aboutsummaryrefslogtreecommitdiff
path: root/drivers/iommu/dma-mapping-fast.c
blob: 7e6287c986ef3b232bfbb72c2f471acd8b4dc97a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
/* Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/dma-contiguous.h>
#include <linux/dma-mapping.h>
#include <linux/dma-mapping-fast.h>
#include <linux/io-pgtable-fast.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <asm/cacheflush.h>
#include <asm/dma-iommu.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <trace/events/iommu.h>

#include <soc/qcom/secure_buffer.h>
#include <linux/arm-smmu-errata.h>

/* some redundant definitions... :( TODO: move to io-pgtable-fast.h */
#define FAST_PAGE_SHIFT		12
#define FAST_PAGE_SIZE (1UL << FAST_PAGE_SHIFT)
#define FAST_PAGE_MASK (~(PAGE_SIZE - 1))
#define FAST_PTE_ADDR_MASK		((av8l_fast_iopte)0xfffffffff000)
#define FAST_MAIR_ATTR_IDX_CACHE	1
#define FAST_PTE_ATTRINDX_SHIFT		2
#define FAST_PTE_ATTRINDX_MASK		0x7
#define FAST_PTE_SH_SHIFT		8
#define FAST_PTE_SH_MASK	   (((av8l_fast_iopte)0x3) << FAST_PTE_SH_SHIFT)
#define FAST_PTE_SH_OS             (((av8l_fast_iopte)2) << FAST_PTE_SH_SHIFT)
#define FAST_PTE_SH_IS             (((av8l_fast_iopte)3) << FAST_PTE_SH_SHIFT)

static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
				 bool coherent)
{
	if (attrs & DMA_ATTR_STRONGLY_ORDERED)
		return pgprot_noncached(prot);
	else if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
		return pgprot_writecombine(prot);
	return prot;
}

static int __get_iommu_pgprot(unsigned long attrs, int prot,
			      bool coherent)
{
	if (!(attrs & DMA_ATTR_EXEC_MAPPING))
		prot |= IOMMU_NOEXEC;
	if ((attrs & DMA_ATTR_STRONGLY_ORDERED))
		prot |= IOMMU_MMIO;
	if (coherent)
		prot |= IOMMU_CACHE;

	return prot;
}

static void fast_dmac_clean_range(struct dma_fast_smmu_mapping *mapping,
				  void *start, void *end)
{
	if (!mapping->is_smmu_pt_coherent)
		dmac_clean_range(start, end);
}

static bool __fast_is_pte_coherent(av8l_fast_iopte *ptep)
{
	int attr_idx = (*ptep & (FAST_PTE_ATTRINDX_MASK <<
			FAST_PTE_ATTRINDX_SHIFT)) >>
			FAST_PTE_ATTRINDX_SHIFT;

	if ((attr_idx == FAST_MAIR_ATTR_IDX_CACHE) &&
		(((*ptep & FAST_PTE_SH_MASK) == FAST_PTE_SH_IS) ||
		  (*ptep & FAST_PTE_SH_MASK) == FAST_PTE_SH_OS))
		return true;

	return false;
}

static bool is_dma_coherent(struct device *dev, unsigned long attrs)
{
	bool is_coherent;

	if (attrs & DMA_ATTR_FORCE_COHERENT)
		is_coherent = true;
	else if (attrs & DMA_ATTR_FORCE_NON_COHERENT)
		is_coherent = false;
	else if (is_device_dma_coherent(dev))
		is_coherent = true;
	else
		is_coherent = false;

	return is_coherent;
}

/*
 * Checks if the allocated range (ending at @end) covered the upcoming
 * stale bit.  We don't need to know exactly where the range starts since
 * we already know where the candidate search range started.  If, starting
 * from the beginning of the candidate search range, we had to step over
 * (or landed directly on top of) the upcoming stale bit, then we return
 * true.
 *
 * Due to wrapping, there are two scenarios we'll need to check: (1) if the
 * range [search_start, upcoming_stale] spans 0 (i.e. search_start >
 * upcoming_stale), and, (2) if the range: [search_start, upcoming_stale]
 * does *not* span 0 (i.e. search_start <= upcoming_stale).  And for each
 * of those two scenarios we need to handle three cases: (1) the bit was
 * found before wrapping or
 */
static bool __bit_covered_stale(unsigned long upcoming_stale,
				unsigned long search_start,
				unsigned long end)
{
	if (search_start > upcoming_stale) {
		if (end >= search_start) {
			/*
			 * We started searching above upcoming_stale and we
			 * didn't wrap, so we couldn't have crossed
			 * upcoming_stale.
			 */
			return false;
		}
		/*
		 * We wrapped. Did we cross (or land on top of)
		 * upcoming_stale?
		 */
		return end >= upcoming_stale;
	}

	if (search_start <= upcoming_stale) {
		if (end >= search_start) {
			/*
			 * We didn't wrap.  Did we cross (or land on top
			 * of) upcoming_stale?
			 */
			return end >= upcoming_stale;
		}
		/*
		 * We wrapped. So we must have crossed upcoming_stale
		 * (since we started searching below it).
		 */
		return true;
	}

	/* we should have covered all logical combinations... */
	WARN_ON(1);
	return true;
}

static dma_addr_t __fast_smmu_alloc_iova(struct dma_fast_smmu_mapping *mapping,
					 unsigned long attrs,
					 size_t size)
{
	unsigned long bit, prev_search_start, nbits;
	unsigned long align;
	unsigned long guard_len;
	dma_addr_t iova;

	if (mapping->min_iova_align)
		guard_len = ALIGN(size + mapping->force_guard_page_len,
				  mapping->min_iova_align) - size;
	else
		guard_len = 0;

	nbits = (size + guard_len) >> FAST_PAGE_SHIFT;
	align = (1 << get_order(size + guard_len)) - 1;
	bit = bitmap_find_next_zero_area(
		mapping->bitmap, mapping->num_4k_pages, mapping->next_start,
		nbits, align);
	if (unlikely(bit > mapping->num_4k_pages)) {
		/* try wrapping */
		mapping->next_start = 0; /* TODO: SHOULD I REALLY DO THIS?!? */
		bit = bitmap_find_next_zero_area(
			mapping->bitmap, mapping->num_4k_pages, 0, nbits,
			align);
		if (unlikely(bit > mapping->num_4k_pages))
			return DMA_ERROR_CODE;
	}

	bitmap_set(mapping->bitmap, bit, nbits);
	prev_search_start = mapping->next_start;
	mapping->next_start = bit + nbits;
	if (unlikely(mapping->next_start >= mapping->num_4k_pages))
		mapping->next_start = 0;

	/*
	 * If we just re-allocated a VA whose TLB hasn't been invalidated
	 * since it was last used and unmapped, we need to invalidate it
	 * here.  We actually invalidate the entire TLB so that we don't
	 * have to invalidate the TLB again until we wrap back around.
	 */
	if (mapping->have_stale_tlbs &&
	    __bit_covered_stale(mapping->upcoming_stale_bit,
				prev_search_start,
				bit + nbits - 1)) {
		bool skip_sync = (attrs & DMA_ATTR_SKIP_CPU_SYNC);

		iommu_tlbiall(mapping->domain);
		mapping->have_stale_tlbs = false;
		av8l_fast_clear_stale_ptes(mapping->pgtbl_pmds, skip_sync);
	}

	iova =  (bit << FAST_PAGE_SHIFT) + mapping->base;
	if (guard_len &&
		iommu_map(mapping->domain, iova + size,
			page_to_phys(mapping->guard_page),
			guard_len, ARM_SMMU_GUARD_PROT)) {

		bitmap_clear(mapping->bitmap, bit, nbits);
		return DMA_ERROR_CODE;
	}
	return iova;
}

/*
 * Checks whether the candidate bit will be allocated sooner than the
 * current upcoming stale bit.  We can say candidate will be upcoming
 * sooner than the current upcoming stale bit if it lies between the
 * starting bit of the next search range and the upcoming stale bit
 * (allowing for wrap-around).
 *
 * Stated differently, we're checking the relative ordering of three
 * unsigned numbers.  So we need to check all 6 (i.e. 3!) permutations,
 * namely:
 *
 *     0 |---A---B---C---| TOP (Case 1)
 *     0 |---A---C---B---| TOP (Case 2)
 *     0 |---B---A---C---| TOP (Case 3)
 *     0 |---B---C---A---| TOP (Case 4)
 *     0 |---C---A---B---| TOP (Case 5)
 *     0 |---C---B---A---| TOP (Case 6)
 *
 * Note that since we're allowing numbers to wrap, the following three
 * scenarios are all equivalent for Case 1:
 *
 *     0 |---A---B---C---| TOP
 *     0 |---C---A---B---| TOP (C has wrapped. This is Case 5.)
 *     0 |---B---C---A---| TOP (C and B have wrapped. This is Case 4.)
 *
 * In any of these cases, if we start searching from A, we will find B
 * before we find C.
 *
 * We can also find two equivalent cases for Case 2:
 *
 *     0 |---A---C---B---| TOP
 *     0 |---B---A---C---| TOP (B has wrapped. This is Case 3.)
 *     0 |---C---B---A---| TOP (B and C have wrapped. This is Case 6.)
 *
 * In any of these cases, if we start searching from A, we will find C
 * before we find B.
 */
static bool __bit_is_sooner(unsigned long candidate,
			    struct dma_fast_smmu_mapping *mapping)
{
	unsigned long A = mapping->next_start;
	unsigned long B = candidate;
	unsigned long C = mapping->upcoming_stale_bit;

	if ((A < B && B < C) ||	/* Case 1 */
	    (C < A && A < B) ||	/* Case 5 */
	    (B < C && C < A))	/* Case 4 */
		return true;

	if ((A < C && C < B) ||	/* Case 2 */
	    (B < A && A < C) ||	/* Case 3 */
	    (C < B && B < A))	/* Case 6 */
		return false;

	/*
	 * For simplicity, we've been ignoring the possibility of any of
	 * our three numbers being equal.  Handle those cases here (they
	 * shouldn't happen very often, (I think?)).
	 */

	/*
	 * If candidate is the next bit to be searched then it's definitely
	 * sooner.
	 */
	if (A == B)
		return true;

	/*
	 * If candidate is the next upcoming stale bit we'll return false
	 * to avoid doing `upcoming = candidate' in the caller (which would
	 * be useless since they're already equal)
	 */
	if (B == C)
		return false;

	/*
	 * If next start is the upcoming stale bit then candidate can't
	 * possibly be sooner.  The "soonest" bit is already selected.
	 */
	if (A == C)
		return false;

	/* We should have covered all logical combinations. */
	WARN(1, "Well, that's awkward. A=%ld, B=%ld, C=%ld\n", A, B, C);
	return true;
}

static void __fast_smmu_free_iova(struct dma_fast_smmu_mapping *mapping,
				  dma_addr_t iova, size_t size)
{
	unsigned long start_bit = (iova - mapping->base) >> FAST_PAGE_SHIFT;
	unsigned long nbits;
	unsigned long guard_len;

	if (mapping->min_iova_align)
		guard_len = ALIGN(size + mapping->force_guard_page_len,
				  mapping->min_iova_align) - size;
	else
		guard_len = 0;

	if (guard_len)
		iommu_unmap(mapping->domain, iova + size, guard_len);

	nbits = (size + guard_len) >> FAST_PAGE_SHIFT;


	/*
	 * We don't invalidate TLBs on unmap.  We invalidate TLBs on map
	 * when we're about to re-allocate a VA that was previously
	 * unmapped but hasn't yet been invalidated.  So we need to keep
	 * track of which bit is the closest to being re-allocated here.
	 */
	if (__bit_is_sooner(start_bit, mapping))
		mapping->upcoming_stale_bit = start_bit;

	bitmap_clear(mapping->bitmap, start_bit, nbits);
	mapping->have_stale_tlbs = true;
}


static void __fast_dma_page_cpu_to_dev(struct page *page, unsigned long off,
				       size_t size, enum dma_data_direction dir)
{
	__dma_map_area(page_address(page) + off, size, dir);
}

static void __fast_dma_page_dev_to_cpu(struct page *page, unsigned long off,
				       size_t size, enum dma_data_direction dir)
{
	__dma_unmap_area(page_address(page) + off, size, dir);

	/* TODO: WHAT IS THIS? */
	/*
	 * Mark the D-cache clean for this page to avoid extra flushing.
	 */
	if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
		set_bit(PG_dcache_clean, &page->flags);
}

static int __fast_dma_direction_to_prot(enum dma_data_direction dir)
{
	switch (dir) {
	case DMA_BIDIRECTIONAL:
		return IOMMU_READ | IOMMU_WRITE;
	case DMA_TO_DEVICE:
		return IOMMU_READ;
	case DMA_FROM_DEVICE:
		return IOMMU_WRITE;
	default:
		return 0;
	}
}

static dma_addr_t fast_smmu_map_page(struct device *dev, struct page *page,
				   unsigned long offset, size_t size,
				   enum dma_data_direction dir,
				   unsigned long attrs)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	dma_addr_t iova;
	unsigned long flags;
	av8l_fast_iopte *pmd;
	phys_addr_t phys_plus_off = page_to_phys(page) + offset;
	phys_addr_t phys_to_map = round_down(phys_plus_off, FAST_PAGE_SIZE);
	unsigned long offset_from_phys_to_map = phys_plus_off & ~FAST_PAGE_MASK;
	size_t len = ALIGN(size + offset_from_phys_to_map, FAST_PAGE_SIZE);
	int nptes = len >> FAST_PAGE_SHIFT;
	bool skip_sync = (attrs & DMA_ATTR_SKIP_CPU_SYNC);
	int prot = __fast_dma_direction_to_prot(dir);
	bool is_coherent = is_dma_coherent(dev, attrs);

	prot = __get_iommu_pgprot(attrs, prot, is_coherent);

	if (!skip_sync && !is_coherent)
		__fast_dma_page_cpu_to_dev(phys_to_page(phys_to_map),
					   offset_from_phys_to_map, size, dir);

	spin_lock_irqsave(&mapping->lock, flags);

	iova = __fast_smmu_alloc_iova(mapping, attrs, len);

	if (unlikely(iova == DMA_ERROR_CODE))
		goto fail;

	pmd = iopte_pmd_offset(mapping->pgtbl_pmds, iova);

	if (unlikely(av8l_fast_map_public(pmd, phys_to_map, len, prot)))
		goto fail_free_iova;

	fast_dmac_clean_range(mapping, pmd, pmd + nptes);

	spin_unlock_irqrestore(&mapping->lock, flags);

	trace_map(mapping->domain, iova, phys_to_map, len, prot);
	return iova + offset_from_phys_to_map;

fail_free_iova:
	__fast_smmu_free_iova(mapping, iova, size);
fail:
	spin_unlock_irqrestore(&mapping->lock, flags);
	return DMA_ERROR_CODE;
}

static void fast_smmu_unmap_page(struct device *dev, dma_addr_t iova,
			       size_t size, enum dma_data_direction dir,
			       unsigned long attrs)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	unsigned long flags;
	av8l_fast_iopte *pmd = iopte_pmd_offset(mapping->pgtbl_pmds, iova);
	unsigned long offset = iova & ~FAST_PAGE_MASK;
	size_t len = ALIGN(size + offset, FAST_PAGE_SIZE);
	int nptes = len >> FAST_PAGE_SHIFT;
	struct page *page = phys_to_page((*pmd & FAST_PTE_ADDR_MASK));
	bool skip_sync = (attrs & DMA_ATTR_SKIP_CPU_SYNC);
	bool is_coherent = is_dma_coherent(dev, attrs);

	if (!skip_sync && !is_coherent)
		__fast_dma_page_dev_to_cpu(page, offset, size, dir);

	spin_lock_irqsave(&mapping->lock, flags);
	av8l_fast_unmap_public(pmd, len);
	fast_dmac_clean_range(mapping, pmd, pmd + nptes);
	__fast_smmu_free_iova(mapping, iova - offset, len);
	spin_unlock_irqrestore(&mapping->lock, flags);

	trace_unmap(mapping->domain, iova - offset, len, len);
}

static void fast_smmu_sync_single_for_cpu(struct device *dev,
		dma_addr_t iova, size_t size, enum dma_data_direction dir)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	av8l_fast_iopte *pmd = iopte_pmd_offset(mapping->pgtbl_pmds, iova);
	unsigned long offset = iova & ~FAST_PAGE_MASK;
	struct page *page = phys_to_page((*pmd & FAST_PTE_ADDR_MASK));

	if (!__fast_is_pte_coherent(pmd))
		__fast_dma_page_dev_to_cpu(page, offset, size, dir);
}

static void fast_smmu_sync_single_for_device(struct device *dev,
		dma_addr_t iova, size_t size, enum dma_data_direction dir)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	av8l_fast_iopte *pmd = iopte_pmd_offset(mapping->pgtbl_pmds, iova);
	unsigned long offset = iova & ~FAST_PAGE_MASK;
	struct page *page = phys_to_page((*pmd & FAST_PTE_ADDR_MASK));

	if (!__fast_is_pte_coherent(pmd))
		__fast_dma_page_cpu_to_dev(page, offset, size, dir);
}

static int fast_smmu_map_sg(struct device *dev, struct scatterlist *sg,
			    int nents, enum dma_data_direction dir,
			    unsigned long attrs)
{
	/* 0 indicates error */
	return 0;
}

static void fast_smmu_unmap_sg(struct device *dev,
			       struct scatterlist *sg, int nents,
			       enum dma_data_direction dir,
			       unsigned long attrs)
{
	WARN_ON_ONCE(1);
}

static void fast_smmu_sync_sg_for_cpu(struct device *dev,
		struct scatterlist *sg, int nents, enum dma_data_direction dir)
{
	WARN_ON_ONCE(1);
}

static void fast_smmu_sync_sg_for_device(struct device *dev,
		struct scatterlist *sg, int nents, enum dma_data_direction dir)
{
	WARN_ON_ONCE(1);
}

static void __fast_smmu_free_pages(struct page **pages, int count)
{
	int i;

	for (i = 0; i < count; i++)
		__free_page(pages[i]);
	kvfree(pages);
}

static struct page **__fast_smmu_alloc_pages(unsigned int count, gfp_t gfp)
{
	struct page **pages;
	unsigned int i = 0, array_size = count * sizeof(*pages);

	if (array_size <= PAGE_SIZE)
		pages = kzalloc(array_size, GFP_KERNEL);
	else
		pages = vzalloc(array_size);
	if (!pages)
		return NULL;

	/* IOMMU can map any pages, so himem can also be used here */
	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;

	for (i = 0; i < count; ++i) {
		struct page *page = alloc_page(gfp);

		if (!page) {
			__fast_smmu_free_pages(pages, i);
			return NULL;
		}
		pages[i] = page;
	}
	return pages;
}

static void *fast_smmu_alloc(struct device *dev, size_t size,
			     dma_addr_t *handle, gfp_t gfp,
			     unsigned long attrs)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	struct sg_table sgt;
	dma_addr_t dma_addr, iova_iter;
	void *addr;
	av8l_fast_iopte *ptep;
	unsigned long flags;
	struct sg_mapping_iter miter;
	unsigned int count = ALIGN(size, SZ_4K) >> PAGE_SHIFT;
	int prot = IOMMU_READ | IOMMU_WRITE; /* TODO: extract from attrs */
	bool is_coherent = is_dma_coherent(dev, attrs);
	pgprot_t remap_prot = __get_dma_pgprot(attrs, PAGE_KERNEL, is_coherent);
	struct page **pages;

	prot = __get_iommu_pgprot(attrs, prot, is_coherent);

	*handle = DMA_ERROR_CODE;

	pages = __fast_smmu_alloc_pages(count, gfp);
	if (!pages) {
		dev_err(dev, "no pages\n");
		return NULL;
	}

	size = ALIGN(size, SZ_4K);
	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, gfp)) {
		dev_err(dev, "no sg tablen\n");
		goto out_free_pages;
	}

	if (!is_coherent) {
		/*
		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
		 * sufficient here, so skip it by using the "wrong" direction.
		 */
		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents,
			       SG_MITER_FROM_SG);
		while (sg_miter_next(&miter))
			__dma_flush_area(miter.addr, miter.length);
		sg_miter_stop(&miter);
	}

	spin_lock_irqsave(&mapping->lock, flags);
	dma_addr = __fast_smmu_alloc_iova(mapping, attrs, size);
	if (dma_addr == DMA_ERROR_CODE) {
		dev_err(dev, "no iova\n");
		spin_unlock_irqrestore(&mapping->lock, flags);
		goto out_free_sg;
	}
	iova_iter = dma_addr;
	sg_miter_start(&miter, sgt.sgl, sgt.orig_nents,
		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
	while (sg_miter_next(&miter)) {
		int nptes = miter.length >> FAST_PAGE_SHIFT;

		ptep = iopte_pmd_offset(mapping->pgtbl_pmds, iova_iter);
		if (unlikely(av8l_fast_map_public(
				     ptep, page_to_phys(miter.page),
				     miter.length, prot))) {
			dev_err(dev, "no map public\n");
			/* TODO: unwind previously successful mappings */
			goto out_free_iova;
		}
		fast_dmac_clean_range(mapping, ptep, ptep + nptes);
		iova_iter += miter.length;
	}
	sg_miter_stop(&miter);
	spin_unlock_irqrestore(&mapping->lock, flags);

	addr = dma_common_pages_remap(pages, size, VM_USERMAP, remap_prot,
				      __builtin_return_address(0));
	if (!addr) {
		dev_err(dev, "no common pages\n");
		goto out_unmap;
	}

	*handle = dma_addr;
	sg_free_table(&sgt);
	return addr;

out_unmap:
	/* need to take the lock again for page tables and iova */
	spin_lock_irqsave(&mapping->lock, flags);
	ptep = iopte_pmd_offset(mapping->pgtbl_pmds, dma_addr);
	av8l_fast_unmap_public(ptep, size);
	fast_dmac_clean_range(mapping, ptep, ptep + count);
out_free_iova:
	__fast_smmu_free_iova(mapping, dma_addr, size);
	spin_unlock_irqrestore(&mapping->lock, flags);
out_free_sg:
	sg_free_table(&sgt);
out_free_pages:
	__fast_smmu_free_pages(pages, count);
	return NULL;
}

static void fast_smmu_free(struct device *dev, size_t size,
			   void *vaddr, dma_addr_t dma_handle,
			   unsigned long attrs)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	struct vm_struct *area;
	struct page **pages;
	size_t count = ALIGN(size, SZ_4K) >> FAST_PAGE_SHIFT;
	av8l_fast_iopte *ptep;
	unsigned long flags;

	size = ALIGN(size, SZ_4K);

	area = find_vm_area(vaddr);
	if (WARN_ON_ONCE(!area))
		return;

	pages = area->pages;
	dma_common_free_remap(vaddr, size, VM_USERMAP, false);
	ptep = iopte_pmd_offset(mapping->pgtbl_pmds, dma_handle);
	spin_lock_irqsave(&mapping->lock, flags);
	av8l_fast_unmap_public(ptep, size);
	fast_dmac_clean_range(mapping, ptep, ptep + count);
	__fast_smmu_free_iova(mapping, dma_handle, size);
	spin_unlock_irqrestore(&mapping->lock, flags);
	__fast_smmu_free_pages(pages, count);
}

static int fast_smmu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
				void *cpu_addr, dma_addr_t dma_addr,
				size_t size, unsigned long attrs)
{
	struct vm_struct *area;
	unsigned long uaddr = vma->vm_start;
	struct page **pages;
	int i, nr_pages, ret = 0;
	bool coherent = is_dma_coherent(dev, attrs);

	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
					     coherent);
	area = find_vm_area(cpu_addr);
	if (!area)
		return -EINVAL;

	pages = area->pages;
	nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	for (i = vma->vm_pgoff; i < nr_pages && uaddr < vma->vm_end; i++) {
		ret = vm_insert_page(vma, uaddr, pages[i]);
		if (ret)
			break;
		uaddr += PAGE_SIZE;
	}

	return ret;
}

static int fast_smmu_get_sgtable(struct device *dev, struct sg_table *sgt,
				void *cpu_addr, dma_addr_t dma_addr,
				size_t size, unsigned long attrs)
{
	unsigned int n_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
	struct vm_struct *area;

	area = find_vm_area(cpu_addr);
	if (!area || !area->pages)
		return -EINVAL;

	return sg_alloc_table_from_pages(sgt, area->pages, n_pages, 0, size,
					GFP_KERNEL);
}

static dma_addr_t fast_smmu_dma_map_resource(
			struct device *dev, phys_addr_t phys_addr,
			size_t size, enum dma_data_direction dir,
			unsigned long attrs)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	size_t offset = phys_addr & ~FAST_PAGE_MASK;
	size_t len = round_up(size + offset, FAST_PAGE_SIZE);
	dma_addr_t dma_addr;
	int prot;
	unsigned long flags;

	spin_lock_irqsave(&mapping->lock, flags);
	dma_addr = __fast_smmu_alloc_iova(mapping, attrs, len);
	spin_unlock_irqrestore(&mapping->lock, flags);

	if (dma_addr == DMA_ERROR_CODE)
		return dma_addr;

	prot = __fast_dma_direction_to_prot(dir);
	prot |= IOMMU_MMIO;

	if (iommu_map(mapping->domain, dma_addr, phys_addr - offset,
			len, prot)) {
		spin_lock_irqsave(&mapping->lock, flags);
		__fast_smmu_free_iova(mapping, dma_addr, len);
		spin_unlock_irqrestore(&mapping->lock, flags);
		return DMA_ERROR_CODE;
	}
	return dma_addr + offset;
}

static void fast_smmu_dma_unmap_resource(
			struct device *dev, dma_addr_t addr,
			size_t size, enum dma_data_direction dir,
			unsigned long attrs)
{
	struct dma_fast_smmu_mapping *mapping = dev->archdata.mapping->fast;
	size_t offset = addr & ~FAST_PAGE_MASK;
	size_t len = round_up(size + offset, FAST_PAGE_SIZE);
	unsigned long flags;

	iommu_unmap(mapping->domain, addr - offset, len);
	spin_lock_irqsave(&mapping->lock, flags);
	__fast_smmu_free_iova(mapping, addr - offset, len);
	spin_unlock_irqrestore(&mapping->lock, flags);
}

static int fast_smmu_mapping_error(struct device *dev,
				   dma_addr_t dma_addr)
{
	return dma_addr == DMA_ERROR_CODE;
}

static void __fast_smmu_mapped_over_stale(struct dma_fast_smmu_mapping *fast,
					  void *data)
{
	av8l_fast_iopte *ptep = data;
	dma_addr_t iova;
	unsigned long bitmap_idx;

	bitmap_idx = (unsigned long)(ptep - fast->pgtbl_pmds);
	iova = bitmap_idx << FAST_PAGE_SHIFT;
	dev_err(fast->dev, "Mapped over stale tlb at %pa\n", &iova);
	dev_err(fast->dev, "bitmap (failure at idx %lu):\n", bitmap_idx);
	dev_err(fast->dev, "ptep: %p pmds: %p diff: %lu\n", ptep,
		fast->pgtbl_pmds, bitmap_idx);
	print_hex_dump(KERN_ERR, "bmap: ", DUMP_PREFIX_ADDRESS,
		       32, 8, fast->bitmap, fast->bitmap_size, false);
}

static int fast_smmu_notify(struct notifier_block *self,
			    unsigned long action, void *data)
{
	struct dma_fast_smmu_mapping *fast = container_of(
		self, struct dma_fast_smmu_mapping, notifier);

	switch (action) {
	case MAPPED_OVER_STALE_TLB:
		__fast_smmu_mapped_over_stale(fast, data);
		return NOTIFY_OK;
	default:
		WARN(1, "Unhandled notifier action");
		return NOTIFY_DONE;
	}
}

static const struct dma_map_ops fast_smmu_dma_ops = {
	.alloc = fast_smmu_alloc,
	.free = fast_smmu_free,
	.mmap = fast_smmu_mmap_attrs,
	.get_sgtable = fast_smmu_get_sgtable,
	.map_page = fast_smmu_map_page,
	.unmap_page = fast_smmu_unmap_page,
	.sync_single_for_cpu = fast_smmu_sync_single_for_cpu,
	.sync_single_for_device = fast_smmu_sync_single_for_device,
	.map_sg = fast_smmu_map_sg,
	.unmap_sg = fast_smmu_unmap_sg,
	.sync_sg_for_cpu = fast_smmu_sync_sg_for_cpu,
	.sync_sg_for_device = fast_smmu_sync_sg_for_device,
	.map_resource = fast_smmu_dma_map_resource,
	.unmap_resource = fast_smmu_dma_unmap_resource,
	.mapping_error = fast_smmu_mapping_error,
};

/**
 * __fast_smmu_create_mapping_sized
 * @base: bottom of the VA range
 * @size: size of the VA range in bytes
 *
 * Creates a mapping structure which holds information about used/unused IO
 * address ranges, which is required to perform mapping with IOMMU aware
 * functions.  The only VA range supported is [0, 4GB).
 *
 * The client device need to be attached to the mapping with
 * fast_smmu_attach_device function.
 */
static struct dma_fast_smmu_mapping *__fast_smmu_create_mapping_sized(
	dma_addr_t base, u64 size)
{
	struct dma_fast_smmu_mapping *fast;

	fast = kzalloc(sizeof(struct dma_fast_smmu_mapping), GFP_KERNEL);
	if (!fast)
		goto err;

	fast->base = base;
	fast->size = size;
	fast->num_4k_pages = size >> FAST_PAGE_SHIFT;
	fast->bitmap_size = BITS_TO_LONGS(fast->num_4k_pages) * sizeof(long);

	fast->bitmap = kzalloc(fast->bitmap_size, GFP_KERNEL | __GFP_NOWARN |
								__GFP_NORETRY);
	if (!fast->bitmap)
		fast->bitmap = vzalloc(fast->bitmap_size);

	if (!fast->bitmap)
		goto err2;

	spin_lock_init(&fast->lock);

	return fast;
err2:
	kfree(fast);
err:
	return ERR_PTR(-ENOMEM);
}

/*
 * Based off of similar code from dma-iommu.c, but modified to use a different
 * iova allocator
 */
static void fast_smmu_reserve_pci_windows(struct device *dev,
			    struct dma_fast_smmu_mapping *mapping)
{
	struct pci_host_bridge *bridge;
	struct resource_entry *window;
	phys_addr_t start, end;
	struct pci_dev *pci_dev;
	unsigned long flags;

	if (!dev_is_pci(dev))
		return;

	pci_dev = to_pci_dev(dev);
	bridge = pci_find_host_bridge(pci_dev->bus);

	spin_lock_irqsave(&mapping->lock, flags);
	resource_list_for_each_entry(window, &bridge->windows) {
		if (resource_type(window->res) != IORESOURCE_MEM &&
		    resource_type(window->res) != IORESOURCE_IO)
			continue;

		start = round_down(window->res->start - window->offset,
				FAST_PAGE_SIZE);
		end = round_up(window->res->end - window->offset,
				FAST_PAGE_SIZE);
		start = max_t(unsigned long, mapping->base, start);
		end = min_t(unsigned long, mapping->base + mapping->size, end);
		if (start >= end)
			continue;

		dev_dbg(dev, "iova allocator reserved 0x%pa-0x%pa\n",
				&start, &end);

		start = (start - mapping->base) >> FAST_PAGE_SHIFT;
		end = (end - mapping->base) >> FAST_PAGE_SHIFT;
		bitmap_set(mapping->bitmap, start, end - start);
	}
	spin_unlock_irqrestore(&mapping->lock, flags);
}

static int fast_smmu_errata_init(struct dma_iommu_mapping *mapping)
{
	struct dma_fast_smmu_mapping *fast = mapping->fast;
	int vmid = VMID_HLOS;
	int min_iova_align = 0;
	int force_iova_guard_page = 0;

	iommu_domain_get_attr(mapping->domain,
			      DOMAIN_ATTR_MMU500_ERRATA_MIN_ALIGN,
			      &min_iova_align);
	iommu_domain_get_attr(mapping->domain, DOMAIN_ATTR_SECURE_VMID, &vmid);
	iommu_domain_get_attr(mapping->domain,
			      DOMAIN_ATTR_FORCE_IOVA_GUARD_PAGE,
			      &force_iova_guard_page);

	if (vmid >= VMID_LAST || vmid < 0)
		vmid = VMID_HLOS;

	fast->min_iova_align = (min_iova_align) ?  ARM_SMMU_MIN_IOVA_ALIGN :
		PAGE_SIZE;

	if (force_iova_guard_page)
		fast->force_guard_page_len = PAGE_SIZE;

	fast->guard_page =
		arm_smmu_errata_get_guard_page(vmid);
	if (!fast->guard_page)
		return -ENOMEM;

	return 0;
}

/**
 * fast_smmu_init_mapping
 * @dev: valid struct device pointer
 * @mapping: io address space mapping structure (returned from
 *	arm_iommu_create_mapping)
 *
 * Called the first time a device is attached to this mapping.
 * Not for dma client use.
 */
int fast_smmu_init_mapping(struct device *dev,
			    struct dma_iommu_mapping *mapping)
{
	int err = 0;
	struct iommu_domain *domain = mapping->domain;
	struct iommu_pgtbl_info info;
	u64 size = (u64)mapping->bits << PAGE_SHIFT;

	if (mapping->base + size > (SZ_1G * 4ULL)) {
		dev_err(dev, "Iova end address too large\n");
		return -EINVAL;
	}

	mapping->fast = __fast_smmu_create_mapping_sized(mapping->base, size);
	if (IS_ERR(mapping->fast))
		return -ENOMEM;
	mapping->fast->domain = domain;
	mapping->fast->dev = dev;

	if (fast_smmu_errata_init(mapping))
		goto release_mapping;

	fast_smmu_reserve_pci_windows(dev, mapping->fast);

	if (iommu_domain_get_attr(domain, DOMAIN_ATTR_PGTBL_INFO,
				  &info)) {
		dev_err(dev, "Couldn't get page table info\n");
		err = -EINVAL;
		goto release_mapping;
	}
	mapping->fast->pgtbl_pmds = info.pmds;

	if (iommu_domain_get_attr(domain, DOMAIN_ATTR_PAGE_TABLE_IS_COHERENT,
				  &mapping->fast->is_smmu_pt_coherent)) {
		err = -EINVAL;
		goto release_mapping;
	}

	mapping->fast->notifier.notifier_call = fast_smmu_notify;
	av8l_register_notify(&mapping->fast->notifier);

	mapping->ops = &fast_smmu_dma_ops;
	return 0;

release_mapping:
	kfree(mapping->fast->bitmap);
	kfree(mapping->fast);
	return err;
}

/**
 * fast_smmu_release_mapping
 * @kref: dma_iommu_mapping->kref
 *
 * Cleans up the given iommu mapping.
 */
void fast_smmu_release_mapping(struct kref *kref)
{
	struct dma_iommu_mapping *mapping =
		container_of(kref, struct dma_iommu_mapping, kref);

	kvfree(mapping->fast->bitmap);
	kfree(mapping->fast);
	iommu_domain_free(mapping->domain);
	kfree(mapping);
}