump_file, ": ");
	  dump_value_range (dump_file, &vr_result);
	  fprintf (dump_file, "\n");
	}

      if (vr_result.varying_p ())
	return SSA_PROP_VARYING;

      return SSA_PROP_INTERESTING;
    }

  /* Nothing changed, don't add outgoing edges.  */
  return SSA_PROP_NOT_INTERESTING;
}

/* Traverse all the blocks folding conditionals with known ranges.  */

void
vrp_prop::finalize ()
{
  size_t i;

  /* We have completed propagating through the lattice.  */
  m_vr_values->set_lattice_propagation_complete ();

  if (dump_file)
    {
      fprintf (dump_file, "\nValue ranges after VRP:\n\n");
      m_vr_values->dump (dump_file);
      fprintf (dump_file, "\n");
    }

  /* Set value range to non pointer SSA_NAMEs.  */
  for (i = 0; i < num_ssa_names; i++)
    {
      tree name = ssa_name (i);
      if (!name)
	continue;

      const value_range_equiv *vr = m_vr_values->get_value_range (name);
      if (!name || vr->varying_p () || !vr->constant_p ())
	continue;

      if (POINTER_TYPE_P (TREE_TYPE (name))
	  && range_includes_zero_p (vr) == 0)
	set_ptr_nonnull (name);
      else if (!POINTER_TYPE_P (TREE_TYPE (name)))
	set_range_info (name, *vr);
    }
}

class vrp_folder : public substitute_and_fold_engine
{
 public:
  vrp_folder (vr_values *v)
    : substitute_and_fold_engine (/* Fold all stmts.  */ true),
      m_vr_values (v), simplifier (v)
    {  }

private:
  tree value_of_expr (tree name, gimple *stmt) OVERRIDE
    {
      return m_vr_values->value_of_expr (name, stmt);
    }
  bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
  bool fold_predicate_in (gimple_stmt_iterator *);

  vr_values *m_vr_values;
  simplify_using_ranges simplifier;
};

/* If the statement pointed by SI has a predicate whose value can be
   computed using the value range information computed by VRP, compute
   its value and return true.  Otherwise, return false.  */

bool
vrp_folder::fold_predicate_in (gimple_stmt_iterator *si)
{
  bool assignment_p = false;
  tree val;
  gimple *stmt = gsi_stmt (*si);

  if (is_gimple_assign (stmt)
      && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
    {
      assignment_p = true;
      val = simplifier.vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
						 gimple_assign_rhs1 (stmt),
						 gimple_assign_rhs2 (stmt),
						 stmt);
    }
  else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
    val = simplifier.vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
					       gimple_cond_lhs (cond_stmt),
					       gimple_cond_rhs (cond_stmt),
					       stmt);
  else
    return false;

  if (val)
    {
      if (assignment_p)
        val = fold_convert (gimple_expr_type (stmt), val);

      if (dump_file)
	{
	  fprintf (dump_file, "Folding predicate ");
	  print_gimple_expr (dump_file, stmt, 0);
	  fprintf (dump_file, " to ");
	  print_generic_expr (dump_file, val);
	  fprintf (dump_file, "\n");
	}

      if (is_gimple_assign (stmt))
	gimple_assign_set_rhs_from_tree (si, val);
      else
	{
	  gcc_assert (gimple_code (stmt) == GIMPLE_COND);
	  gcond *cond_stmt = as_a <gcond *> (stmt);
	  if (integer_zerop (val))
	    gimple_cond_make_false (cond_stmt);
	  else if (integer_onep (val))
	    gimple_cond_make_true (cond_stmt);
	  else
	    gcc_unreachable ();
	}

      return true;
    }

  return false;
}

/* Callback for substitute_and_fold folding the stmt at *SI.  */

bool
vrp_folder::fold_stmt (gimple_stmt_iterator *si)
{
  if (fold_predicate_in (si))
    return true;

  return simplifier.simplify (si);
}

class vrp_jump_threader_simplifier : public jump_threader_simplifier
{
public:
  vrp_jump_threader_simplifier (vr_values *v, avail_exprs_stack *avails)
    : jump_threader_simplifier (v, avails) {}

private:
  tree simplify (gimple *, gimple *, basic_block) OVERRIDE;
};

tree
vrp_jump_threader_simplifier::simplify (gimple *stmt,
					gimple *within_stmt,
					basic_block bb)
{
  /* First see if the conditional is in the hash table.  */
  tree cached_lhs = m_avail_exprs_stack->lookup_avail_expr (stmt, false, true);
  if (cached_lhs && is_gimple_min_invariant (cached_lhs))
    return cached_lhs;

  if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
    {
      tree op0 = gimple_cond_lhs (cond_stmt);
      op0 = lhs_of_dominating_assert (op0, bb, stmt);

      tree op1 = gimple_cond_rhs (cond_stmt);
      op1 = lhs_of_dominating_assert (op1, bb, stmt);

      simplify_using_ranges simplifier (m_vr_values);
      return simplifier.vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
						  op0, op1, within_stmt);
    }

  if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
    {
      tree op = gimple_switch_index (switch_stmt);
      if (TREE_CODE (op) != SSA_NAME)
	return NULL_TREE;

      op = lhs_of_dominating_assert (op, bb, stmt);

      const value_range_equiv *vr = m_vr_values->get_value_range (op);
      return find_case_label_range (switch_stmt, vr);
    }

  return jump_threader_simplifier::simplify (stmt, within_stmt, bb);
}

/* Blocks which have more than one predecessor and more than
   one successor present jump threading opportunities, i.e.,
   when the block is reached from a specific predecessor, we
   may be able to determine which of the outgoing edges will
   be traversed.  When this optimization applies, we are able
   to avoid conditionals at runtime and we may expose secondary
   optimization opportunities.

   This class is effectively a driver for the generic jump
   threading code.  It basically just presents the generic code
   with edges that may be suitable for jump threading.

   Unlike DOM, we do not iterate VRP if jump threading was successful.
   While iterating may expose new opportunities for VRP, it is expected
   those opportunities would be very limited and the compile time cost
   to expose those opportunities would be significant.

   As jump threading opportunities are discovered, they are registered
   for later realization.  */

class vrp_jump_threader : public dom_walker
{
public:
  vrp_jump_threader (function *, vr_values *);
  ~vrp_jump_threader ();

  void thread_jumps ()
  {
    walk (m_fun->cfg->x_entry_block_ptr);
  }

  void thread_through_all_blocks ()
  {
    // FIXME: Put this in the destructor?
    m_threader->thread_through_all_blocks (false);
  }

private:
  virtual edge before_dom_children (basic_block);
  virtual void after_dom_children (basic_block);

  function *m_fun;
  vr_values *m_vr_values;
  const_and_copies *m_const_and_copies;
  avail_exprs_stack *m_avail_exprs_stack;
  hash_table<expr_elt_hasher> *m_avail_exprs;
  vrp_jump_threader_simplifier *m_simplifier;
  jump_threader *m_threader;
};

vrp_jump_threader::vrp_jump_threader (struct function *fun, vr_values *v)
  : dom_walker (CDI_DOMINATORS, REACHABLE_BLOCKS)
{
  /* Ugh.  When substituting values earlier in this pass we can wipe
     the dominance information.  So rebuild the dominator information
     as we need it within the jump threading code.  */
  calculate_dominance_info (CDI_DOMINATORS);

  /* We do not allow VRP information to be used for jump threading
     across a back edge in the CFG.  Otherwise it becomes too
     difficult to avoid eliminating loop exit tests.  Of course
     EDGE_DFS_BACK is not accurate at this time so we have to
     recompute it.  */
  mark_dfs_back_edges ();

  /* Allocate our unwinder stack to unwind any temporary equivalences
     that might be recorded.  */
  m_const_and_copies = new const_and_copies ();

  m_fun = fun;
  m_vr_values = v;
  m_avail_exprs = new hash_table<expr_elt_hasher> (1024);
  m_avail_exprs_stack = new avail_exprs_stack (m_avail_exprs);

  m_simplifier = new vrp_jump_threader_simplifier (m_vr_values,
						   m_avail_exprs_stack);
  m_threader = new jump_threader (m_const_and_copies, m_avail_exprs_stack,
				  m_simplifier);
}

vrp_jump_threader::~vrp_jump_threader ()
{
  /* We do not actually update the CFG or SSA graphs at this point as
     ASSERT_EXPRs are still in the IL and cfg cleanup code does not
     yet handle ASSERT_EXPRs gracefully.  */
  delete m_const_and_copies;
  delete m_avail_exprs;
  delete m_avail_exprs_stack;
  delete m_simplifier;
  delete m_threader;
}

/* Called before processing dominator children of BB.  We want to look
   at ASSERT_EXPRs and record information from them in the appropriate
   tables.

   We could look at other statements here.  It's not seen as likely
   to significantly increase the jump threads we discover.  */

edge
vrp_jump_threader::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator gsi;

  m_avail_exprs_stack->push_marker ();
  m_const_and_copies->push_marker ();
  for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      if (gimple_assign_single_p (stmt)
         && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
	{
	  tree rhs1 = gimple_assign_rhs1 (stmt);
	  tree cond = TREE_OPERAND (rhs1, 1);
	  tree inverted = invert_truthvalue (cond);
	  vec<cond_equivalence> p;
	  p.create (3);
	  record_conditions (&p, cond, inverted);
	  for (unsigned int i = 0; i < p.length (); i++)
	    m_avail_exprs_stack->record_cond (&p[i]);

	  tree lhs = gimple_assign_lhs (stmt);
	  m_const_and_copies->record_const_or_copy (lhs,
						    TREE_OPERAND (rhs1, 0));
	  p.release ();
	  continue;
	}
      break;
    }
  return NULL;
}

/* Called after processing dominator children of BB.  This is where we
   actually call into the threader.  */
void
vrp_jump_threader::after_dom_children (basic_block bb)
{
  m_threader->thread_outgoing_edges (bb);
  m_avail_exprs_stack->pop_to_marker ();
  m_const_and_copies->pop_to_marker ();
}

/* STMT is a conditional at the end of a basic block.

   If the conditional is of the form SSA_NAME op constant and the SSA_NAME
   was set via a type conversion, try to replace the SSA_NAME with the RHS
   of the type conversion.  Doing so makes the conversion dead which helps
   subsequent passes.  */

static void
vrp_simplify_cond_using_ranges (vr_values *query, gcond *stmt)
{
  tree op0 = gimple_cond_lhs (stmt);
  tree op1 = gimple_cond_rhs (stmt);

  /* If we have a comparison of an SSA_NAME (OP0) against a constant,
     see if OP0 was set by a type conversion where the source of
     the conversion is another SSA_NAME with a range that fits
     into the range of OP0's type.

     If so, the conversion is redundant as the earlier SSA_NAME can be
     used for the comparison directly if we just massage the constant in the
     comparison.  */
  if (TREE_CODE (op0) == SSA_NAME
      && TREE_CODE (op1) == INTEGER_CST)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
      tree innerop;

      if (!is_gimple_assign (def_stmt))
	return;

      switch (gimple_assign_rhs_code (def_stmt))
	{
	CASE_CONVERT:
	  innerop = gimple_assign_rhs1 (def_stmt);
	  break;
	case VIEW_CONVERT_EXPR:
	  innerop = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
	  if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop)))
	    return;
	  break;
	default:
	  return;
	}

      if (TREE_CODE (innerop) == SSA_NAME
	  && !POINTER_TYPE_P (TREE_TYPE (innerop))
	  && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
	  && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
	{
	  const value_range *vr = query->get_value_range (innerop);

	  if (range_int_cst_p (vr)
	      && range_fits_type_p (vr,
				    TYPE_PRECISION (TREE_TYPE (op0)),
				    TYPE_SIGN (TREE_TYPE (op0)))
	      && int_fits_type_p (op1, TREE_TYPE (innerop)))
	    {
	      tree newconst = fold_convert (TREE_TYPE (innerop), op1);
	      gimple_cond_set_lhs (stmt, innerop);
	      gimple_cond_set_rhs (stmt, newconst);
	      update_stmt (stmt);
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Folded into: ");
		  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
		  fprintf (dump_file, "\n");
		}
	    }
	}
    }
}

/* Main entry point to VRP (Value Range Propagation).  This pass is
   loosely based on J. R. C. Patterson, ``Accurate Static Branch
   Prediction by Value Range Propagation,'' in SIGPLAN Conference on
   Programming Language Design and Implementation, pp. 67-78, 1995.
   Also available at http://citeseer.ist.psu.edu/patterson95accurate.html

   This is essentially an SSA-CCP pass modified to deal with ranges
   instead of constants.

   While propagating ranges, we may find that two or more SSA name
   have equivalent, though distinct ranges.  For instance,

     1	x_9 = p_3->a;
     2	p_4 = ASSERT_EXPR <p_3, p_3 != 0>
     3	if (p_4 == q_2)
     4	  p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
     5	endif
     6	if (q_2)

   In the code above, pointer p_5 has range [q_2, q_2], but from the
   code we can also determine that p_5 cannot be NULL and, if q_2 had
   a non-varying range, p_5's range should also be compatible with it.

   These equivalences are created by two expressions: ASSERT_EXPR and
   copy operations.  Since p_5 is an assertion on p_4, and p_4 was the
   result of another assertion, then we can use the fact that p_5 and
   p_4 are equivalent when evaluating p_5's range.

   Together with value ranges, we also propagate these equivalences
   between names so that we can take advantage of information from
   multiple ranges when doing final replacement.  Note that this
   equivalency relation is transitive but not symmetric.

   In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
   cannot assert that q_2 is equivalent to p_5 because q_2 may be used
   in contexts where that assertion does not hold (e.g., in line 6).

   TODO, the main difference between this pass and Patterson's is that
   we do not propagate edge probabilities.  We only compute whether
   edges can be taken or not.  That is, instead of having a spectrum
   of jump probabilities between 0 and 1, we only deal with 0, 1 and
   DON'T KNOW.  In the future, it may be worthwhile to propagate
   probabilities to aid branch prediction.  */

static unsigned int
execute_vrp (struct function *fun, bool warn_array_bounds_p)
{
  loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
  rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
  scev_initialize ();

  /* ???  This ends up using stale EDGE_DFS_BACK for liveness computation.
     Inserting assertions may split edges which will invalidate
     EDGE_DFS_BACK.  */
  vrp_asserts assert_engine (fun);
  assert_engine.insert_range_assertions ();

  /* For visiting PHI nodes we need EDGE_DFS_BACK computed.  */
  mark_dfs_back_edges ();

  vr_values vrp_vr_values;

  class vrp_prop vrp_prop (&vrp_vr_values);
  vrp_prop.initialize (fun);
  vrp_prop.ssa_propagate ();

  /* Instantiate the folder here, so that edge cleanups happen at the
     end of this function.  */
  vrp_folder folder (&vrp_vr_values);
  vrp_prop.finalize ();

  /* If we're checking array refs, we want to merge information on
     the executability of each edge between vrp_folder and the
     check_array_bounds_dom_walker: each can clear the
     EDGE_EXECUTABLE flag on edges, in different ways.

     Hence, if we're going to call check_all_array_refs, set
     the flag on every edge now, rather than in
     check_array_bounds_dom_walker's ctor; vrp_folder may clear
     it from some edges.  */
  if (warn_array_bounds && warn_array_bounds_p)
    set_all_edges_as_executable (fun);

  folder.substitute_and_fold ();

  if (warn_array_bounds && warn_array_bounds_p)
    {
      array_bounds_checker array_checker (fun, &vrp_vr_values);
      array_checker.check ();
    }

  /* We must identify jump threading opportunities before we release
     the datastructures built by VRP.  */
  vrp_jump_threader threader (fun, &vrp_vr_values);
  threader.thread_jumps ();

  /* A comparison of an SSA_NAME against a constant where the SSA_NAME
     was set by a type conversion can often be rewritten to use the
     RHS of the type conversion.

     However, doing so inhibits jump threading through the comparison.
     So that transformation is not performed until after jump threading
     is complete.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, fun)
    {
      gimple *last = last_stmt (bb);
      if (last && gimple_code (last) == GIMPLE_COND)
	vrp_simplify_cond_using_ranges (&vrp_vr_values,
					as_a <gcond *> (last));
    }

  free_numbers_of_iterations_estimates (fun);

  /* ASSERT_EXPRs must be removed before finalizing jump threads
     as finalizing jump threads calls the CFG cleanup code which
     does not properly handle ASSERT_EXPRs.  */
  assert_engine.remove_range_assertions ();

  /* If we exposed any new variables, go ahead and put them into
     SSA form now, before we handle jump threading.  This simplifies
     interactions between rewriting of _DECL nodes into SSA form
     and rewriting SSA_NAME nodes into SSA form after block
     duplication and CFG manipulation.  */
  update_ssa (TODO_update_ssa);

  /* We identified all the jump threading opportunities earlier, but could
     not transform the CFG at that time.  This routine transforms the
     CFG and arranges for the dominator tree to be rebuilt if necessary.

     Note the SSA graph update will occur during the normal TODO
     processing by the pass manager.  */
  threader.thread_through_all_blocks ();

  scev_finalize ();
  loop_optimizer_finalize ();
  return 0;
}

namespace {

const pass_data pass_data_vrp =
{
  GIMPLE_PASS, /* type */
  "vrp", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_TREE_VRP, /* tv_id */
  PROP_ssa, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
};

class pass_vrp : public gimple_opt_pass
{
public:
  pass_vrp (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
  {}

  /* opt_pass methods: */
  opt_pass * clone () { return new pass_vrp (m_ctxt); }
  void set_pass_param (unsigned int n, bool param)
    {
      gcc_assert (n == 0);
      warn_array_bounds_p = param;
    }
  virtual bool gate (function *) { return flag_tree_vrp != 0; }
  virtual unsigned int execute (function *fun)
    { return execute_vrp (fun, warn_array_bounds_p); }

 private:
  bool warn_array_bounds_p;
}; // class pass_vrp

} // anon namespace

gimple_opt_pass *
make_pass_vrp (gcc::context *ctxt)
{
  return new pass_vrp (ctxt);
}