aboutsummaryrefslogtreecommitdiff
path: root/SRC/chegvx.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/chegvx.f
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/chegvx.f')
-rw-r--r--SRC/chegvx.f336
1 files changed, 336 insertions, 0 deletions
diff --git a/SRC/chegvx.f b/SRC/chegvx.f
new file mode 100644
index 00000000..1566e535
--- /dev/null
+++ b/SRC/chegvx.f
@@ -0,0 +1,336 @@
+ SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
+ $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
+ $ LWORK, RWORK, IWORK, IFAIL, INFO )
+*
+* -- LAPACK driver routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, RANGE, UPLO
+ INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
+ REAL ABSTOL, VL, VU
+* ..
+* .. Array Arguments ..
+ INTEGER IFAIL( * ), IWORK( * )
+ REAL RWORK( * ), W( * )
+ COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
+ $ Z( LDZ, * )
+* ..
+*
+* Purpose
+* =======
+*
+* CHEGVX computes selected eigenvalues, and optionally, eigenvectors
+* of a complex generalized Hermitian-definite eigenproblem, of the form
+* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
+* B are assumed to be Hermitian and B is also positive definite.
+* Eigenvalues and eigenvectors can be selected by specifying either a
+* range of values or a range of indices for the desired eigenvalues.
+*
+* Arguments
+* =========
+*
+* ITYPE (input) INTEGER
+* Specifies the problem type to be solved:
+* = 1: A*x = (lambda)*B*x
+* = 2: A*B*x = (lambda)*x
+* = 3: B*A*x = (lambda)*x
+*
+* JOBZ (input) CHARACTER*1
+* = 'N': Compute eigenvalues only;
+* = 'V': Compute eigenvalues and eigenvectors.
+*
+* RANGE (input) CHARACTER*1
+* = 'A': all eigenvalues will be found.
+* = 'V': all eigenvalues in the half-open interval (VL,VU]
+* will be found.
+* = 'I': the IL-th through IU-th eigenvalues will be found.
+**
+* UPLO (input) CHARACTER*1
+* = 'U': Upper triangles of A and B are stored;
+* = 'L': Lower triangles of A and B are stored.
+*
+* N (input) INTEGER
+* The order of the matrices A and B. N >= 0.
+*
+* A (input/output) COMPLEX array, dimension (LDA, N)
+* On entry, the Hermitian matrix A. If UPLO = 'U', the
+* leading N-by-N upper triangular part of A contains the
+* upper triangular part of the matrix A. If UPLO = 'L',
+* the leading N-by-N lower triangular part of A contains
+* the lower triangular part of the matrix A.
+*
+* On exit, the lower triangle (if UPLO='L') or the upper
+* triangle (if UPLO='U') of A, including the diagonal, is
+* destroyed.
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,N).
+*
+* B (input/output) COMPLEX array, dimension (LDB, N)
+* On entry, the Hermitian matrix B. If UPLO = 'U', the
+* leading N-by-N upper triangular part of B contains the
+* upper triangular part of the matrix B. If UPLO = 'L',
+* the leading N-by-N lower triangular part of B contains
+* the lower triangular part of the matrix B.
+*
+* On exit, if INFO <= N, the part of B containing the matrix is
+* overwritten by the triangular factor U or L from the Cholesky
+* factorization B = U**H*U or B = L*L**H.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* VL (input) REAL
+* VU (input) REAL
+* If RANGE='V', the lower and upper bounds of the interval to
+* be searched for eigenvalues. VL < VU.
+* Not referenced if RANGE = 'A' or 'I'.
+*
+* IL (input) INTEGER
+* IU (input) INTEGER
+* If RANGE='I', the indices (in ascending order) of the
+* smallest and largest eigenvalues to be returned.
+* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
+* Not referenced if RANGE = 'A' or 'V'.
+*
+* ABSTOL (input) REAL
+* The absolute error tolerance for the eigenvalues.
+* An approximate eigenvalue is accepted as converged
+* when it is determined to lie in an interval [a,b]
+* of width less than or equal to
+*
+* ABSTOL + EPS * max( |a|,|b| ) ,
+*
+* where EPS is the machine precision. If ABSTOL is less than
+* or equal to zero, then EPS*|T| will be used in its place,
+* where |T| is the 1-norm of the tridiagonal matrix obtained
+* by reducing A to tridiagonal form.
+*
+* Eigenvalues will be computed most accurately when ABSTOL is
+* set to twice the underflow threshold 2*SLAMCH('S'), not zero.
+* If this routine returns with INFO>0, indicating that some
+* eigenvectors did not converge, try setting ABSTOL to
+* 2*SLAMCH('S').
+*
+* M (output) INTEGER
+* The total number of eigenvalues found. 0 <= M <= N.
+* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
+*
+* W (output) REAL array, dimension (N)
+* The first M elements contain the selected
+* eigenvalues in ascending order.
+*
+* Z (output) COMPLEX array, dimension (LDZ, max(1,M))
+* If JOBZ = 'N', then Z is not referenced.
+* If JOBZ = 'V', then if INFO = 0, the first M columns of Z
+* contain the orthonormal eigenvectors of the matrix A
+* corresponding to the selected eigenvalues, with the i-th
+* column of Z holding the eigenvector associated with W(i).
+* The eigenvectors are normalized as follows:
+* if ITYPE = 1 or 2, Z**T*B*Z = I;
+* if ITYPE = 3, Z**T*inv(B)*Z = I.
+*
+* If an eigenvector fails to converge, then that column of Z
+* contains the latest approximation to the eigenvector, and the
+* index of the eigenvector is returned in IFAIL.
+* Note: the user must ensure that at least max(1,M) columns are
+* supplied in the array Z; if RANGE = 'V', the exact value of M
+* is not known in advance and an upper bound must be used.
+*
+* LDZ (input) INTEGER
+* The leading dimension of the array Z. LDZ >= 1, and if
+* JOBZ = 'V', LDZ >= max(1,N).
+*
+* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
+* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*
+* LWORK (input) INTEGER
+* The length of the array WORK. LWORK >= max(1,2*N).
+* For optimal efficiency, LWORK >= (NB+1)*N,
+* where NB is the blocksize for CHETRD returned by ILAENV.
+*
+* If LWORK = -1, then a workspace query is assumed; the routine
+* only calculates the optimal size of the WORK array, returns
+* this value as the first entry of the WORK array, and no error
+* message related to LWORK is issued by XERBLA.
+*
+* RWORK (workspace) REAL array, dimension (7*N)
+*
+* IWORK (workspace) INTEGER array, dimension (5*N)
+*
+* IFAIL (output) INTEGER array, dimension (N)
+* If JOBZ = 'V', then if INFO = 0, the first M elements of
+* IFAIL are zero. If INFO > 0, then IFAIL contains the
+* indices of the eigenvectors that failed to converge.
+* If JOBZ = 'N', then IFAIL is not referenced.
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+* > 0: CPOTRF or CHEEVX returned an error code:
+* <= N: if INFO = i, CHEEVX failed to converge;
+* i eigenvectors failed to converge. Their indices
+* are stored in array IFAIL.
+* > N: if INFO = N + i, for 1 <= i <= N, then the leading
+* minor of order i of B is not positive definite.
+* The factorization of B could not be completed and
+* no eigenvalues or eigenvectors were computed.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX CONE
+ PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
+ CHARACTER TRANS
+ INTEGER LWKOPT, NB
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL ILAENV, LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL CHEEVX, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ UPPER = LSAME( UPLO, 'U' )
+ ALLEIG = LSAME( RANGE, 'A' )
+ VALEIG = LSAME( RANGE, 'V' )
+ INDEIG = LSAME( RANGE, 'I' )
+ LQUERY = ( LWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
+ INFO = -3
+ ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
+ INFO = -4
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -7
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE
+ IF( VALEIG ) THEN
+ IF( N.GT.0 .AND. VU.LE.VL )
+ $ INFO = -11
+ ELSE IF( INDEIG ) THEN
+ IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
+ INFO = -12
+ ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
+ INFO = -13
+ END IF
+ END IF
+ END IF
+ IF (INFO.EQ.0) THEN
+ IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
+ INFO = -18
+ END IF
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
+ LWKOPT = MAX( 1, ( NB + 1 )*N )
+ WORK( 1 ) = LWKOPT
+*
+ IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
+ INFO = -20
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CHEGVX', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ M = 0
+ IF( N.EQ.0 ) THEN
+ RETURN
+ END IF
+*
+* Form a Cholesky factorization of B.
+*
+ CALL CPOTRF( UPLO, N, B, LDB, INFO )
+ IF( INFO.NE.0 ) THEN
+ INFO = N + INFO
+ RETURN
+ END IF
+*
+* Transform problem to standard eigenvalue problem and solve.
+*
+ CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
+ CALL CHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
+ $ M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
+ $ INFO )
+*
+ IF( WANTZ ) THEN
+*
+* Backtransform eigenvectors to the original problem.
+*
+ IF( INFO.GT.0 )
+ $ M = INFO - 1
+ IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
+*
+* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
+* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y
+*
+ IF( UPPER ) THEN
+ TRANS = 'N'
+ ELSE
+ TRANS = 'C'
+ END IF
+*
+ CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
+ $ LDB, Z, LDZ )
+*
+ ELSE IF( ITYPE.EQ.3 ) THEN
+*
+* For B*A*x=(lambda)*x;
+* backtransform eigenvectors: x = L*y or U'*y
+*
+ IF( UPPER ) THEN
+ TRANS = 'C'
+ ELSE
+ TRANS = 'N'
+ END IF
+*
+ CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
+ $ LDB, Z, LDZ )
+ END IF
+ END IF
+*
+* Set WORK(1) to optimal complex workspace size.
+*
+ WORK( 1 ) = LWKOPT
+*
+ RETURN
+*
+* End of CHEGVX
+*
+ END