aboutsummaryrefslogtreecommitdiff
path: root/SRC/dgsvj1.f
diff options
context:
space:
mode:
authorjulie <julielangou@users.noreply.github.com>2008-12-16 17:06:58 +0000
committerjulie <julielangou@users.noreply.github.com>2008-12-16 17:06:58 +0000
commitff981f106bde4ce6a74aa4f4a572c943f5a395b2 (patch)
treea386cad907bcaefd6893535c31d67ec9468e693e /SRC/dgsvj1.f
parente58b61578b55644f6391f3333262b72c1dc88437 (diff)
Diffstat (limited to 'SRC/dgsvj1.f')
-rw-r--r--SRC/dgsvj1.f611
1 files changed, 611 insertions, 0 deletions
diff --git a/SRC/dgsvj1.f b/SRC/dgsvj1.f
new file mode 100644
index 00000000..ddc7a6c0
--- /dev/null
+++ b/SRC/dgsvj1.f
@@ -0,0 +1,611 @@
+ SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
+ & EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
+*
+* -- LAPACK routine (version 3.2) --
+*
+* -- Contributed by Zlatko Drmac of the University of Zagreb and --
+* -- Kresimir Veselic of the Fernuniversitaet Hagen --
+* -- November 2008 --
+*
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+*
+* This routine is also part of SIGMA (version 1.23, October 23. 2008.)
+* SIGMA is a library of algorithms for highly accurate algorithms for
+* computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
+* eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
+*
+* -#- Scalar Arguments -#-
+*
+ IMPLICIT NONE
+ DOUBLE PRECISION EPS, SFMIN, TOL
+ INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
+ CHARACTER*1 JOBV
+*
+* -#- Array Arguments -#-
+*
+ DOUBLE PRECISION A( LDA, * ), D( N ), SVA( N ), V( LDV, * ),
+ & WORK( LWORK )
+* ..
+*
+* Purpose
+* ~~~~~~~
+* DGSVJ1 is called from SGESVJ as a pre-processor and that is its main
+* purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
+* it targets only particular pivots and it does not check convergence
+* (stopping criterion). Few tunning parameters (marked by [TP]) are
+* available for the implementer.
+*
+* Further details
+* ~~~~~~~~~~~~~~~
+* DGSVJ1 applies few sweeps of Jacobi rotations in the column space of
+* the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
+* off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
+* block-entries (tiles) of the (1,2) off-diagonal block are marked by the
+* [x]'s in the following scheme:
+*
+* | * * * [x] [x] [x]|
+* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
+* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+*
+* In terms of the columns of A, the first N1 columns are rotated 'against'
+* the remaining N-N1 columns, trying to increase the angle between the
+* corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
+* tiled using quadratic tiles of side KBL. Here, KBL is a tunning parmeter.
+* The number of sweeps is given in NSWEEP and the orthogonality threshold
+* is given in TOL.
+*
+* Contributors
+* ~~~~~~~~~~~~
+* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
+*
+* Arguments
+* ~~~~~~~~~
+*
+* JOBV (input) CHARACTER*1
+* Specifies whether the output from this procedure is used
+* to compute the matrix V:
+* = 'V': the product of the Jacobi rotations is accumulated
+* by postmulyiplying the N-by-N array V.
+* (See the description of V.)
+* = 'A': the product of the Jacobi rotations is accumulated
+* by postmulyiplying the MV-by-N array V.
+* (See the descriptions of MV and V.)
+* = 'N': the Jacobi rotations are not accumulated.
+*
+* M (input) INTEGER
+* The number of rows of the input matrix A. M >= 0.
+*
+* N (input) INTEGER
+* The number of columns of the input matrix A.
+* M >= N >= 0.
+*
+* N1 (input) INTEGER
+* N1 specifies the 2 x 2 block partition, the first N1 columns are
+* rotated 'against' the remaining N-N1 columns of A.
+*
+* A (input/output) REAL array, dimension (LDA,N)
+* On entry, M-by-N matrix A, such that A*diag(D) represents
+* the input matrix.
+* On exit,
+* A_onexit * D_onexit represents the input matrix A*diag(D)
+* post-multiplied by a sequence of Jacobi rotations, where the
+* rotation threshold and the total number of sweeps are given in
+* TOL and NSWEEP, respectively.
+* (See the descriptions of N1, D, TOL and NSWEEP.)
+*
+* LDA (input) INTEGER
+* The leading dimension of the array A. LDA >= max(1,M).
+*
+* D (input/workspace/output) REAL array, dimension (N)
+* The array D accumulates the scaling factors from the fast scaled
+* Jacobi rotations.
+* On entry, A*diag(D) represents the input matrix.
+* On exit, A_onexit*diag(D_onexit) represents the input matrix
+* post-multiplied by a sequence of Jacobi rotations, where the
+* rotation threshold and the total number of sweeps are given in
+* TOL and NSWEEP, respectively.
+* (See the descriptions of N1, A, TOL and NSWEEP.)
+*
+* SVA (input/workspace/output) REAL array, dimension (N)
+* On entry, SVA contains the Euclidean norms of the columns of
+* the matrix A*diag(D).
+* On exit, SVA contains the Euclidean norms of the columns of
+* the matrix onexit*diag(D_onexit).
+*
+* MV (input) INTEGER
+* If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
+* sequence of Jacobi rotations.
+* If JOBV = 'N', then MV is not referenced.
+*
+* V (input/output) REAL array, dimension (LDV,N)
+* If JOBV .EQ. 'V' then N rows of V are post-multipled by a
+* sequence of Jacobi rotations.
+* If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
+* sequence of Jacobi rotations.
+* If JOBV = 'N', then V is not referenced.
+*
+* LDV (input) INTEGER
+* The leading dimension of the array V, LDV >= 1.
+* If JOBV = 'V', LDV .GE. N.
+* If JOBV = 'A', LDV .GE. MV.
+*
+* EPS (input) INTEGER
+* EPS = SLAMCH('Epsilon')
+*
+* SFMIN (input) INTEGER
+* SFMIN = SLAMCH('Safe Minimum')
+*
+* TOL (input) REAL
+* TOL is the threshold for Jacobi rotations. For a pair
+* A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
+* applied only if DABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
+*
+* NSWEEP (input) INTEGER
+* NSWEEP is the number of sweeps of Jacobi rotations to be
+* performed.
+*
+* WORK (workspace) REAL array, dimension LWORK.
+*
+* LWORK (input) INTEGER
+* LWORK is the dimension of WORK. LWORK .GE. M.
+*
+* INFO (output) INTEGER
+* = 0 : successful exit.
+* < 0 : if INFO = -i, then the i-th argument had an illegal value
+*
+* -#- Local Parameters -#-
+*
+ DOUBLE PRECISION ZERO, HALF, ONE, TWO
+ PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0, TWO = 2.0D0 )
+
+* -#- Local Scalars -#-
+*
+ DOUBLE PRECISION AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
+ & BIGTHETA, CS, LARGE, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
+ & ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA, THSIGN
+ INTEGER BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK, ISWROT, jbc,
+ & jgl, KBL, MVL, NOTROT, nblc, nblr, p, PSKIPPED, q,
+ & ROWSKIP, SWBAND
+ LOGICAL APPLV, ROTOK, RSVEC
+*
+* Local Arrays
+*
+ DOUBLE PRECISION FASTR(5)
+*
+* Intrinsic Functions
+*
+ INTRINSIC DABS, DMAX1, DBLE, MIN0, DSIGN, DSQRT
+*
+* External Functions
+*
+ DOUBLE PRECISION DDOT, DNRM2
+ INTEGER IDAMAX
+ LOGICAL LSAME
+ EXTERNAL IDAMAX, LSAME, DDOT, DNRM2
+*
+* External Subroutines
+*
+ EXTERNAL DAXPY, DCOPY, DLASCL, DLASSQ, DROTM, DSWAP
+*
+*
+ APPLV = LSAME(JOBV,'A')
+ RSVEC = LSAME(JOBV,'V')
+ IF ( .NOT.( RSVEC .OR. APPLV .OR. LSAME(JOBV,'N'))) THEN
+ INFO = -1
+ ELSE IF ( M .LT. 0 ) THEN
+ INFO = -2
+ ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M )) THEN
+ INFO = -3
+ ELSE IF ( N1 .LT. 0 ) THEN
+ INFO = -4
+ ELSE IF ( LDA .LT. M ) THEN
+ INFO = -6
+ ELSE IF ( MV .LT. 0 ) THEN
+ INFO = -9
+ ELSE IF ( LDV .LT. M ) THEN
+ INFO = -11
+ ELSE IF ( TOL .LE. EPS ) THEN
+ INFO = -14
+ ELSE IF ( NSWEEP .LT. 0 ) THEN
+ INFO = -15
+ ELSE IF ( LWORK .LT. M ) THEN
+ INFO = -17
+ ELSE
+ INFO = 0
+ END IF
+*
+* #:(
+ IF ( INFO .NE. 0 ) THEN
+ CALL XERBLA( 'DGSVJ1', -INFO )
+ RETURN
+ END IF
+*
+ IF ( RSVEC ) THEN
+ MVL = N
+ ELSE IF ( APPLV ) THEN
+ MVL = MV
+ END IF
+ RSVEC = RSVEC .OR. APPLV
+
+ ROOTEPS = DSQRT(EPS)
+ ROOTSFMIN = DSQRT(SFMIN)
+ SMALL = SFMIN / EPS
+ BIG = ONE / SFMIN
+ ROOTBIG = ONE / ROOTSFMIN
+ LARGE = BIG / DSQRT(DBLE(M*N))
+ BIGTHETA = ONE / ROOTEPS
+ ROOTTOL = DSQRT(TOL)
+*
+* -#- Initialize the right singular vector matrix -#-
+*
+* RSVEC = LSAME( JOBV, 'Y' )
+*
+ EMPTSW = N1 * ( N - N1 )
+ NOTROT = 0
+ FASTR(1) = ZERO
+*
+* -#- Row-cyclic pivot strategy with de Rijk's pivoting -#-
+*
+ KBL = MIN0(8,N)
+ NBLR = N1 / KBL
+ IF ( ( NBLR * KBL ) .NE. N1 ) NBLR = NBLR + 1
+
+* .. the tiling is nblr-by-nblc [tiles]
+
+ NBLC = ( N - N1 ) / KBL
+ IF ( ( NBLC * KBL ) .NE. ( N - N1 ) ) NBLC = NBLC + 1
+ BLSKIP = ( KBL**2 ) + 1
+*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
+
+ ROWSKIP = MIN0( 5, KBL )
+*[TP] ROWSKIP is a tuning parameter.
+ SWBAND = 0
+*[TP] SWBAND is a tuning parameter. It is meaningful and effective
+* if SGESVJ is used as a computational routine in the preconditioned
+* Jacobi SVD algorithm SGESVJ.
+*
+*
+* | * * * [x] [x] [x]|
+* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks.
+* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block.
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+* |[x] [x] [x] * * * |
+*
+*
+ DO 1993 i = 1, NSWEEP
+* .. go go go ...
+*
+ MXAAPQ = ZERO
+ MXSINJ = ZERO
+ ISWROT = 0
+*
+ NOTROT = 0
+ PSKIPPED = 0
+*
+ DO 2000 ibr = 1, NBLR
+
+ igl = ( ibr - 1 ) * KBL + 1
+*
+*
+*........................................................
+* ... go to the off diagonal blocks
+
+ igl = ( ibr - 1 ) * KBL + 1
+
+ DO 2010 jbc = 1, NBLC
+
+ jgl = N1 + ( jbc - 1 ) * KBL + 1
+
+* doing the block at ( ibr, jbc )
+
+ IJBLSK = 0
+ DO 2100 p = igl, MIN0( igl + KBL - 1, N1 )
+
+ AAPP = SVA(p)
+
+ IF ( AAPP .GT. ZERO ) THEN
+
+ PSKIPPED = 0
+
+ DO 2200 q = jgl, MIN0( jgl + KBL - 1, N )
+*
+ AAQQ = SVA(q)
+
+ IF ( AAQQ .GT. ZERO ) THEN
+ AAPP0 = AAPP
+*
+* -#- M x 2 Jacobi SVD -#-
+*
+* -#- Safe Gram matrix computation -#-
+*
+ IF ( AAQQ .GE. ONE ) THEN
+ IF ( AAPP .GE. AAQQ ) THEN
+ ROTOK = ( SMALL*AAPP ) .LE. AAQQ
+ ELSE
+ ROTOK = ( SMALL*AAQQ ) .LE. AAPP
+ END IF
+ IF ( AAPP .LT. ( BIG / AAQQ ) ) THEN
+ AAPQ = ( DDOT(M, A(1,p), 1, A(1,q), 1 ) *
+ & D(p) * D(q) / AAQQ ) / AAPP
+ ELSE
+ CALL DCOPY( M, A(1,p), 1, WORK, 1 )
+ CALL DLASCL( 'G', 0, 0, AAPP, D(p), M,
+ & 1, WORK, LDA, IERR )
+ AAPQ = DDOT( M, WORK, 1, A(1,q), 1 ) *
+ & D(q) / AAQQ
+ END IF
+ ELSE
+ IF ( AAPP .GE. AAQQ ) THEN
+ ROTOK = AAPP .LE. ( AAQQ / SMALL )
+ ELSE
+ ROTOK = AAQQ .LE. ( AAPP / SMALL )
+ END IF
+ IF ( AAPP .GT. ( SMALL / AAQQ ) ) THEN
+ AAPQ = ( DDOT( M, A(1,p), 1, A(1,q), 1 ) *
+ & D(p) * D(q) / AAQQ ) / AAPP
+ ELSE
+ CALL DCOPY( M, A(1,q), 1, WORK, 1 )
+ CALL DLASCL( 'G', 0, 0, AAQQ, D(q), M, 1,
+ & WORK, LDA, IERR )
+ AAPQ = DDOT(M,WORK,1,A(1,p),1) * D(p) / AAPP
+ END IF
+ END IF
+
+ MXAAPQ = DMAX1( MXAAPQ, DABS(AAPQ) )
+
+* TO rotate or NOT to rotate, THAT is the question ...
+*
+ IF ( DABS( AAPQ ) .GT. TOL ) THEN
+ NOTROT = 0
+* ROTATED = ROTATED + 1
+ PSKIPPED = 0
+ ISWROT = ISWROT + 1
+*
+ IF ( ROTOK ) THEN
+*
+ AQOAP = AAQQ / AAPP
+ APOAQ = AAPP / AAQQ
+ THETA = - HALF * DABS( AQOAP - APOAQ ) / AAPQ
+ IF ( AAQQ .GT. AAPP0 ) THETA = - THETA
+
+ IF ( DABS( THETA ) .GT. BIGTHETA ) THEN
+ T = HALF / THETA
+ FASTR(3) = T * D(p) / D(q)
+ FASTR(4) = -T * D(q) / D(p)
+ CALL DROTM( M, A(1,p), 1, A(1,q), 1, FASTR )
+ IF ( RSVEC )
+ & CALL DROTM( MVL, V(1,p), 1, V(1,q), 1, FASTR )
+ SVA(q) = AAQQ*DSQRT( DMAX1(ZERO,ONE + T*APOAQ*AAPQ) )
+ AAPP = AAPP*DSQRT( DMAX1(ZERO,ONE - T*AQOAP*AAPQ) )
+ MXSINJ = DMAX1( MXSINJ, DABS(T) )
+ ELSE
+*
+* .. choose correct signum for THETA and rotate
+*
+ THSIGN = - DSIGN(ONE,AAPQ)
+ IF ( AAQQ .GT. AAPP0 ) THSIGN = - THSIGN
+ T = ONE / ( THETA + THSIGN*DSQRT(ONE+THETA*THETA) )
+ CS = DSQRT( ONE / ( ONE + T*T ) )
+ SN = T * CS
+ MXSINJ = DMAX1( MXSINJ, DABS(SN) )
+ SVA(q) = AAQQ*DSQRT( DMAX1(ZERO, ONE+T*APOAQ*AAPQ) )
+ AAPP = AAPP*DSQRT( ONE - T*AQOAP*AAPQ)
+
+ APOAQ = D(p) / D(q)
+ AQOAP = D(q) / D(p)
+ IF ( D(p) .GE. ONE ) THEN
+*
+ IF ( D(q) .GE. ONE ) THEN
+ FASTR(3) = T * APOAQ
+ FASTR(4) = - T * AQOAP
+ D(p) = D(p) * CS
+ D(q) = D(q) * CS
+ CALL DROTM( M, A(1,p),1, A(1,q),1, FASTR )
+ IF ( RSVEC )
+ & CALL DROTM( MVL, V(1,p),1, V(1,q),1, FASTR )
+ ELSE
+ CALL DAXPY( M, -T*AQOAP, A(1,q),1, A(1,p),1 )
+ CALL DAXPY( M, CS*SN*APOAQ, A(1,p),1, A(1,q),1 )
+ IF ( RSVEC ) THEN
+ CALL DAXPY( MVL, -T*AQOAP, V(1,q),1, V(1,p),1 )
+ CALL DAXPY( MVL,CS*SN*APOAQ,V(1,p),1, V(1,q),1 )
+ END IF
+ D(p) = D(p) * CS
+ D(q) = D(q) / CS
+ END IF
+ ELSE
+ IF ( D(q) .GE. ONE ) THEN
+ CALL DAXPY( M, T*APOAQ, A(1,p),1, A(1,q),1 )
+ CALL DAXPY( M,-CS*SN*AQOAP, A(1,q),1, A(1,p),1 )
+ IF ( RSVEC ) THEN
+ CALL DAXPY(MVL,T*APOAQ, V(1,p),1, V(1,q),1 )
+ CALL DAXPY(MVL,-CS*SN*AQOAP,V(1,q),1, V(1,p),1 )
+ END IF
+ D(p) = D(p) / CS
+ D(q) = D(q) * CS
+ ELSE
+ IF ( D(p) .GE. D(q) ) THEN
+ CALL DAXPY( M,-T*AQOAP, A(1,q),1,A(1,p),1 )
+ CALL DAXPY( M,CS*SN*APOAQ,A(1,p),1,A(1,q),1 )
+ D(p) = D(p) * CS
+ D(q) = D(q) / CS
+ IF ( RSVEC ) THEN
+ CALL DAXPY( MVL, -T*AQOAP, V(1,q),1,V(1,p),1)
+ CALL DAXPY(MVL,CS*SN*APOAQ,V(1,p),1,V(1,q),1)
+ END IF
+ ELSE
+ CALL DAXPY(M, T*APOAQ, A(1,p),1,A(1,q),1)
+ CALL DAXPY(M,-CS*SN*AQOAP,A(1,q),1,A(1,p),1)
+ D(p) = D(p) / CS
+ D(q) = D(q) * CS
+ IF ( RSVEC ) THEN
+ CALL DAXPY(MVL, T*APOAQ, V(1,p),1,V(1,q),1)
+ CALL DAXPY(MVL,-CS*SN*AQOAP,V(1,q),1,V(1,p),1)
+ END IF
+ END IF
+ END IF
+ ENDIF
+ END IF
+
+ ELSE
+ IF ( AAPP .GT. AAQQ ) THEN
+ CALL DCOPY( M, A(1,p), 1, WORK, 1 )
+ CALL DLASCL('G',0,0,AAPP,ONE,M,1,WORK,LDA,IERR)
+ CALL DLASCL('G',0,0,AAQQ,ONE,M,1, A(1,q),LDA,IERR)
+ TEMP1 = -AAPQ * D(p) / D(q)
+ CALL DAXPY(M,TEMP1,WORK,1,A(1,q),1)
+ CALL DLASCL('G',0,0,ONE,AAQQ,M,1,A(1,q),LDA,IERR)
+ SVA(q) = AAQQ*DSQRT(DMAX1(ZERO, ONE - AAPQ*AAPQ))
+ MXSINJ = DMAX1( MXSINJ, SFMIN )
+ ELSE
+ CALL DCOPY( M, A(1,q), 1, WORK, 1 )
+ CALL DLASCL('G',0,0,AAQQ,ONE,M,1,WORK,LDA,IERR)
+ CALL DLASCL('G',0,0,AAPP,ONE,M,1, A(1,p),LDA,IERR)
+ TEMP1 = -AAPQ * D(q) / D(p)
+ CALL DAXPY(M,TEMP1,WORK,1,A(1,p),1)
+ CALL DLASCL('G',0,0,ONE,AAPP,M,1,A(1,p),LDA,IERR)
+ SVA(p) = AAPP*DSQRT(DMAX1(ZERO, ONE - AAPQ*AAPQ))
+ MXSINJ = DMAX1( MXSINJ, SFMIN )
+ END IF
+ END IF
+* END IF ROTOK THEN ... ELSE
+*
+* In the case of cancellation in updating SVA(q)
+* .. recompute SVA(q)
+ IF ( (SVA(q) / AAQQ )**2 .LE. ROOTEPS ) THEN
+ IF ((AAQQ .LT. ROOTBIG).AND.(AAQQ .GT. ROOTSFMIN)) THEN
+ SVA(q) = DNRM2( M, A(1,q), 1 ) * D(q)
+ ELSE
+ T = ZERO
+ AAQQ = ZERO
+ CALL DLASSQ( M, A(1,q), 1, T, AAQQ )
+ SVA(q) = T * DSQRT(AAQQ) * D(q)
+ END IF
+ END IF
+ IF ( (AAPP / AAPP0 )**2 .LE. ROOTEPS ) THEN
+ IF ((AAPP .LT. ROOTBIG).AND.(AAPP .GT. ROOTSFMIN)) THEN
+ AAPP = DNRM2( M, A(1,p), 1 ) * D(p)
+ ELSE
+ T = ZERO
+ AAPP = ZERO
+ CALL DLASSQ( M, A(1,p), 1, T, AAPP )
+ AAPP = T * DSQRT(AAPP) * D(p)
+ END IF
+ SVA(p) = AAPP
+ END IF
+* end of OK rotation
+ ELSE
+ NOTROT = NOTROT + 1
+* SKIPPED = SKIPPED + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+ ELSE
+ NOTROT = NOTROT + 1
+ PSKIPPED = PSKIPPED + 1
+ IJBLSK = IJBLSK + 1
+ END IF
+
+* IF ( NOTROT .GE. EMPTSW ) GO TO 2011
+ IF ( ( i .LE. SWBAND ) .AND. ( IJBLSK .GE. BLSKIP ) ) THEN
+ SVA(p) = AAPP
+ NOTROT = 0
+ GO TO 2011
+ END IF
+ IF ( ( i .LE. SWBAND ) .AND. ( PSKIPPED .GT. ROWSKIP ) ) THEN
+ AAPP = -AAPP
+ NOTROT = 0
+ GO TO 2203
+ END IF
+
+*
+ 2200 CONTINUE
+* end of the q-loop
+ 2203 CONTINUE
+
+ SVA(p) = AAPP
+*
+ ELSE
+ IF ( AAPP .EQ. ZERO ) NOTROT=NOTROT+MIN0(jgl+KBL-1,N)-jgl+1
+ IF ( AAPP .LT. ZERO ) NOTROT = 0
+*** IF ( NOTROT .GE. EMPTSW ) GO TO 2011
+ END IF
+
+ 2100 CONTINUE
+* end of the p-loop
+ 2010 CONTINUE
+* end of the jbc-loop
+ 2011 CONTINUE
+*2011 bailed out of the jbc-loop
+ DO 2012 p = igl, MIN0( igl + KBL - 1, N )
+ SVA(p) = DABS(SVA(p))
+ 2012 CONTINUE
+*** IF ( NOTROT .GE. EMPTSW ) GO TO 1994
+ 2000 CONTINUE
+*2000 :: end of the ibr-loop
+*
+* .. update SVA(N)
+ IF ((SVA(N) .LT. ROOTBIG).AND.(SVA(N) .GT. ROOTSFMIN)) THEN
+ SVA(N) = DNRM2( M, A(1,N), 1 ) * D(N)
+ ELSE
+ T = ZERO
+ AAPP = ZERO
+ CALL DLASSQ( M, A(1,N), 1, T, AAPP )
+ SVA(N) = T * DSQRT(AAPP) * D(N)
+ END IF
+*
+* Additional steering devices
+*
+ IF ( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
+ & ( ISWROT .LE. N ) ) )
+ & SWBAND = i
+
+ IF ((i.GT.SWBAND+1).AND. (MXAAPQ.LT.DBLE(N)*TOL).AND.
+ & (DBLE(N)*MXAAPQ*MXSINJ.LT.TOL))THEN
+ GO TO 1994
+ END IF
+
+*
+ IF ( NOTROT .GE. EMPTSW ) GO TO 1994
+
+ 1993 CONTINUE
+* end i=1:NSWEEP loop
+* #:) Reaching this point means that the procedure has completed the given
+* number of sweeps.
+ INFO = NSWEEP - 1
+ GO TO 1995
+ 1994 CONTINUE
+* #:) Reaching this point means that during the i-th sweep all pivots were
+* below the given threshold, causing early exit.
+
+ INFO = 0
+* #:) INFO = 0 confirms successful iterations.
+ 1995 CONTINUE
+*
+* Sort the vector D
+*
+ DO 5991 p = 1, N - 1
+ q = IDAMAX( N-p+1, SVA(p), 1 ) + p - 1
+ IF ( p .NE. q ) THEN
+ TEMP1 = SVA(p)
+ SVA(p) = SVA(q)
+ SVA(q) = TEMP1
+ TEMP1 = D(p)
+ D(p) = D(q)
+ D(q) = TEMP1
+ CALL DSWAP( M, A(1,p), 1, A(1,q), 1 )
+ IF ( RSVEC ) CALL DSWAP( MVL, V(1,p), 1, V(1,q), 1 )
+ END IF
+ 5991 CONTINUE
+*
+ RETURN
+* ..
+* .. END OF DGSVJ1
+* ..
+ END
+*