summaryrefslogtreecommitdiff
path: root/ext/hal/st/stm32cube/stm32f1xx/drivers/src/stm32f1xx_hal_rcc.c
blob: a2baa6175ecb2ed02ce1392b6cdd2261cd113df0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
/**
  ******************************************************************************
  * @file    stm32f1xx_hal_rcc.c
  * @author  MCD Application Team
  * @version V1.1.0
  * @date    14-April-2017
  * @brief   RCC HAL module driver.
  *          This file provides firmware functions to manage the following 
  *          functionalities of the Reset and Clock Control (RCC) peripheral:
  *           + Initialization and de-initialization functions
  *           + Peripheral Control functions
  *       
  @verbatim                
  ==============================================================================
                      ##### RCC specific features #####
  ==============================================================================
    [..]  
      After reset the device is running from Internal High Speed oscillator
      (HSI 8MHz) with Flash 0 wait state, Flash prefetch buffer is enabled, 
      and all peripherals are off except internal SRAM, Flash and JTAG.
      (+) There is no prescaler on High speed (AHB) and Low speed (APB) buses;
          all peripherals mapped on these buses are running at HSI speed.
      (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
      (+) All GPIOs are in input floating state, except the JTAG pins which
          are assigned to be used for debug purpose.
    [..] Once the device started from reset, the user application has to:
      (+) Configure the clock source to be used to drive the System clock
          (if the application needs higher frequency/performance)
      (+) Configure the System clock frequency and Flash settings  
      (+) Configure the AHB and APB buses prescalers
      (+) Enable the clock for the peripheral(s) to be used
      (+) Configure the clock source(s) for peripherals whose clocks are not
          derived from the System clock (I2S, RTC, ADC, USB OTG FS) 

                      ##### RCC Limitations #####
  ==============================================================================
    [..]  
      A delay between an RCC peripheral clock enable and the effective peripheral 
      enabling should be taken into account in order to manage the peripheral read/write 
      from/to registers.
      (+) This delay depends on the peripheral mapping.
        (++) AHB & APB peripherals, 1 dummy read is necessary

    [..]  
      Workarounds:
      (#) For AHB & APB peripherals, a dummy read to the peripheral register has been
          inserted in each __HAL_RCC_PPP_CLK_ENABLE() macro.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
*/
  
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"

/** @addtogroup STM32F1xx_HAL_Driver
  * @{
  */

/** @defgroup RCC RCC
* @brief RCC HAL module driver
  * @{
  */

#ifdef HAL_RCC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup RCC_Private_Constants RCC Private Constants
 * @{
 */
/**
  * @}
  */
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCC_Private_Macros RCC Private Macros
  * @{
  */

#define MCO1_CLK_ENABLE()     __HAL_RCC_GPIOA_CLK_ENABLE()
#define MCO1_GPIO_PORT        GPIOA
#define MCO1_PIN              GPIO_PIN_8

/**
  * @}
  */

/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_Private_Variables RCC Private Variables
  * @{
  */
/**
  * @}
  */

/* Private function prototypes -----------------------------------------------*/
static void RCC_Delay(uint32_t mdelay);

/* Exported functions --------------------------------------------------------*/

/** @defgroup RCC_Exported_Functions RCC Exported Functions
  * @{
  */

/** @defgroup RCC_Exported_Functions_Group1 Initialization and de-initialization functions 
  *  @brief    Initialization and Configuration functions 
  *
  @verbatim    
  ===============================================================================
           ##### Initialization and de-initialization functions #####
  ===============================================================================
    [..]
      This section provides functions allowing to configure the internal/external oscillators
      (HSE, HSI, LSE, LSI, PLL, CSS and MCO) and the System buses clocks (SYSCLK, AHB, APB1
      and APB2).

    [..] Internal/external clock and PLL configuration
      (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly or through
          the PLL as System clock source.
      (#) LSI (low-speed internal), ~40 KHz low consumption RC used as IWDG and/or RTC
          clock source.

      (#) HSE (high-speed external), 4 to 24 MHz (STM32F100xx) or 4 to 16 MHz (STM32F101x/STM32F102x/STM32F103x) or 3 to 25 MHz (STM32F105x/STM32F107x)  crystal oscillator used directly or
          through the PLL as System clock source. Can be used also as RTC clock source.

      (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.   

      (#) PLL (clocked by HSI or HSE), featuring different output clocks:
        (++) The first output is used to generate the high speed system clock (up to 72 MHz for STM32F10xxx or up to 24 MHz for STM32F100xx)
        (++) The second output is used to generate the clock for the USB OTG FS (48 MHz)

      (#) CSS (Clock security system), once enable using the macro __HAL_RCC_CSS_ENABLE()
          and if a HSE clock failure occurs(HSE used directly or through PLL as System 
          clock source), the System clocks automatically switched to HSI and an interrupt
          is generated if enabled. The interrupt is linked to the Cortex-M3 NMI 
          (Non-Maskable Interrupt) exception vector.   

      (#) MCO1 (microcontroller clock output), used to output SYSCLK, HSI,  
          HSE or PLL clock (divided by 2) on PA8 pin + PLL2CLK, PLL3CLK/2, PLL3CLK and XTI for STM32F105x/STM32F107x

    [..] System, AHB and APB buses clocks configuration
      (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
          HSE and PLL.
          The AHB clock (HCLK) is derived from System clock through configurable
          prescaler and used to clock the CPU, memory and peripherals mapped
          on AHB bus (DMA, GPIO...). APB1 (PCLK1) and APB2 (PCLK2) clocks are derived
          from AHB clock through configurable prescalers and used to clock
          the peripherals mapped on these buses. You can use
          "@ref HAL_RCC_GetSysClockFreq()" function to retrieve the frequencies of these clocks.

      -@- All the peripheral clocks are derived from the System clock (SYSCLK) except:
          (+@) RTC: RTC clock can be derived either from the LSI, LSE or HSE clock
              divided by 128. 
          (+@) USB OTG FS and RTC: USB OTG FS require a frequency equal to 48 MHz
              to work correctly. This clock is derived of the main PLL through PLL Multiplier.
          (+@) I2S interface on STM32F105x/STM32F107x can be derived from PLL3CLK
          (+@) IWDG clock which is always the LSI clock.

      (#) For STM32F10xxx, the maximum frequency of the SYSCLK and HCLK/PCLK2 is 72 MHz, PCLK1 36 MHz.
          For STM32F100xx, the maximum frequency of the SYSCLK and HCLK/PCLK1/PCLK2 is 24 MHz.  
          Depending on the SYSCLK frequency, the flash latency should be adapted accordingly.
  @endverbatim
  * @{
  */
  
/*
  Additional consideration on the SYSCLK based on Latency settings:
        +-----------------------------------------------+
        | Latency       | SYSCLK clock frequency (MHz)  |
        |---------------|-------------------------------|
        |0WS(1CPU cycle)|       0 < SYSCLK <= 24        |
        |---------------|-------------------------------|
        |1WS(2CPU cycle)|      24 < SYSCLK <= 48        |
        |---------------|-------------------------------|
        |2WS(3CPU cycle)|      48 < SYSCLK <= 72        |
        +-----------------------------------------------+
  */

/**
  * @brief  Resets the RCC clock configuration to the default reset state.
  * @note   The default reset state of the clock configuration is given below:
  *            - HSI ON and used as system clock source
  *            - HSE and PLL OFF
  *            - AHB, APB1 and APB2 prescaler set to 1.
  *            - CSS and MCO1 OFF
  *            - All interrupts disabled
  * @note   This function does not modify the configuration of the
  *            - Peripheral clocks
  *            - LSI, LSE and RTC clocks
  * @retval None
  */
void HAL_RCC_DeInit(void)
{
  /* Switch SYSCLK to HSI */
  CLEAR_BIT(RCC->CFGR, RCC_CFGR_SW);

  /* Reset HSEON, CSSON, & PLLON bits */
  CLEAR_BIT(RCC->CR, RCC_CR_HSEON | RCC_CR_CSSON | RCC_CR_PLLON);
  
  /* Reset HSEBYP bit */
  CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
  
  /* Reset CFGR register */
  CLEAR_REG(RCC->CFGR);
  
  /* Set HSITRIM bits to the reset value */
  MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, (0x10U << RCC_CR_HSITRIM_Pos));
  
#if defined(RCC_CFGR2_SUPPORT)
  /* Reset CFGR2 register */
  CLEAR_REG(RCC->CFGR2);

#endif /* RCC_CFGR2_SUPPORT */
  /* Disable all interrupts */
  CLEAR_REG(RCC->CIR);

  /* Update the SystemCoreClock global variable */
  SystemCoreClock = HSI_VALUE;
}

/**
  * @brief  Initializes the RCC Oscillators according to the specified parameters in the
  *         RCC_OscInitTypeDef.
  * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC Oscillators.
  * @note   The PLL is not disabled when used as system clock.
  * @note   The PLL is not disabled when USB OTG FS clock is enabled (specific to devices with USB FS)
  * @note   Transitions LSE Bypass to LSE On and LSE On to LSE Bypass are not
  *         supported by this macro. User should request a transition to LSE Off
  *         first and then LSE On or LSE Bypass.
  * @note   Transition HSE Bypass to HSE On and HSE On to HSE Bypass are not
  *         supported by this macro. User should request a transition to HSE Off
  *         first and then HSE On or HSE Bypass.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_OscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
   uint32_t tickstart = 0U;
  
  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);
  assert_param(IS_RCC_OSCILLATORTYPE(RCC_OscInitStruct->OscillatorType));
  
  /*------------------------------- HSE Configuration ------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSE) == RCC_OSCILLATORTYPE_HSE)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSE(RCC_OscInitStruct->HSEState));
        
    /* When the HSE is used as system clock or clock source for PLL in these cases it is not allowed to be disabled */
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSE) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE)))
    {
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET) && (RCC_OscInitStruct->HSEState == RCC_HSE_OFF))
      {
        return HAL_ERROR;
      }
    }
    else
    {
      /* Set the new HSE configuration ---------------------------------------*/
      __HAL_RCC_HSE_CONFIG(RCC_OscInitStruct->HSEState);
      

       /* Check the HSE State */
      if(RCC_OscInitStruct->HSEState != RCC_HSE_OFF)
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSE is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) != RESET)
        {
           if((HAL_GetTick() - tickstart ) > HSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*----------------------------- HSI Configuration --------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_HSI) == RCC_OSCILLATORTYPE_HSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_HSI(RCC_OscInitStruct->HSIState));
    assert_param(IS_RCC_CALIBRATION_VALUE(RCC_OscInitStruct->HSICalibrationValue));
    
    /* Check if HSI is used as system clock or as PLL source when PLL is selected as system clock */ 
    if((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_HSI) 
       || ((__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && (__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSI_DIV2)))
    {
      /* When HSI is used as system clock it will not disabled */
      if((__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET) && (RCC_OscInitStruct->HSIState != RCC_HSI_ON))
      {
        return HAL_ERROR;
      }
      /* Otherwise, just the calibration is allowed */
      else
      {
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
    }
    else
    {
      /* Check the HSI State */
      if(RCC_OscInitStruct->HSIState != RCC_HSI_OFF)
      {
       /* Enable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_ENABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
                
        /* Adjusts the Internal High Speed oscillator (HSI) calibration value.*/
        __HAL_RCC_HSI_CALIBRATIONVALUE_ADJUST(RCC_OscInitStruct->HSICalibrationValue);
      }
      else
      {
        /* Disable the Internal High Speed oscillator (HSI). */
        __HAL_RCC_HSI_DISABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till HSI is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > HSI_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }
  /*------------------------------ LSI Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSI) == RCC_OSCILLATORTYPE_LSI)
  {
    /* Check the parameters */
    assert_param(IS_RCC_LSI(RCC_OscInitStruct->LSIState));
    
    /* Check the LSI State */
    if(RCC_OscInitStruct->LSIState != RCC_LSI_OFF)
    {
      /* Enable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_ENABLE();
      
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
      /*  To have a fully stabilized clock in the specified range, a software delay of 1ms 
          should be added.*/
      RCC_Delay(1);
    }
    else
    {
      /* Disable the Internal Low Speed oscillator (LSI). */
      __HAL_RCC_LSI_DISABLE();
      
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSI is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSIRDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > LSI_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
  }
  /*------------------------------ LSE Configuration -------------------------*/ 
  if(((RCC_OscInitStruct->OscillatorType) & RCC_OSCILLATORTYPE_LSE) == RCC_OSCILLATORTYPE_LSE)
  {
    FlagStatus       pwrclkchanged = RESET;
    
    /* Check the parameters */
    assert_param(IS_RCC_LSE(RCC_OscInitStruct->LSEState));

    /* Update LSE configuration in Backup Domain control register    */
    /* Requires to enable write access to Backup Domain of necessary */
    if(__HAL_RCC_PWR_IS_CLK_DISABLED())
    {
      __HAL_RCC_PWR_CLK_ENABLE();
      pwrclkchanged = SET;
    }
    
    if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
    {
      /* Enable write access to Backup domain */
      SET_BIT(PWR->CR, PWR_CR_DBP);
      
      /* Wait for Backup domain Write protection disable */
      tickstart = HAL_GetTick();

      while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
      {
        if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }

    /* Set the new LSE configuration -----------------------------------------*/
    __HAL_RCC_LSE_CONFIG(RCC_OscInitStruct->LSEState);
    /* Check the LSE State */
    if(RCC_OscInitStruct->LSEState != RCC_LSE_OFF)
    {
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is ready */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      /* Get Start Tick */
      tickstart = HAL_GetTick();
      
      /* Wait till LSE is disabled */  
      while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) != RESET)
      {
        if((HAL_GetTick() - tickstart ) > RCC_LSE_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }

    /* Require to disable power clock if necessary */
    if(pwrclkchanged == SET)
    {
      __HAL_RCC_PWR_CLK_DISABLE();
    }
  }

#if defined(RCC_CR_PLL2ON)
  /*-------------------------------- PLL2 Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL2(RCC_OscInitStruct->PLL2.PLL2State));
  if ((RCC_OscInitStruct->PLL2.PLL2State) != RCC_PLL2_NONE)
  {
    /* This bit can not be cleared if the PLL2 clock is used indirectly as system 
      clock (i.e. it is used as PLL clock entry that is used as system clock). */
    if((__HAL_RCC_GET_PLL_OSCSOURCE() == RCC_PLLSOURCE_HSE) && \
        (__HAL_RCC_GET_SYSCLK_SOURCE() == RCC_SYSCLKSOURCE_STATUS_PLLCLK) && \
        ((READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC)) == RCC_CFGR2_PREDIV1SRC_PLL2))
    {
      return HAL_ERROR;
    }
    else
    {
      if((RCC_OscInitStruct->PLL2.PLL2State) == RCC_PLL2_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLL2_MUL(RCC_OscInitStruct->PLL2.PLL2MUL));
        assert_param(IS_RCC_HSE_PREDIV2(RCC_OscInitStruct->PLL2.HSEPrediv2Value));

        /* Prediv2 can be written only when the PLLI2S is disabled. */
        /* Return an error only if new value is different from the programmed value */
        if (HAL_IS_BIT_SET(RCC->CR,RCC_CR_PLL3ON) && \
          (__HAL_RCC_HSE_GET_PREDIV2() != RCC_OscInitStruct->PLL2.HSEPrediv2Value))
        {
          return HAL_ERROR;
        }
        
        /* Disable the main PLL2. */
        __HAL_RCC_PLL2_DISABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL2 is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY) != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
        
        /* Configure the HSE prediv2 factor --------------------------------*/
        __HAL_RCC_HSE_PREDIV2_CONFIG(RCC_OscInitStruct->PLL2.HSEPrediv2Value);

        /* Configure the main PLL2 multiplication factors. */
        __HAL_RCC_PLL2_CONFIG(RCC_OscInitStruct->PLL2.PLL2MUL);
        
        /* Enable the main PLL2. */
        __HAL_RCC_PLL2_ENABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL2 is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY)  == RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
       /* Set PREDIV1 source to HSE */
        CLEAR_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC);

        /* Disable the main PLL2. */
        __HAL_RCC_PLL2_DISABLE();
 
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL2 is disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLL2RDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL2_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
  }

#endif /* RCC_CR_PLL2ON */
  /*-------------------------------- PLL Configuration -----------------------*/
  /* Check the parameters */
  assert_param(IS_RCC_PLL(RCC_OscInitStruct->PLL.PLLState));
  if ((RCC_OscInitStruct->PLL.PLLState) != RCC_PLL_NONE)
  {
    /* Check if the PLL is used as system clock or not */
    if(__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
    { 
      if((RCC_OscInitStruct->PLL.PLLState) == RCC_PLL_ON)
      {
        /* Check the parameters */
        assert_param(IS_RCC_PLLSOURCE(RCC_OscInitStruct->PLL.PLLSource));
        assert_param(IS_RCC_PLL_MUL(RCC_OscInitStruct->PLL.PLLMUL));
  
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is disabled */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }

        /* Configure the HSE prediv factor --------------------------------*/
        /* It can be written only when the PLL is disabled. Not used in PLL source is different than HSE */
        if(RCC_OscInitStruct->PLL.PLLSource == RCC_PLLSOURCE_HSE)
        {
          /* Check the parameter */
          assert_param(IS_RCC_HSE_PREDIV(RCC_OscInitStruct->HSEPredivValue));
#if defined(RCC_CFGR2_PREDIV1SRC)
          assert_param(IS_RCC_PREDIV1_SOURCE(RCC_OscInitStruct->Prediv1Source));
          
          /* Set PREDIV1 source */
          SET_BIT(RCC->CFGR2, RCC_OscInitStruct->Prediv1Source);
#endif /* RCC_CFGR2_PREDIV1SRC */

          /* Set PREDIV1 Value */
          __HAL_RCC_HSE_PREDIV_CONFIG(RCC_OscInitStruct->HSEPredivValue);
        }

        /* Configure the main PLL clock source and multiplication factors. */
        __HAL_RCC_PLL_CONFIG(RCC_OscInitStruct->PLL.PLLSource,
                             RCC_OscInitStruct->PLL.PLLMUL);
        /* Enable the main PLL. */
        __HAL_RCC_PLL_ENABLE();
        
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is ready */
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  == RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
      else
      {
        /* Disable the main PLL. */
        __HAL_RCC_PLL_DISABLE();
 
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till PLL is disabled */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)  != RESET)
        {
          if((HAL_GetTick() - tickstart ) > PLL_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
    else
    {
      return HAL_ERROR;
    }
  }
  
  return HAL_OK;
}

/**
  * @brief  Initializes the CPU, AHB and APB buses clocks according to the specified 
  *         parameters in the RCC_ClkInitStruct.
  * @param  RCC_ClkInitStruct pointer to an RCC_OscInitTypeDef structure that
  *         contains the configuration information for the RCC peripheral.
  * @param  FLatency FLASH Latency                   
  *          The value of this parameter depend on device used within the same series
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency 
  *         and updated by @ref HAL_RCC_GetHCLKFreq() function called within this function
  *
  * @note   The HSI is used (enabled by hardware) as system clock source after
  *         start-up from Reset, wake-up from STOP and STANDBY mode, or in case
  *         of failure of the HSE used directly or indirectly as system clock
  *         (if the Clock Security System CSS is enabled).
  *           
  * @note   A switch from one clock source to another occurs only if the target
  *         clock source is ready (clock stable after start-up delay or PLL locked). 
  *         If a clock source which is not yet ready is selected, the switch will
  *         occur when the clock source will be ready. 
  *         You can use @ref HAL_RCC_GetClockConfig() function to know which clock is
  *         currently used as system clock source.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCC_ClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t FLatency)
{
  uint32_t tickstart = 0U;
  
  /* Check the parameters */
  assert_param(RCC_ClkInitStruct != NULL);
  assert_param(IS_RCC_CLOCKTYPE(RCC_ClkInitStruct->ClockType));
  assert_param(IS_FLASH_LATENCY(FLatency));

  /* To correctly read data from FLASH memory, the number of wait states (LATENCY) 
  must be correctly programmed according to the frequency of the CPU clock 
    (HCLK) of the device. */

#if defined(FLASH_ACR_LATENCY)
  /* Increasing the number of wait states because of higher CPU frequency */
  if(FLatency > (FLASH->ACR & FLASH_ACR_LATENCY))
  {    
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
    __HAL_FLASH_SET_LATENCY(FLatency);
    
    /* Check that the new number of wait states is taken into account to access the Flash
    memory by reading the FLASH_ACR register */
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
    {
      return HAL_ERROR;
    }
  }

#endif /* FLASH_ACR_LATENCY */
  /*-------------------------- HCLK Configuration --------------------------*/
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_HCLK) == RCC_CLOCKTYPE_HCLK)
  {
    assert_param(IS_RCC_HCLK(RCC_ClkInitStruct->AHBCLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, RCC_ClkInitStruct->AHBCLKDivider);
  }

  /*------------------------- SYSCLK Configuration ---------------------------*/ 
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_SYSCLK) == RCC_CLOCKTYPE_SYSCLK)
  {    
    assert_param(IS_RCC_SYSCLKSOURCE(RCC_ClkInitStruct->SYSCLKSource));
    
    /* HSE is selected as System Clock Source */
    if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
    {
      /* Check the HSE ready flag */  
      if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    /* PLL is selected as System Clock Source */
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
    {
      /* Check the PLL ready flag */  
      if(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    /* HSI is selected as System Clock Source */
    else
    {
      /* Check the HSI ready flag */  
      if(__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY) == RESET)
      {
        return HAL_ERROR;
      }
    }
    __HAL_RCC_SYSCLK_CONFIG(RCC_ClkInitStruct->SYSCLKSource);

    /* Get Start Tick */
    tickstart = HAL_GetTick();
    
    if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_HSE)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSE)
      {
        if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else if(RCC_ClkInitStruct->SYSCLKSource == RCC_SYSCLKSOURCE_PLLCLK)
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_PLLCLK)
      {
        if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    else
    {
      while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_SYSCLKSOURCE_STATUS_HSI)
      {
        if((HAL_GetTick() - tickstart ) > CLOCKSWITCH_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }      
  }    
#if defined(FLASH_ACR_LATENCY)
  /* Decreasing the number of wait states because of lower CPU frequency */
  if(FLatency < (FLASH->ACR & FLASH_ACR_LATENCY))
  {    
    /* Program the new number of wait states to the LATENCY bits in the FLASH_ACR register */
    __HAL_FLASH_SET_LATENCY(FLatency);
    
    /* Check that the new number of wait states is taken into account to access the Flash
    memory by reading the FLASH_ACR register */
    if((FLASH->ACR & FLASH_ACR_LATENCY) != FLatency)
    {
      return HAL_ERROR;
    }
  }    
#endif /* FLASH_ACR_LATENCY */

  /*-------------------------- PCLK1 Configuration ---------------------------*/ 
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK1) == RCC_CLOCKTYPE_PCLK1)
  {
    assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB1CLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, RCC_ClkInitStruct->APB1CLKDivider);
  }
  
  /*-------------------------- PCLK2 Configuration ---------------------------*/ 
  if(((RCC_ClkInitStruct->ClockType) & RCC_CLOCKTYPE_PCLK2) == RCC_CLOCKTYPE_PCLK2)
  {
    assert_param(IS_RCC_PCLK(RCC_ClkInitStruct->APB2CLKDivider));
    MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, ((RCC_ClkInitStruct->APB2CLKDivider) << 3));
  }
 
  /* Update the SystemCoreClock global variable */
  SystemCoreClock = HAL_RCC_GetSysClockFreq() >> AHBPrescTable[(RCC->CFGR & RCC_CFGR_HPRE)>> RCC_CFGR_HPRE_Pos];

  /* Configure the source of time base considering new system clocks settings*/
  HAL_InitTick (TICK_INT_PRIORITY);
  
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup RCC_Exported_Functions_Group2 Peripheral Control functions
  *  @brief   RCC clocks control functions
  *
  @verbatim   
  ===============================================================================
                  ##### Peripheral Control functions #####
  ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to control the RCC Clocks 
    frequencies.

  @endverbatim
  * @{
  */

/**
  * @brief  Selects the clock source to output on MCO pin.
  * @note   MCO pin should be configured in alternate function mode.
  * @param  RCC_MCOx specifies the output direction for the clock source.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCO1 Clock source to output on MCO1 pin(PA8).
  * @param  RCC_MCOSource specifies the clock source to output.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCO1SOURCE_NOCLOCK     No clock selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_SYSCLK      System clock selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSI         HSI selected as MCO clock
  *            @arg @ref RCC_MCO1SOURCE_HSE         HSE selected as MCO clock
  @if STM32F105xC
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK       PLL clock divided by 2 selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_PLL2CLK      PLL2 clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_EXT_HSE      XT1 external 3-25 MHz oscillator clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_PLL3CLK      PLL3 clock selected as MCO source
  @endif
  @if STM32F107xC
  *            @arg @ref RCC_MCO1SOURCE_PLLCLK       PLL clock divided by 2 selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_PLL2CLK      PLL2 clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_PLL3CLK_DIV2 PLL3 clock divided by 2 selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_EXT_HSE XT1  external 3-25 MHz oscillator clock selected as MCO source
  *            @arg @ref RCC_MCO1SOURCE_PLL3CLK      PLL3 clock selected as MCO source
  @endif
  * @param  RCC_MCODiv specifies the MCO DIV.
  *          This parameter can be one of the following values:
  *            @arg @ref RCC_MCODIV_1 no division applied to MCO clock
  * @retval None
  */
void HAL_RCC_MCOConfig(uint32_t RCC_MCOx, uint32_t RCC_MCOSource, uint32_t RCC_MCODiv)
{
  GPIO_InitTypeDef gpio = {0U};

  /* Check the parameters */
  assert_param(IS_RCC_MCO(RCC_MCOx));
  assert_param(IS_RCC_MCODIV(RCC_MCODiv));
  assert_param(IS_RCC_MCO1SOURCE(RCC_MCOSource));

  /* Prevent unused argument(s) compilation warning */
  UNUSED(RCC_MCOx);
  UNUSED(RCC_MCODiv);

  /* Configure the MCO1 pin in alternate function mode */
  gpio.Mode      = GPIO_MODE_AF_PP;
  gpio.Speed     = GPIO_SPEED_FREQ_HIGH;
  gpio.Pull      = GPIO_NOPULL;
  gpio.Pin       = MCO1_PIN;

  /* MCO1 Clock Enable */
  MCO1_CLK_ENABLE();

  HAL_GPIO_Init(MCO1_GPIO_PORT, &gpio);

  /* Configure the MCO clock source */
  __HAL_RCC_MCO1_CONFIG(RCC_MCOSource, RCC_MCODiv);
}

/**
  * @brief  Enables the Clock Security System.
  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
  *         is automatically disabled and an interrupt is generated to inform the
  *         software about the failure (Clock Security System Interrupt, CSSI),
  *         allowing the MCU to perform rescue operations. The CSSI is linked to 
  *         the Cortex-M3 NMI (Non-Maskable Interrupt) exception vector.  
  * @retval None
  */
void HAL_RCC_EnableCSS(void)
{
  *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)ENABLE;
}

/**
  * @brief  Disables the Clock Security System.
  * @retval None
  */
void HAL_RCC_DisableCSS(void)
{
  *(__IO uint32_t *) RCC_CR_CSSON_BB = (uint32_t)DISABLE;
}

/**
  * @brief  Returns the SYSCLK frequency     
  * @note   The system frequency computed by this function is not the real 
  *         frequency in the chip. It is calculated based on the predefined 
  *         constant and the selected clock source:
  * @note     If SYSCLK source is HSI, function returns values based on HSI_VALUE(*)
  * @note     If SYSCLK source is HSE, function returns a value based on HSE_VALUE
  *           divided by PREDIV factor(**)
  * @note     If SYSCLK source is PLL, function returns a value based on HSE_VALUE
  *           divided by PREDIV factor(**) or HSI_VALUE(*) multiplied by the PLL factor.
  * @note     (*) HSI_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
  *               8 MHz) but the real value may vary depending on the variations
  *               in voltage and temperature.
  * @note     (**) HSE_VALUE is a constant defined in stm32f1xx_hal_conf.h file (default value
  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
  *                frequency of the crystal used. Otherwise, this function may
  *                have wrong result.
  *                  
  * @note   The result of this function could be not correct when using fractional
  *         value for HSE crystal.
  *           
  * @note   This function can be used by the user application to compute the 
  *         baud-rate for the communication peripherals or configure other parameters.
  *           
  * @note   Each time SYSCLK changes, this function must be called to update the
  *         right SYSCLK value. Otherwise, any configuration based on this function will be incorrect.
  *         
  * @retval SYSCLK frequency
  */
uint32_t HAL_RCC_GetSysClockFreq(void)
{
#if defined(RCC_CFGR2_PREDIV1SRC)
  const uint8_t aPLLMULFactorTable[14] = {0, 0, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 13};
  const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
#else
  const uint8_t aPLLMULFactorTable[16] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16};
#if defined(RCC_CFGR2_PREDIV1)
  const uint8_t aPredivFactorTable[16] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16};
#else
  const uint8_t aPredivFactorTable[2] = {1, 2};
#endif /*RCC_CFGR2_PREDIV1*/

#endif
  uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U;
  uint32_t sysclockfreq = 0U;
#if defined(RCC_CFGR2_PREDIV1SRC)
  uint32_t prediv2 = 0U, pll2mul = 0U;
#endif /*RCC_CFGR2_PREDIV1SRC*/
  
  tmpreg = RCC->CFGR;
  
  /* Get SYSCLK source -------------------------------------------------------*/
  switch (tmpreg & RCC_CFGR_SWS)
  {
    case RCC_SYSCLKSOURCE_STATUS_HSE:  /* HSE used as system clock */
    {
      sysclockfreq = HSE_VALUE;
      break;
    }
    case RCC_SYSCLKSOURCE_STATUS_PLLCLK:  /* PLL used as system clock */
    {
      pllmul = aPLLMULFactorTable[(uint32_t)(tmpreg & RCC_CFGR_PLLMULL) >> RCC_CFGR_PLLMULL_Pos];
      if ((tmpreg & RCC_CFGR_PLLSRC) != RCC_PLLSOURCE_HSI_DIV2)
      {
#if defined(RCC_CFGR2_PREDIV1)
        prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR2 & RCC_CFGR2_PREDIV1) >> RCC_CFGR2_PREDIV1_Pos];
#else
        prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos];
#endif /*RCC_CFGR2_PREDIV1*/
#if defined(RCC_CFGR2_PREDIV1SRC)

        if(HAL_IS_BIT_SET(RCC->CFGR2, RCC_CFGR2_PREDIV1SRC))
        {
          /* PLL2 selected as Prediv1 source */
          /* PLLCLK = PLL2CLK / PREDIV1 * PLLMUL with PLL2CLK = HSE/PREDIV2 * PLL2MUL */
          prediv2 = ((RCC->CFGR2 & RCC_CFGR2_PREDIV2) >> RCC_CFGR2_PREDIV2_Pos) + 1;
          pll2mul = ((RCC->CFGR2 & RCC_CFGR2_PLL2MUL) >> RCC_CFGR2_PLL2MUL_Pos) + 2;
          pllclk = (uint32_t)((((HSE_VALUE / prediv2) * pll2mul) / prediv) * pllmul);
        }
        else
        {
          /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
          pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
        }
        
        /* If PLLMUL was set to 13 means that it was to cover the case PLLMUL 6.5 (avoid using float) */
        /* In this case need to divide pllclk by 2 */
        if (pllmul == aPLLMULFactorTable[(uint32_t)(RCC_CFGR_PLLMULL6_5) >> RCC_CFGR_PLLMULL_Pos])
        {
            pllclk = pllclk / 2;
        }
#else
        /* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
        pllclk = (uint32_t)((HSE_VALUE / prediv) * pllmul);
#endif /*RCC_CFGR2_PREDIV1SRC*/
      }
      else
      {
        /* HSI used as PLL clock source : PLLCLK = HSI/2 * PLLMUL */
        pllclk = (uint32_t)((HSI_VALUE >> 1) * pllmul);
      }
      sysclockfreq = pllclk;
      break;
    }
    case RCC_SYSCLKSOURCE_STATUS_HSI:  /* HSI used as system clock source */
    default: /* HSI used as system clock */
    {
      sysclockfreq = HSI_VALUE;
      break;
    }
  }
  return sysclockfreq;
}

/**
  * @brief  Returns the HCLK frequency     
  * @note   Each time HCLK changes, this function must be called to update the
  *         right HCLK value. Otherwise, any configuration based on this function will be incorrect.
  * 
  * @note   The SystemCoreClock CMSIS variable is used to store System Clock Frequency 
  *         and updated within this function
  * @retval HCLK frequency
  */
uint32_t HAL_RCC_GetHCLKFreq(void)
{
  return SystemCoreClock;
}

/**
  * @brief  Returns the PCLK1 frequency     
  * @note   Each time PCLK1 changes, this function must be called to update the
  *         right PCLK1 value. Otherwise, any configuration based on this function will be incorrect.
  * @retval PCLK1 frequency
  */
uint32_t HAL_RCC_GetPCLK1Freq(void)
{
  /* Get HCLK source and Compute PCLK1 frequency ---------------------------*/
  return (HAL_RCC_GetHCLKFreq() >> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE1) >> RCC_CFGR_PPRE1_Pos]);
}    

/**
  * @brief  Returns the PCLK2 frequency     
  * @note   Each time PCLK2 changes, this function must be called to update the
  *         right PCLK2 value. Otherwise, any configuration based on this function will be incorrect.
  * @retval PCLK2 frequency
  */
uint32_t HAL_RCC_GetPCLK2Freq(void)
{
  /* Get HCLK source and Compute PCLK2 frequency ---------------------------*/
  return (HAL_RCC_GetHCLKFreq()>> APBPrescTable[(RCC->CFGR & RCC_CFGR_PPRE2) >> RCC_CFGR_PPRE2_Pos]);
} 

/**
  * @brief  Configures the RCC_OscInitStruct according to the internal 
  * RCC configuration registers.
  * @param  RCC_OscInitStruct pointer to an RCC_OscInitTypeDef structure that 
  * will be configured.
  * @retval None
  */
void HAL_RCC_GetOscConfig(RCC_OscInitTypeDef  *RCC_OscInitStruct)
{
  /* Check the parameters */
  assert_param(RCC_OscInitStruct != NULL);

  /* Set all possible values for the Oscillator type parameter ---------------*/
  RCC_OscInitStruct->OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI  \
                  | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI;

#if defined(RCC_CFGR2_PREDIV1SRC)
  /* Get the Prediv1 source --------------------------------------------------*/
  RCC_OscInitStruct->Prediv1Source = READ_BIT(RCC->CFGR2,RCC_CFGR2_PREDIV1SRC);
#endif /* RCC_CFGR2_PREDIV1SRC */

  /* Get the HSE configuration -----------------------------------------------*/
  if((RCC->CR &RCC_CR_HSEBYP) == RCC_CR_HSEBYP)
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_BYPASS;
  }
  else if((RCC->CR &RCC_CR_HSEON) == RCC_CR_HSEON)
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_ON;
  }
  else
  {
    RCC_OscInitStruct->HSEState = RCC_HSE_OFF;
  }
  RCC_OscInitStruct->HSEPredivValue = __HAL_RCC_HSE_GET_PREDIV();

  /* Get the HSI configuration -----------------------------------------------*/
  if((RCC->CR &RCC_CR_HSION) == RCC_CR_HSION)
  {
    RCC_OscInitStruct->HSIState = RCC_HSI_ON;
  }
  else
  {
    RCC_OscInitStruct->HSIState = RCC_HSI_OFF;
  }
  
  RCC_OscInitStruct->HSICalibrationValue = (uint32_t)((RCC->CR & RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);
  
  /* Get the LSE configuration -----------------------------------------------*/
  if((RCC->BDCR &RCC_BDCR_LSEBYP) == RCC_BDCR_LSEBYP)
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_BYPASS;
  }
  else if((RCC->BDCR &RCC_BDCR_LSEON) == RCC_BDCR_LSEON)
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_ON;
  }
  else
  {
    RCC_OscInitStruct->LSEState = RCC_LSE_OFF;
  }
  
  /* Get the LSI configuration -----------------------------------------------*/
  if((RCC->CSR &RCC_CSR_LSION) == RCC_CSR_LSION)
  {
    RCC_OscInitStruct->LSIState = RCC_LSI_ON;
  }
  else
  {
    RCC_OscInitStruct->LSIState = RCC_LSI_OFF;
  }
  

  /* Get the PLL configuration -----------------------------------------------*/
  if((RCC->CR &RCC_CR_PLLON) == RCC_CR_PLLON)
  {
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_ON;
  }
  else
  {
    RCC_OscInitStruct->PLL.PLLState = RCC_PLL_OFF;
  }
  RCC_OscInitStruct->PLL.PLLSource = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLSRC);
  RCC_OscInitStruct->PLL.PLLMUL = (uint32_t)(RCC->CFGR & RCC_CFGR_PLLMULL);
#if defined(RCC_CR_PLL2ON)
  /* Get the PLL2 configuration -----------------------------------------------*/
  if((RCC->CR &RCC_CR_PLL2ON) == RCC_CR_PLL2ON)
  {
    RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_ON;
  }
  else
  {
    RCC_OscInitStruct->PLL2.PLL2State = RCC_PLL2_OFF;
  }
  RCC_OscInitStruct->PLL2.HSEPrediv2Value = __HAL_RCC_HSE_GET_PREDIV2();
  RCC_OscInitStruct->PLL2.PLL2MUL = (uint32_t)(RCC->CFGR2 & RCC_CFGR2_PLL2MUL);
#endif /* RCC_CR_PLL2ON */
}

/**
  * @brief  Get the RCC_ClkInitStruct according to the internal 
  * RCC configuration registers.
  * @param  RCC_ClkInitStruct pointer to an RCC_ClkInitTypeDef structure that 
  * contains the current clock configuration.
  * @param  pFLatency Pointer on the Flash Latency.
  * @retval None
  */
void HAL_RCC_GetClockConfig(RCC_ClkInitTypeDef  *RCC_ClkInitStruct, uint32_t *pFLatency)
{
  /* Check the parameters */
  assert_param(RCC_ClkInitStruct != NULL);
  assert_param(pFLatency != NULL);

  /* Set all possible values for the Clock type parameter --------------------*/
  RCC_ClkInitStruct->ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
  
  /* Get the SYSCLK configuration --------------------------------------------*/ 
  RCC_ClkInitStruct->SYSCLKSource = (uint32_t)(RCC->CFGR & RCC_CFGR_SW);
  
  /* Get the HCLK configuration ----------------------------------------------*/ 
  RCC_ClkInitStruct->AHBCLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_HPRE); 
  
  /* Get the APB1 configuration ----------------------------------------------*/ 
  RCC_ClkInitStruct->APB1CLKDivider = (uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1);   
  
  /* Get the APB2 configuration ----------------------------------------------*/ 
  RCC_ClkInitStruct->APB2CLKDivider = (uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3);
  
#if   defined(FLASH_ACR_LATENCY)
  /* Get the Flash Wait State (Latency) configuration ------------------------*/   
  *pFLatency = (uint32_t)(FLASH->ACR & FLASH_ACR_LATENCY); 
#else
  /* For VALUE lines devices, only LATENCY_0 can be set*/
  *pFLatency = (uint32_t)FLASH_LATENCY_0; 
#endif
}

/**
  * @brief This function handles the RCC CSS interrupt request.
  * @note This API should be called under the NMI_Handler().
  * @retval None
  */
void HAL_RCC_NMI_IRQHandler(void)
{
  /* Check RCC CSSF flag  */
  if(__HAL_RCC_GET_IT(RCC_IT_CSS))
  {
    /* RCC Clock Security System interrupt user callback */
    HAL_RCC_CSSCallback();
    
    /* Clear RCC CSS pending bit */
    __HAL_RCC_CLEAR_IT(RCC_IT_CSS);
  }
}

/**
  * @brief  This function provides delay (in milliseconds) based on CPU cycles method.
  * @param  mdelay: specifies the delay time length, in milliseconds.
  * @retval None
  */
static void RCC_Delay(uint32_t mdelay)
{
  __IO uint32_t Delay = mdelay * (SystemCoreClock / 8U / 1000U);
  do 
  {
    __NOP();
  } 
  while (Delay --);
}

/**
  * @brief  RCC Clock Security System interrupt callback
  * @retval none
  */
__weak void HAL_RCC_CSSCallback(void)
{
  /* NOTE : This function Should not be modified, when the callback is needed,
    the HAL_RCC_CSSCallback could be implemented in the user file
    */ 
}

/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_RCC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/