aboutsummaryrefslogtreecommitdiff
path: root/SRC/dsytf2_rk.f
diff options
context:
space:
mode:
authorJulie <julie@cs.utk.edu>2016-11-15 20:39:35 -0800
committerJulie <julie@cs.utk.edu>2016-11-15 20:39:35 -0800
commitead2c73f1a6dad1342bf32987c0b2f2eaf61f18a (patch)
treeb82e9ad49e12960ad410a418d03d68adc7e2e653 /SRC/dsytf2_rk.f
parent39698bc46ca55081ebd94c81c5c95771c9f125cd (diff)
Added (S,D,C,Z) (SY,HE) routines, drivers for new rook code
Close #82 Added routines for new factorization code for symmetric indefinite ( or Hermitian indefinite ) matrices with bounded Bunch-Kaufman ( rook ) pivoting algorithm. New more efficient storage format for factors U ( or L ), block-diagonal matrix D, and pivoting information stored in IPIV: factor L is stored explicitly in lower triangle of A; diagonal of D is stored on the diagonal of A; subdiagonal elements of D are stored in array E; IPIV format is the same as in *_ROOK routines, but differs from SY Bunch-Kaufman routines (e.g. *SYTRF). The factorization output of these new rook _RK routines is not compatible with the existing _ROOK routines and vice versa. This new factorization format is designed in such a way, that there is a possibility in the future to write new Bunch-Kaufman routines that conform to this new factorization format. Then the future Bunch-Kaufman routines could share solver *TRS_3,inversion *TRI_3 and condition estimator *CON_3. To convert between the factorization formats in both ways the following routines are developed: CONVERSION ROUTINES BETWEEN FACTORIZATION FORMATS DOUBLE PRECISION (symmetric indefinite matrices): new file: SRC/dsyconvf.f new file: SRC/dsyconvf_rook.f REAL (symmetric indefinite matrices): new file: SRC/csyconvf.f new file: SRC/csyconvf_rook.f COMPLEX*16 (symmetric indefinite and Hermitian indefinite matrices): new file: SRC/zsyconvf.f new file: SRC/zsyconvf_rook.f COMPLEX (symmetric indefinite and Hermitian indefinite matrices): new file: SRC/ssyconvf.f new file: SRC/ssyconvf_rook.f *SYCONVF routine converts between old Bunch-Kaufman storage format ( denote (L1,D1,IPIV1) ) that is used by *SYTRF and new rook storage format ( denote (L2,D2, IPIV2)) that is used by *SYTRF_RK *SYCONVF_ROOK routine between old rook storage format ( denote (L1,D1,IPIV2) ) that is used by *SYTRF_ROOK and new rook storage format ( denote (L2,D2, IPIV2)) that is used by *SYTRF_RK ROUTINES AND DRIVERS DOUBLE PRECISION (symmetric indefinite matrices): new file: SRC/dsytf2_rk.f BLAS2 unblocked factorization new file: SRC/dlasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/dsytrf_rk.f BLAS3 blocked factorization new file: SRC/dsytrs_3.f BLAS3 solver new file: SRC/dsycon_3.f BLAS3 condition number estimator new file: SRC/dsytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/dsytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/dsysv_rk.f BLAS3 solver driver REAL (symmetric indefinite matrices): new file: SRC/ssytf2_rk.f BLAS2 unblocked factorization new file: SRC/slasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/ssytrf_rk.f BLAS3 blocked factorization new file: SRC/ssytrs_3.f BLAS3 solver new file: SRC/ssycon_3.f BLAS3 condition number estimator new file: SRC/ssytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/ssytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/ssysv_rk.f BLAS3 solver driver COMPLEX*16 (symmetric indefinite matrices): new file: SRC/zsytf2_rk.f BLAS2 unblocked factorization new file: SRC/zlasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/zsytrf_rk.f BLAS3 blocked factorization new file: SRC/zsytrs_3.f BLAS3 solver new file: SRC/zsycon_3.f BLAS3 condition number estimator new file: SRC/zsytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/zsytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/zsysv_rk.f BLAS3 solver driver COMPLEX*16 (Hermitian indefinite matrices): new file: SRC/zhetf2_rk.f BLAS2 unblocked factorization new file: SRC/zlahef_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/zhetrf_rk.f BLAS3 blocked factorization new file: SRC/zhetrs_3.f BLAS3 solver new file: SRC/zhecon_3.f BLAS3 condition number estimator new file: SRC/zhetri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/zhetri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/zhesv_rk.f BLAS3 solver driver COMPLEX (symmetric indefinite matrices): new file: SRC/csytf2_rk.f BLAS2 unblocked factorization new file: SRC/clasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/csytrf_rk.f BLAS3 blocked factorization new file: SRC/csytrs_3.f BLAS3 solver new file: SRC/csycon_3.f BLAS3 condition number estimator new file: SRC/csytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/csytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/csysv_rk.f BLAS3 solver driver COMPLEX (Hermitian indefinite matrices): new file: SRC/chetf2_rk.f BLAS2 unblocked factorization new file: SRC/clahef_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/chetrf_rk.f BLAS3 blocked factorization new file: SRC/chetrs_3.f BLAS3 solver new file: SRC/checon_3.f BLAS3 condition number estimator new file: SRC/chetri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/chetri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/chesv_rk.f BLAS3 solver driver MISC modified: SRC/CMakeLists.txt modified: SRC/Makefile TEST CODE modified: TESTING/LIN/CMakeLists.txt modified: TESTING/LIN/Makefile modified: TESTING/LIN/aladhd.f modified: TESTING/LIN/alaerh.f modified: TESTING/LIN/alahd.f DOUBLE PRECISION (symmetric indefinite matrices): modified: TESTING/LIN/dchkaa.f modified: TESTING/LIN/derrsy.f modified: TESTING/LIN/derrsyx.f modified: TESTING/LIN/derrvx.f modified: TESTING/LIN/derrvxx.f modified: TESTING/dtest.in new file: TESTING/LIN/dchksy_rk.f new file: TESTING/LIN/ddrvsy_rk.f new file: TESTING/LIN/dsyt01_3.f REAL (symmetric indefinite matrices): modified: TESTING/LIN/schkaa.f modified: TESTING/LIN/serrsy.f modified: TESTING/LIN/serrsyx.f modified: TESTING/LIN/serrvx.f modified: TESTING/LIN/serrvxx.f modified: TESTING/stest.in new file: TESTING/LIN/schksy_rk.f new file: TESTING/LIN/sdrvsy_rk.f new file: TESTING/LIN/ssyt01_3.f COMPLEX*16 (symmetric indefinite and Hermitian indefinite matrices): modified: TESTING/LIN/zchkaa.f modified: TESTING/LIN/zerrsy.f modified: TESTING/LIN/zerrsyx.f modified: TESTING/LIN/zerrhe.f modified: TESTING/LIN/zerrhex.f modified: TESTING/LIN/zerrvx.f modified: TESTING/LIN/zerrvxx.f modified: TESTING/ztest.in new file: TESTING/LIN/zchksy_rk.f new file: TESTING/LIN/zdrvsy_rk.f new file: TESTING/LIN/zsyt01_3.f new file: TESTING/LIN/zchkhe_rk.f new file: TESTING/LIN/zdrvhe_rk.f new file: TESTING/LIN/zhet01_3.f COMPLEX (symmetric indefinite and Hermitian indefinite matrices): modified: TESTING/LIN/cchkaa.f modified: TESTING/LIN/cerrsy.f modified: TESTING/LIN/cerrsyx.f modified: TESTING/LIN/cerrhe.f modified: TESTING/LIN/cerrhex.f modified: TESTING/LIN/cerrvx.f modified: TESTING/LIN/cerrvxx.f modified: TESTING/ctest.in new file: TESTING/LIN/cchksy_rk.f new file: TESTING/LIN/cdrvsy_rk.f new file: TESTING/LIN/csyt01_3.f new file: TESTING/LIN/cchkhe_rk.f new file: TESTING/LIN/cdrvhe_rk.f new file: TESTING/LIN/chet01_3.f
Diffstat (limited to 'SRC/dsytf2_rk.f')
-rw-r--r--SRC/dsytf2_rk.f943
1 files changed, 943 insertions, 0 deletions
diff --git a/SRC/dsytf2_rk.f b/SRC/dsytf2_rk.f
new file mode 100644
index 00000000..78c61fce
--- /dev/null
+++ b/SRC/dsytf2_rk.f
@@ -0,0 +1,943 @@
+*> \brief \b DSYTF2_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS2 unblocked algorithm).
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download DSYTF2_RK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2_rk.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2_rk.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2_rk.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE DSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* DOUBLE PRECISION A( LDA, * ), E ( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*> DSYTF2_RK computes the factorization of a real symmetric matrix A
+*> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
+*>
+*> A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
+*>
+*> where U (or L) is unit upper (or lower) triangular matrix,
+*> U**T (or L**T) is the transpose of U (or L), P is a permutation
+*> matrix, P**T is the transpose of P, and D is symmetric and block
+*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
+*>
+*> This is the unblocked version of the algorithm, calling Level 2 BLAS.
+*> For more information see Further Details section.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> symmetric matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is DOUBLE PRECISION array, dimension (LDA,N)
+*> On entry, the symmetric matrix A.
+*> If UPLO = 'U': the leading N-by-N upper triangular part
+*> of A contains the upper triangular part of the matrix A,
+*> and the strictly lower triangular part of A is not
+*> referenced.
+*>
+*> If UPLO = 'L': the leading N-by-N lower triangular part
+*> of A contains the lower triangular part of the matrix A,
+*> and the strictly upper triangular part of A is not
+*> referenced.
+*>
+*> On exit, contains:
+*> a) ONLY diagonal elements of the symmetric block diagonal
+*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
+*> (superdiagonal (or subdiagonal) elements of D
+*> are stored on exit in array E), and
+*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
+*> If UPLO = 'L': factor L in the subdiagonal part of A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] E
+*> \verbatim
+*> E is DOUBLE PRECISION array, dimension (N)
+*> On exit, contains the superdiagonal (or subdiagonal)
+*> elements of the symmetric block diagonal matrix D
+*> with 1-by-1 or 2-by-2 diagonal blocks, where
+*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
+*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
+*>
+*> NOTE: For 1-by-1 diagonal block D(k), where
+*> 1 <= k <= N, the element E(k) is set to 0 in both
+*> UPLO = 'U' or UPLO = 'L' cases.
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> IPIV describes the permutation matrix P in the factorization
+*> of matrix A as follows. The absolute value of IPIV(k)
+*> represents the index of row and column that were
+*> interchanged with the k-th row and column. The value of UPLO
+*> describes the order in which the interchanges were applied.
+*> Also, the sign of IPIV represents the block structure of
+*> the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
+*> diagonal blocks which correspond to 1 or 2 interchanges
+*> at each factorization step. For more info see Further
+*> Details section.
+*>
+*> If UPLO = 'U',
+*> ( in factorization order, k decreases from N to 1 ):
+*> a) A single positive entry IPIV(k) > 0 means:
+*> D(k,k) is a 1-by-1 diagonal block.
+*> If IPIV(k) != k, rows and columns k and IPIV(k) were
+*> interchanged in the matrix A(1:N,1:N);
+*> If IPIV(k) = k, no interchange occurred.
+*>
+*> b) A pair of consecutive negative entries
+*> IPIV(k) < 0 and IPIV(k-1) < 0 means:
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*> (NOTE: negative entries in IPIV appear ONLY in pairs).
+*> 1) If -IPIV(k) != k, rows and columns
+*> k and -IPIV(k) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k) = k, no interchange occurred.
+*> 2) If -IPIV(k-1) != k-1, rows and columns
+*> k-1 and -IPIV(k-1) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k-1) = k-1, no interchange occurred.
+*>
+*> c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
+*>
+*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
+*>
+*> If UPLO = 'L',
+*> ( in factorization order, k increases from 1 to N ):
+*> a) A single positive entry IPIV(k) > 0 means:
+*> D(k,k) is a 1-by-1 diagonal block.
+*> If IPIV(k) != k, rows and columns k and IPIV(k) were
+*> interchanged in the matrix A(1:N,1:N).
+*> If IPIV(k) = k, no interchange occurred.
+*>
+*> b) A pair of consecutive negative entries
+*> IPIV(k) < 0 and IPIV(k+1) < 0 means:
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> (NOTE: negative entries in IPIV appear ONLY in pairs).
+*> 1) If -IPIV(k) != k, rows and columns
+*> k and -IPIV(k) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k) = k, no interchange occurred.
+*> 2) If -IPIV(k+1) != k+1, rows and columns
+*> k-1 and -IPIV(k-1) were interchanged
+*> in the matrix A(1:N,1:N).
+*> If -IPIV(k+1) = k+1, no interchange occurred.
+*>
+*> c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
+*>
+*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*>
+*> < 0: If INFO = -k, the k-th argument had an illegal value
+*>
+*> > 0: If INFO = k, the matrix A is singular, because:
+*> If UPLO = 'U': column k in the upper
+*> triangular part of A contains all zeros.
+*> If UPLO = 'L': column k in the lower
+*> triangular part of A contains all zeros.
+*>
+*> Therefore D(k,k) is exactly zero, and superdiagonal
+*> elements of column k of U (or subdiagonal elements of
+*> column k of L ) are all zeros. The factorization has
+*> been completed, but the block diagonal matrix D is
+*> exactly singular, and division by zero will occur if
+*> it is used to solve a system of equations.
+*>
+*> NOTE: INFO only stores the first occurrence of
+*> a singularity, any subsequent occurrence of singularity
+*> is not stored in INFO even though the factorization
+*> always completes.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2016
+*
+*> \ingroup doubleSYcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*> TODO: put further details
+*> \endverbatim
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2016, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> 01-01-96 - Based on modifications by
+*> J. Lewis, Boeing Computer Services Company
+*> A. Petitet, Computer Science Dept.,
+*> Univ. of Tenn., Knoxville abd , USA
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE DSYTF2_RK( UPLO, N, A, LDA, E, IPIV, INFO )
+*
+* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ DOUBLE PRECISION A( LDA, * ), E( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ DOUBLE PRECISION EIGHT, SEVTEN
+ PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER, DONE
+ INTEGER I, IMAX, J, JMAX, ITEMP, K, KK, KP, KSTEP,
+ $ P, II
+ DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22,
+ $ ROWMAX, DTEMP, T, WK, WKM1, WKP1, SFMIN
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IDAMAX
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL LSAME, IDAMAX, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL DSCAL, DSWAP, DSYR, XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -4
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'DSYTF2_RK', -INFO )
+ RETURN
+ END IF
+*
+* Initialize ALPHA for use in choosing pivot block size.
+*
+ ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
+*
+* Compute machine safe minimum
+*
+ SFMIN = DLAMCH( 'S' )
+*
+ IF( UPPER ) THEN
+*
+* Factorize A as U*D*U**T using the upper triangle of A
+*
+* Initilize the first entry of array E, where superdiagonal
+* elements of D are stored
+*
+ E( 1 ) = ZERO
+*
+* K is the main loop index, decreasing from N to 1 in steps of
+* 1 or 2
+*
+ K = N
+ 10 CONTINUE
+*
+* If K < 1, exit from loop
+*
+ IF( K.LT.1 )
+ $ GO TO 34
+ KSTEP = 1
+ P = K
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( A( K, K ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value.
+* Determine both COLMAX and IMAX.
+*
+ IF( K.GT.1 ) THEN
+ IMAX = IDAMAX( K-1, A( 1, K ), 1 )
+ COLMAX = ABS( A( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) ) THEN
+*
+* Column K is zero or underflow: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+*
+* Set E( K ) to zero
+*
+ IF( K.GT.1 )
+ $ E( K ) = ZERO
+*
+ ELSE
+*
+* Test for interchange
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABSAKK.GE.ALPHA*COLMAX
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange,
+* use 1-by-1 pivot block
+*
+ KP = K
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 12 CONTINUE
+*
+* Begin pivot search loop body
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ),
+ $ LDA )
+ ROWMAX = ABS( A( IMAX, JMAX ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.GT.1 ) THEN
+ ITEMP = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
+ DTEMP = ABS( A( ITEMP, IMAX ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
+*
+ IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
+ $ THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX .EQ. COLMAX,
+* used to handle NaN and Inf
+*
+ ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
+*
+* interchange rows and columns K+1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot NOT found, set variables and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT. DONE ) GOTO 12
+*
+ END IF
+*
+* Swap TWO rows and TWO columns
+*
+* First swap
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Interchange rows and column K and P in the leading
+* submatrix A(1:k,1:k) if we have a 2-by-2 pivot
+*
+ IF( P.GT.1 )
+ $ CALL DSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
+ IF( P.LT.(K-1) )
+ $ CALL DSWAP( K-P-1, A( P+1, K ), 1, A( P, P+1 ),
+ $ LDA )
+ T = A( K, K )
+ A( K, K ) = A( P, P )
+ A( P, P ) = T
+*
+* Convert upper triangle of A into U form by applying
+* the interchanges in columns k+1:N.
+*
+ IF( K.LT.N )
+ $ CALL DSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ), LDA )
+*
+ END IF
+*
+* Second swap
+*
+ KK = K - KSTEP + 1
+ IF( KP.NE.KK ) THEN
+*
+* Interchange rows and columns KK and KP in the leading
+* submatrix A(1:k,1:k)
+*
+ IF( KP.GT.1 )
+ $ CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
+ IF( ( KK.GT.1 ) .AND. ( KP.LT.(KK-1) ) )
+ $ CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
+ $ LDA )
+ T = A( KK, KK )
+ A( KK, KK ) = A( KP, KP )
+ A( KP, KP ) = T
+ IF( KSTEP.EQ.2 ) THEN
+ T = A( K-1, K )
+ A( K-1, K ) = A( KP, K )
+ A( KP, K ) = T
+ END IF
+*
+* Convert upper triangle of A into U form by applying
+* the interchanges in columns k+1:N.
+*
+ IF( K.LT.N )
+ $ CALL DSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
+ $ LDA )
+*
+ END IF
+*
+* Update the leading submatrix
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k now holds
+*
+* W(k) = U(k)*D(k)
+*
+* where U(k) is the k-th column of U
+*
+ IF( K.GT.1 ) THEN
+*
+* Perform a rank-1 update of A(1:k-1,1:k-1) and
+* store U(k) in column k
+*
+ IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
+*
+* Perform a rank-1 update of A(1:k-1,1:k-1) as
+* A := A - U(k)*D(k)*U(k)**T
+* = A - W(k)*1/D(k)*W(k)**T
+*
+ D11 = ONE / A( K, K )
+ CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
+*
+* Store U(k) in column k
+*
+ CALL DSCAL( K-1, D11, A( 1, K ), 1 )
+ ELSE
+*
+* Store L(k) in column K
+*
+ D11 = A( K, K )
+ DO 16 II = 1, K - 1
+ A( II, K ) = A( II, K ) / D11
+ 16 CONTINUE
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) as
+* A := A - U(k)*D(k)*U(k)**T
+* = A - W(k)*(1/D(k))*W(k)**T
+* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
+*
+ CALL DSYR( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
+ END IF
+*
+* Store the superdiagonal element of D in array E
+*
+ E( K ) = ZERO
+*
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k-1 now hold
+*
+* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
+*
+* where U(k) and U(k-1) are the k-th and (k-1)-th columns
+* of U
+*
+* Perform a rank-2 update of A(1:k-2,1:k-2) as
+*
+* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
+* = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
+*
+* and store L(k) and L(k+1) in columns k and k+1
+*
+ IF( K.GT.2 ) THEN
+*
+ D12 = A( K-1, K )
+ D22 = A( K-1, K-1 ) / D12
+ D11 = A( K, K ) / D12
+ T = ONE / ( D11*D22-ONE )
+*
+ DO 30 J = K - 2, 1, -1
+*
+ WKM1 = T*( D11*A( J, K-1 )-A( J, K ) )
+ WK = T*( D22*A( J, K )-A( J, K-1 ) )
+*
+ DO 20 I = J, 1, -1
+ A( I, J ) = A( I, J ) - (A( I, K ) / D12 )*WK -
+ $ ( A( I, K-1 ) / D12 )*WKM1
+ 20 CONTINUE
+*
+* Store U(k) and U(k-1) in cols k and k-1 for row J
+*
+ A( J, K ) = WK / D12
+ A( J, K-1 ) = WKM1 / D12
+*
+ 30 CONTINUE
+*
+ END IF
+*
+* Copy superdiagonal elements of D(K) to E(K) and
+* ZERO out superdiagonal entry of A
+*
+ E( K ) = A( K-1, K )
+ E( K-1 ) = ZERO
+ A( K-1, K ) = ZERO
+*
+ END IF
+*
+* End column K is nonsingular
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K-1 ) = -KP
+ END IF
+*
+* Decrease K and return to the start of the main loop
+*
+ K = K - KSTEP
+ GO TO 10
+*
+ 34 CONTINUE
+*
+ ELSE
+*
+* Factorize A as L*D*L**T using the lower triangle of A
+*
+* Initilize the unused last entry of the subdiagonal array E.
+*
+ E( N ) = ZERO
+*
+* K is the main loop index, increasing from 1 to N in steps of
+* 1 or 2
+*
+ K = 1
+ 40 CONTINUE
+*
+* If K > N, exit from loop
+*
+ IF( K.GT.N )
+ $ GO TO 64
+ KSTEP = 1
+ P = K
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( A( K, K ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value.
+* Determine both COLMAX and IMAX.
+*
+ IF( K.LT.N ) THEN
+ IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
+ COLMAX = ABS( A( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
+*
+* Column K is zero or underflow: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+*
+* Set E( K ) to zero
+*
+ IF( K.LT.N )
+ $ E( K ) = ZERO
+*
+ ELSE
+*
+* Test for interchange
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABSAKK.GE.ALPHA*COLMAX
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+*
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 42 CONTINUE
+*
+* Begin pivot search loop body
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
+ ROWMAX = ABS( A( IMAX, JMAX ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.LT.N ) THEN
+ ITEMP = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ),
+ $ 1 )
+ DTEMP = ABS( A( ITEMP, IMAX ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for (used to handle NaN and Inf)
+* ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX
+*
+ IF( .NOT.( ABS( A( IMAX, IMAX ) ).LT.ALPHA*ROWMAX ) )
+ $ THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX .EQ. COLMAX,
+* used to handle NaN and Inf
+*
+ ELSE IF( ( P.EQ.JMAX ).OR.( ROWMAX.LE.COLMAX ) ) THEN
+*
+* interchange rows and columns K+1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot NOT found, set variables and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT. DONE ) GOTO 42
+*
+ END IF
+*
+* Swap TWO rows and TWO columns
+*
+* First swap
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Interchange rows and column K and P in the trailing
+* submatrix A(k:n,k:n) if we have a 2-by-2 pivot
+*
+ IF( P.LT.N )
+ $ CALL DSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
+ IF( P.GT.(K+1) )
+ $ CALL DSWAP( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
+ T = A( K, K )
+ A( K, K ) = A( P, P )
+ A( P, P ) = T
+*
+* Convert lower triangle of A into L form by applying
+* the interchanges in columns 1:k-1.
+*
+ IF ( K.GT.1 )
+ $ CALL DSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
+*
+ END IF
+*
+* Second swap
+*
+ KK = K + KSTEP - 1
+ IF( KP.NE.KK ) THEN
+*
+* Interchange rows and columns KK and KP in the trailing
+* submatrix A(k:n,k:n)
+*
+ IF( KP.LT.N )
+ $ CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
+ IF( ( KK.LT.N ) .AND. ( KP.GT.(KK+1) ) )
+ $ CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
+ $ LDA )
+ T = A( KK, KK )
+ A( KK, KK ) = A( KP, KP )
+ A( KP, KP ) = T
+ IF( KSTEP.EQ.2 ) THEN
+ T = A( K+1, K )
+ A( K+1, K ) = A( KP, K )
+ A( KP, K ) = T
+ END IF
+*
+* Convert lower triangle of A into L form by applying
+* the interchanges in columns 1:k-1.
+*
+ IF ( K.GT.1 )
+ $ CALL DSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
+*
+ END IF
+*
+* Update the trailing submatrix
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k now holds
+*
+* W(k) = L(k)*D(k)
+*
+* where L(k) is the k-th column of L
+*
+ IF( K.LT.N ) THEN
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) and
+* store L(k) in column k
+*
+ IF( ABS( A( K, K ) ).GE.SFMIN ) THEN
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) as
+* A := A - L(k)*D(k)*L(k)**T
+* = A - W(k)*(1/D(k))*W(k)**T
+*
+ D11 = ONE / A( K, K )
+ CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
+ $ A( K+1, K+1 ), LDA )
+*
+* Store L(k) in column k
+*
+ CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
+ ELSE
+*
+* Store L(k) in column k
+*
+ D11 = A( K, K )
+ DO 46 II = K + 1, N
+ A( II, K ) = A( II, K ) / D11
+ 46 CONTINUE
+*
+* Perform a rank-1 update of A(k+1:n,k+1:n) as
+* A := A - L(k)*D(k)*L(k)**T
+* = A - W(k)*(1/D(k))*W(k)**T
+* = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
+*
+ CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
+ $ A( K+1, K+1 ), LDA )
+ END IF
+*
+* Store the subdiagonal element of D in array E
+*
+ E( K ) = ZERO
+*
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k+1 now hold
+*
+* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
+*
+* where L(k) and L(k+1) are the k-th and (k+1)-th columns
+* of L
+*
+*
+* Perform a rank-2 update of A(k+2:n,k+2:n) as
+*
+* A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
+* = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
+*
+* and store L(k) and L(k+1) in columns k and k+1
+*
+ IF( K.LT.N-1 ) THEN
+*
+ D21 = A( K+1, K )
+ D11 = A( K+1, K+1 ) / D21
+ D22 = A( K, K ) / D21
+ T = ONE / ( D11*D22-ONE )
+*
+ DO 60 J = K + 2, N
+*
+* Compute D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
+*
+ WK = T*( D11*A( J, K )-A( J, K+1 ) )
+ WKP1 = T*( D22*A( J, K+1 )-A( J, K ) )
+*
+* Perform a rank-2 update of A(k+2:n,k+2:n)
+*
+ DO 50 I = J, N
+ A( I, J ) = A( I, J ) - ( A( I, K ) / D21 )*WK -
+ $ ( A( I, K+1 ) / D21 )*WKP1
+ 50 CONTINUE
+*
+* Store L(k) and L(k+1) in cols k and k+1 for row J
+*
+ A( J, K ) = WK / D21
+ A( J, K+1 ) = WKP1 / D21
+*
+ 60 CONTINUE
+*
+ END IF
+*
+* Copy subdiagonal elements of D(K) to E(K) and
+* ZERO out subdiagonal entry of A
+*
+ E( K ) = A( K+1, K )
+ E( K+1 ) = ZERO
+ A( K+1, K ) = ZERO
+*
+ END IF
+*
+* End column K is nonsingular
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K+1 ) = -KP
+ END IF
+*
+* Increase K and return to the start of the main loop
+*
+ K = K + KSTEP
+ GO TO 40
+*
+ 64 CONTINUE
+*
+ END IF
+*
+ RETURN
+*
+* End of DSYTF2_RK
+*
+ END