aboutsummaryrefslogtreecommitdiff
path: root/SRC/dlagtf.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/dlagtf.f
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/dlagtf.f')
-rw-r--r--SRC/dlagtf.f190
1 files changed, 190 insertions, 0 deletions
diff --git a/SRC/dlagtf.f b/SRC/dlagtf.f
new file mode 100644
index 00000000..e91357bf
--- /dev/null
+++ b/SRC/dlagtf.f
@@ -0,0 +1,190 @@
+ SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, N
+ DOUBLE PRECISION LAMBDA, TOL
+* ..
+* .. Array Arguments ..
+ INTEGER IN( * )
+ DOUBLE PRECISION A( * ), B( * ), C( * ), D( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
+* tridiagonal matrix and lambda is a scalar, as
+*
+* T - lambda*I = PLU,
+*
+* where P is a permutation matrix, L is a unit lower tridiagonal matrix
+* with at most one non-zero sub-diagonal elements per column and U is
+* an upper triangular matrix with at most two non-zero super-diagonal
+* elements per column.
+*
+* The factorization is obtained by Gaussian elimination with partial
+* pivoting and implicit row scaling.
+*
+* The parameter LAMBDA is included in the routine so that DLAGTF may
+* be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
+* inverse iteration.
+*
+* Arguments
+* =========
+*
+* N (input) INTEGER
+* The order of the matrix T.
+*
+* A (input/output) DOUBLE PRECISION array, dimension (N)
+* On entry, A must contain the diagonal elements of T.
+*
+* On exit, A is overwritten by the n diagonal elements of the
+* upper triangular matrix U of the factorization of T.
+*
+* LAMBDA (input) DOUBLE PRECISION
+* On entry, the scalar lambda.
+*
+* B (input/output) DOUBLE PRECISION array, dimension (N-1)
+* On entry, B must contain the (n-1) super-diagonal elements of
+* T.
+*
+* On exit, B is overwritten by the (n-1) super-diagonal
+* elements of the matrix U of the factorization of T.
+*
+* C (input/output) DOUBLE PRECISION array, dimension (N-1)
+* On entry, C must contain the (n-1) sub-diagonal elements of
+* T.
+*
+* On exit, C is overwritten by the (n-1) sub-diagonal elements
+* of the matrix L of the factorization of T.
+*
+* TOL (input) DOUBLE PRECISION
+* On entry, a relative tolerance used to indicate whether or
+* not the matrix (T - lambda*I) is nearly singular. TOL should
+* normally be chose as approximately the largest relative error
+* in the elements of T. For example, if the elements of T are
+* correct to about 4 significant figures, then TOL should be
+* set to about 5*10**(-4). If TOL is supplied as less than eps,
+* where eps is the relative machine precision, then the value
+* eps is used in place of TOL.
+*
+* D (output) DOUBLE PRECISION array, dimension (N-2)
+* On exit, D is overwritten by the (n-2) second super-diagonal
+* elements of the matrix U of the factorization of T.
+*
+* IN (output) INTEGER array, dimension (N)
+* On exit, IN contains details of the permutation matrix P. If
+* an interchange occurred at the kth step of the elimination,
+* then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
+* returns the smallest positive integer j such that
+*
+* abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
+*
+* where norm( A(j) ) denotes the sum of the absolute values of
+* the jth row of the matrix A. If no such j exists then IN(n)
+* is returned as zero. If IN(n) is returned as positive, then a
+* diagonal element of U is small, indicating that
+* (T - lambda*I) is singular or nearly singular,
+*
+* INFO (output) INTEGER
+* = 0 : successful exit
+* .lt. 0: if INFO = -k, the kth argument had an illegal value
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO
+ PARAMETER ( ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER K
+ DOUBLE PRECISION EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ IF( N.LT.0 ) THEN
+ INFO = -1
+ CALL XERBLA( 'DLAGTF', -INFO )
+ RETURN
+ END IF
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ A( 1 ) = A( 1 ) - LAMBDA
+ IN( N ) = 0
+ IF( N.EQ.1 ) THEN
+ IF( A( 1 ).EQ.ZERO )
+ $ IN( 1 ) = 1
+ RETURN
+ END IF
+*
+ EPS = DLAMCH( 'Epsilon' )
+*
+ TL = MAX( TOL, EPS )
+ SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
+ DO 10 K = 1, N - 1
+ A( K+1 ) = A( K+1 ) - LAMBDA
+ SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
+ IF( K.LT.( N-1 ) )
+ $ SCALE2 = SCALE2 + ABS( B( K+1 ) )
+ IF( A( K ).EQ.ZERO ) THEN
+ PIV1 = ZERO
+ ELSE
+ PIV1 = ABS( A( K ) ) / SCALE1
+ END IF
+ IF( C( K ).EQ.ZERO ) THEN
+ IN( K ) = 0
+ PIV2 = ZERO
+ SCALE1 = SCALE2
+ IF( K.LT.( N-1 ) )
+ $ D( K ) = ZERO
+ ELSE
+ PIV2 = ABS( C( K ) ) / SCALE2
+ IF( PIV2.LE.PIV1 ) THEN
+ IN( K ) = 0
+ SCALE1 = SCALE2
+ C( K ) = C( K ) / A( K )
+ A( K+1 ) = A( K+1 ) - C( K )*B( K )
+ IF( K.LT.( N-1 ) )
+ $ D( K ) = ZERO
+ ELSE
+ IN( K ) = 1
+ MULT = A( K ) / C( K )
+ A( K ) = C( K )
+ TEMP = A( K+1 )
+ A( K+1 ) = B( K ) - MULT*TEMP
+ IF( K.LT.( N-1 ) ) THEN
+ D( K ) = B( K+1 )
+ B( K+1 ) = -MULT*D( K )
+ END IF
+ B( K ) = TEMP
+ C( K ) = MULT
+ END IF
+ END IF
+ IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
+ $ IN( N ) = K
+ 10 CONTINUE
+ IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
+ $ IN( N ) = N
+*
+ RETURN
+*
+* End of DLAGTF
+*
+ END