aboutsummaryrefslogtreecommitdiff
path: root/SRC/sgelqt.f
diff options
context:
space:
mode:
authorSyd Hashemi <syd@Syds-MacBook-Pro.local>2016-10-19 09:52:19 -0700
committerSyd Hashemi <syd@Syds-MacBook-Pro.local>2016-10-19 09:52:19 -0700
commita6afc403fab8bdcc4c09514ae86f3da2179d88e1 (patch)
tree8d531c7adbd65949b7f115c933a2cfb788a5dcfa /SRC/sgelqt.f
parent44399df62c95ae2a6feab918eecb1b1b4a8ccca8 (diff)
Tall skinny and short wide routines
Diffstat (limited to 'SRC/sgelqt.f')
-rw-r--r--SRC/sgelqt.f193
1 files changed, 193 insertions, 0 deletions
diff --git a/SRC/sgelqt.f b/SRC/sgelqt.f
new file mode 100644
index 00000000..6b037811
--- /dev/null
+++ b/SRC/sgelqt.f
@@ -0,0 +1,193 @@
+* Definition:
+* ===========
+*
+* SUBROUTINE SGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDT, M, N, MB
+* ..
+* .. Array Arguments ..
+* REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> DGELQT computes a blocked LQ factorization of a real M-by-N matrix A
+*> using the compact WY representation of Q.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] MB
+*> \verbatim
+*> MB is INTEGER
+*> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit, the elements on and below the diagonal of the array
+*> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
+*> lower triangular if M <= N); the elements above the diagonal
+*> are the rows of V.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[out] T
+*> \verbatim
+*> T is REAL array, dimension (LDT,MIN(M,N))
+*> The upper triangular block reflectors stored in compact form
+*> as a sequence of upper triangular blocks. See below
+*> for further details.
+*> \endverbatim
+*>
+*> \param[in] LDT
+*> \verbatim
+*> LDT is INTEGER
+*> The leading dimension of the array T. LDT >= MB.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is REAL array, dimension (MB*N)
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2013
+*
+*> \ingroup doubleGEcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> The matrix V stores the elementary reflectors H(i) in the i-th column
+*> below the diagonal. For example, if M=5 and N=3, the matrix V is
+*>
+*> V = ( 1 v1 v1 v1 v1 )
+*> ( 1 v2 v2 v2 )
+*> ( 1 v3 v3 )
+*>
+*>
+*> where the vi's represent the vectors which define H(i), which are returned
+*> in the matrix A. The 1's along the diagonal of V are not stored in A.
+*> Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each
+*> block is of order NB except for the last block, which is of order
+*> IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block
+*> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
+*> for the last block) T's are stored in the NB-by-N matrix T as
+*>
+*> T = (T1 T2 ... TB).
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE SGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
+*
+* -- LAPACK computational routine (version 3.5.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2013
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDT, M, N, MB
+* ..
+* .. Array Arguments ..
+ REAL A( LDA, * ), T( LDT, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* ..
+* .. Local Scalars ..
+ INTEGER I, IB, IINFO, K
+* ..
+* .. External Subroutines ..
+ EXTERNAL SGEQRT2, SGEQRT3, SLARFB, XERBLA
+* ..
+* .. Executable Statements ..
+*
+* Test the input arguments
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( MB.LT.1 .OR. ( MB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDT.LT.MB ) THEN
+ INFO = -7
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SGELQT', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ K = MIN( M, N )
+ IF( K.EQ.0 ) RETURN
+*
+* Blocked loop of length K
+*
+ DO I = 1, K, MB
+ IB = MIN( K-I+1, MB )
+*
+* Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
+*
+ CALL SGELQT3( IB, N-I+1, A(I,I), LDA, T(1,I), LDT, IINFO )
+ IF( I+IB.LE.M ) THEN
+*
+* Update by applying H**T to A(I:M,I+IB:N) from the right
+*
+ CALL SLARFB( 'R', 'N', 'F', 'R', M-I-IB+1, N-I+1, IB,
+ $ A( I, I ), LDA, T( 1, I ), LDT,
+ $ A( I+IB, I ), LDA, WORK , M-I-IB+1 )
+ END IF
+ END DO
+ RETURN
+*
+* End of SGELQT
+*
+ END