aboutsummaryrefslogtreecommitdiff
path: root/SRC/ssyconvf_rook.f
diff options
context:
space:
mode:
authorJulie <julie@cs.utk.edu>2016-11-15 20:39:35 -0800
committerJulie <julie@cs.utk.edu>2016-11-15 20:39:35 -0800
commitead2c73f1a6dad1342bf32987c0b2f2eaf61f18a (patch)
treeb82e9ad49e12960ad410a418d03d68adc7e2e653 /SRC/ssyconvf_rook.f
parent39698bc46ca55081ebd94c81c5c95771c9f125cd (diff)
Added (S,D,C,Z) (SY,HE) routines, drivers for new rook code
Close #82 Added routines for new factorization code for symmetric indefinite ( or Hermitian indefinite ) matrices with bounded Bunch-Kaufman ( rook ) pivoting algorithm. New more efficient storage format for factors U ( or L ), block-diagonal matrix D, and pivoting information stored in IPIV: factor L is stored explicitly in lower triangle of A; diagonal of D is stored on the diagonal of A; subdiagonal elements of D are stored in array E; IPIV format is the same as in *_ROOK routines, but differs from SY Bunch-Kaufman routines (e.g. *SYTRF). The factorization output of these new rook _RK routines is not compatible with the existing _ROOK routines and vice versa. This new factorization format is designed in such a way, that there is a possibility in the future to write new Bunch-Kaufman routines that conform to this new factorization format. Then the future Bunch-Kaufman routines could share solver *TRS_3,inversion *TRI_3 and condition estimator *CON_3. To convert between the factorization formats in both ways the following routines are developed: CONVERSION ROUTINES BETWEEN FACTORIZATION FORMATS DOUBLE PRECISION (symmetric indefinite matrices): new file: SRC/dsyconvf.f new file: SRC/dsyconvf_rook.f REAL (symmetric indefinite matrices): new file: SRC/csyconvf.f new file: SRC/csyconvf_rook.f COMPLEX*16 (symmetric indefinite and Hermitian indefinite matrices): new file: SRC/zsyconvf.f new file: SRC/zsyconvf_rook.f COMPLEX (symmetric indefinite and Hermitian indefinite matrices): new file: SRC/ssyconvf.f new file: SRC/ssyconvf_rook.f *SYCONVF routine converts between old Bunch-Kaufman storage format ( denote (L1,D1,IPIV1) ) that is used by *SYTRF and new rook storage format ( denote (L2,D2, IPIV2)) that is used by *SYTRF_RK *SYCONVF_ROOK routine between old rook storage format ( denote (L1,D1,IPIV2) ) that is used by *SYTRF_ROOK and new rook storage format ( denote (L2,D2, IPIV2)) that is used by *SYTRF_RK ROUTINES AND DRIVERS DOUBLE PRECISION (symmetric indefinite matrices): new file: SRC/dsytf2_rk.f BLAS2 unblocked factorization new file: SRC/dlasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/dsytrf_rk.f BLAS3 blocked factorization new file: SRC/dsytrs_3.f BLAS3 solver new file: SRC/dsycon_3.f BLAS3 condition number estimator new file: SRC/dsytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/dsytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/dsysv_rk.f BLAS3 solver driver REAL (symmetric indefinite matrices): new file: SRC/ssytf2_rk.f BLAS2 unblocked factorization new file: SRC/slasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/ssytrf_rk.f BLAS3 blocked factorization new file: SRC/ssytrs_3.f BLAS3 solver new file: SRC/ssycon_3.f BLAS3 condition number estimator new file: SRC/ssytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/ssytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/ssysv_rk.f BLAS3 solver driver COMPLEX*16 (symmetric indefinite matrices): new file: SRC/zsytf2_rk.f BLAS2 unblocked factorization new file: SRC/zlasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/zsytrf_rk.f BLAS3 blocked factorization new file: SRC/zsytrs_3.f BLAS3 solver new file: SRC/zsycon_3.f BLAS3 condition number estimator new file: SRC/zsytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/zsytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/zsysv_rk.f BLAS3 solver driver COMPLEX*16 (Hermitian indefinite matrices): new file: SRC/zhetf2_rk.f BLAS2 unblocked factorization new file: SRC/zlahef_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/zhetrf_rk.f BLAS3 blocked factorization new file: SRC/zhetrs_3.f BLAS3 solver new file: SRC/zhecon_3.f BLAS3 condition number estimator new file: SRC/zhetri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/zhetri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/zhesv_rk.f BLAS3 solver driver COMPLEX (symmetric indefinite matrices): new file: SRC/csytf2_rk.f BLAS2 unblocked factorization new file: SRC/clasyf_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/csytrf_rk.f BLAS3 blocked factorization new file: SRC/csytrs_3.f BLAS3 solver new file: SRC/csycon_3.f BLAS3 condition number estimator new file: SRC/csytri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/csytri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/csysv_rk.f BLAS3 solver driver COMPLEX (Hermitian indefinite matrices): new file: SRC/chetf2_rk.f BLAS2 unblocked factorization new file: SRC/clahef_rk.f BLAS3 auxiliary blocked partial factorization new file: SRC/chetrf_rk.f BLAS3 blocked factorization new file: SRC/chetrs_3.f BLAS3 solver new file: SRC/checon_3.f BLAS3 condition number estimator new file: SRC/chetri_3.f BLAS3 inversion, sets the size of work array and calls *sytri_3x new file: SRC/chetri_3x.f BLAS3 auxiliary inversion, actually computes blocked inversion new file: SRC/chesv_rk.f BLAS3 solver driver MISC modified: SRC/CMakeLists.txt modified: SRC/Makefile TEST CODE modified: TESTING/LIN/CMakeLists.txt modified: TESTING/LIN/Makefile modified: TESTING/LIN/aladhd.f modified: TESTING/LIN/alaerh.f modified: TESTING/LIN/alahd.f DOUBLE PRECISION (symmetric indefinite matrices): modified: TESTING/LIN/dchkaa.f modified: TESTING/LIN/derrsy.f modified: TESTING/LIN/derrsyx.f modified: TESTING/LIN/derrvx.f modified: TESTING/LIN/derrvxx.f modified: TESTING/dtest.in new file: TESTING/LIN/dchksy_rk.f new file: TESTING/LIN/ddrvsy_rk.f new file: TESTING/LIN/dsyt01_3.f REAL (symmetric indefinite matrices): modified: TESTING/LIN/schkaa.f modified: TESTING/LIN/serrsy.f modified: TESTING/LIN/serrsyx.f modified: TESTING/LIN/serrvx.f modified: TESTING/LIN/serrvxx.f modified: TESTING/stest.in new file: TESTING/LIN/schksy_rk.f new file: TESTING/LIN/sdrvsy_rk.f new file: TESTING/LIN/ssyt01_3.f COMPLEX*16 (symmetric indefinite and Hermitian indefinite matrices): modified: TESTING/LIN/zchkaa.f modified: TESTING/LIN/zerrsy.f modified: TESTING/LIN/zerrsyx.f modified: TESTING/LIN/zerrhe.f modified: TESTING/LIN/zerrhex.f modified: TESTING/LIN/zerrvx.f modified: TESTING/LIN/zerrvxx.f modified: TESTING/ztest.in new file: TESTING/LIN/zchksy_rk.f new file: TESTING/LIN/zdrvsy_rk.f new file: TESTING/LIN/zsyt01_3.f new file: TESTING/LIN/zchkhe_rk.f new file: TESTING/LIN/zdrvhe_rk.f new file: TESTING/LIN/zhet01_3.f COMPLEX (symmetric indefinite and Hermitian indefinite matrices): modified: TESTING/LIN/cchkaa.f modified: TESTING/LIN/cerrsy.f modified: TESTING/LIN/cerrsyx.f modified: TESTING/LIN/cerrhe.f modified: TESTING/LIN/cerrhex.f modified: TESTING/LIN/cerrvx.f modified: TESTING/LIN/cerrvxx.f modified: TESTING/ctest.in new file: TESTING/LIN/cchksy_rk.f new file: TESTING/LIN/cdrvsy_rk.f new file: TESTING/LIN/csyt01_3.f new file: TESTING/LIN/cchkhe_rk.f new file: TESTING/LIN/cdrvhe_rk.f new file: TESTING/LIN/chet01_3.f
Diffstat (limited to 'SRC/ssyconvf_rook.f')
-rw-r--r--SRC/ssyconvf_rook.f544
1 files changed, 544 insertions, 0 deletions
diff --git a/SRC/ssyconvf_rook.f b/SRC/ssyconvf_rook.f
new file mode 100644
index 00000000..69f04f6d
--- /dev/null
+++ b/SRC/ssyconvf_rook.f
@@ -0,0 +1,544 @@
+*> \brief \b SSYCONVF_ROOK
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download SSYCONVF_ROOK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyconvf_rook.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyconvf_rook.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyconvf_rook.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE SSYCONVF_ROOK( UPLO, WAY, N, A, LDA, IPIV, E, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO, WAY
+* INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* REAL A( LDA, * ), E( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*> If parameter WAY = 'C':
+*> SSYCONVF_ROOK converts the factorization output format used in
+*> SSYTRF_ROOK provided on entry in parameter A into the factorization
+*> output format used in SSYTRF_RK (or SSYTRF_BK) that is stored
+*> on exit in parameters A and E. IPIV format for SSYTRF_ROOK and
+*> SSYTRF_RK (or SSYTRF_BK) is the same and is not converted.
+*>
+*> If parameter WAY = 'R':
+*> SSYCONVF_ROOK performs the conversion in reverse direction, i.e.
+*> converts the factorization output format used in SSYTRF_RK
+*> (or SSYTRF_BK) provided on entry in parametes A and E into
+*> the factorization output format used in SSYTRF_ROOK that is stored
+*> on exit in parameter A. IPIV format for SSYTRF_ROOK and
+*> SSYTRF_RK (or SSYTRF_BK) is the same and is not converted.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the details of the factorization are
+*> stored as an upper or lower triangular matrix A.
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] WAY
+*> \verbatim
+*> WAY is CHARACTER*1
+*> = 'C': Convert
+*> = 'R': Revert
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is REAL array, dimension (LDA,N)
+*>
+*> 1) If WAY ='C':
+*>
+*> On entry, contains factorization details in format used in
+*> SSYTRF_ROOK:
+*> a) all elements of the symmetric block diagonal
+*> matrix D on the diagonal of A and on superdiagonal
+*> (or subdiagonal) of A, and
+*> b) If UPLO = 'U': multipliers used to obtain factor U
+*> in the superdiagonal part of A.
+*> If UPLO = 'L': multipliers used to obtain factor L
+*> in the superdiagonal part of A.
+*>
+*> On exit, contains factorization details in format used in
+*> SSYTRF_RK or SSYTRF_BK:
+*> a) ONLY diagonal elements of the symmetric block diagonal
+*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
+*> (superdiagonal (or subdiagonal) elements of D
+*> are stored on exit in array E), and
+*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
+*> If UPLO = 'L': factor L in the subdiagonal part of A.
+*>
+*> 2) If WAY = 'R':
+*>
+*> On entry, contains factorization details in format used in
+*> SSYTRF_RK or SSYTRF_BK:
+*> a) ONLY diagonal elements of the symmetric block diagonal
+*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
+*> (superdiagonal (or subdiagonal) elements of D
+*> are stored on exit in array E), and
+*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
+*> If UPLO = 'L': factor L in the subdiagonal part of A.
+*>
+*> On exit, contains factorization details in format used in
+*> SSYTRF_ROOK:
+*> a) all elements of the symmetric block diagonal
+*> matrix D on the diagonal of A and on superdiagonal
+*> (or subdiagonal) of A, and
+*> b) If UPLO = 'U': multipliers used to obtain factor U
+*> in the superdiagonal part of A.
+*> If UPLO = 'L': multipliers used to obtain factor L
+*> in the superdiagonal part of A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[in,out] E
+*> \verbatim
+*> E is REAL array, dimension (N)
+*>
+*> 1) If WAY ='C':
+*>
+*> On entry, just a workspace.
+*>
+*> On exit, contains the superdiagonal (or subdiagonal)
+*> elements of the symmetric block diagonal matrix D
+*> with 1-by-1 or 2-by-2 diagonal blocks, where
+*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
+*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
+*>
+*> 2) If WAY = 'R':
+*>
+*> On entry, contains the superdiagonal (or subdiagonal)
+*> elements of the symmetric block diagonal matrix D
+*> with 1-by-1 or 2-by-2 diagonal blocks, where
+*> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
+*> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
+*>
+*> On exit, is not changed
+*> \endverbatim
+*.
+*> \param[in] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> On entry, details of the interchanges and the block
+*> structure of D as determined:
+*> 1) by SSYTRF_ROOK, if WAY ='C';
+*> 2) by SSYTRF_RK (or SSYTRF_BK), if WAY ='R'.
+*> The IPIV format is the same for all these routines.
+*>
+*> On exit, is not changed.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2016
+*
+*> \ingroup singleSYcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2016, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> \endverbatim
+* =====================================================================
+ SUBROUTINE SSYCONVF_ROOK( UPLO, WAY, N, A, LDA, E, IPIV, INFO )
+*
+* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO, WAY
+ INTEGER INFO, LDA, N
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ REAL A( LDA, * ), E( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO
+ PARAMETER ( ZERO = 0.0E+0 )
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+*
+* .. External Subroutines ..
+ EXTERNAL SSWAP, XERBLA
+* .. Local Scalars ..
+ LOGICAL UPPER, CONVERT
+ INTEGER I, IP, IP2
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ CONVERT = LSAME( WAY, 'C' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.CONVERT .AND. .NOT.LSAME( WAY, 'R' ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'SSYCONVF_ROOK', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( UPPER ) THEN
+*
+* Begin A is UPPER
+*
+ IF ( CONVERT ) THEN
+*
+* Convert A (A is upper)
+*
+*
+* Convert VALUE
+*
+* Assign superdiagonal entries of D to array E and zero out
+* corresponding entries in input storage A
+*
+ I = N
+ E( 1 ) = ZERO
+ DO WHILE ( I.GT.1 )
+ IF( IPIV( I ).LT.0 ) THEN
+ E( I ) = A( I-1, I )
+ E( I-1 ) = ZERO
+ A( I-1, I ) = ZERO
+ I = I - 1
+ ELSE
+ E( I ) = ZERO
+ END IF
+ I = I - 1
+ END DO
+*
+* Convert PERMUTATIONS
+*
+* Apply permutaions to submatrices of upper part of A
+* in factorization order where i decreases from N to 1
+*
+ I = N
+ DO WHILE ( I.GE.1 )
+ IF( IPIV( I ).GT.0 ) THEN
+*
+* 1-by-1 pivot interchange
+*
+* Swap rows i and IPIV(i) in A(1:i,N-i:N)
+*
+ IP = IPIV( I )
+ IF( I.LT.N ) THEN
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( N-I, A( I, I+1 ), LDA,
+ $ A( IP, I+1 ), LDA )
+ END IF
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot interchange
+*
+* Swap rows i and IPIV(i) and i-1 and IPIV(i-1)
+* in A(1:i,N-i:N)
+*
+ IP = -IPIV( I )
+ IP2 = -IPIV( I-1 )
+ IF( I.LT.N ) THEN
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( N-I, A( I, I+1 ), LDA,
+ $ A( IP, I+1 ), LDA )
+ END IF
+ IF( IP2.NE.(I-1) ) THEN
+ CALL SSWAP( N-I, A( I-1, I+1 ), LDA,
+ $ A( IP2, I+1 ), LDA )
+ END IF
+ END IF
+ I = I - 1
+*
+ END IF
+ I = I - 1
+ END DO
+*
+ ELSE
+*
+* Revert A (A is upper)
+*
+*
+* Revert PERMUTATIONS
+*
+* Apply permutaions to submatrices of upper part of A
+* in reverse factorization order where i increases from 1 to N
+*
+ I = 1
+ DO WHILE ( I.LE.N )
+ IF( IPIV( I ).GT.0 ) THEN
+*
+* 1-by-1 pivot interchange
+*
+* Swap rows i and IPIV(i) in A(1:i,N-i:N)
+*
+ IP = IPIV( I )
+ IF( I.LT.N ) THEN
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( N-I, A( IP, I+1 ), LDA,
+ $ A( I, I+1 ), LDA )
+ END IF
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot interchange
+*
+* Swap rows i-1 and IPIV(i-1) and i and IPIV(i)
+* in A(1:i,N-i:N)
+*
+ I = I + 1
+ IP = -IPIV( I )
+ IP2 = -IPIV( I-1 )
+ IF( I.LT.N ) THEN
+ IF( IP2.NE.(I-1) ) THEN
+ CALL SSWAP( N-I, A( IP2, I+1 ), LDA,
+ $ A( I-1, I+1 ), LDA )
+ END IF
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( N-I, A( IP, I+1 ), LDA,
+ $ A( I, I+1 ), LDA )
+ END IF
+ END IF
+*
+ END IF
+ I = I + 1
+ END DO
+*
+* Revert VALUE
+* Assign superdiagonal entries of D from array E to
+* superdiagonal entries of A.
+*
+ I = N
+ DO WHILE ( I.GT.1 )
+ IF( IPIV( I ).LT.0 ) THEN
+ A( I-1, I ) = E( I )
+ I = I - 1
+ END IF
+ I = I - 1
+ END DO
+*
+* End A is UPPER
+*
+ END IF
+*
+ ELSE
+*
+* Begin A is LOWER
+*
+ IF ( CONVERT ) THEN
+*
+* Convert A (A is lower)
+*
+*
+* Convert VALUE
+* Assign subdiagonal entries of D to array E and zero out
+* corresponding entries in input storage A
+*
+ I = 1
+ E( N ) = ZERO
+ DO WHILE ( I.LE.N )
+ IF( I.LT.N .AND. IPIV(I).LT.0 ) THEN
+ E( I ) = A( I+1, I )
+ E( I+1 ) = ZERO
+ A( I+1, I ) = ZERO
+ I = I + 1
+ ELSE
+ E( I ) = ZERO
+ END IF
+ I = I + 1
+ END DO
+*
+* Convert PERMUTATIONS
+*
+* Apply permutaions to submatrices of lower part of A
+* in factorization order where i increases from 1 to N
+*
+ I = 1
+ DO WHILE ( I.LE.N )
+ IF( IPIV( I ).GT.0 ) THEN
+*
+* 1-by-1 pivot interchange
+*
+* Swap rows i and IPIV(i) in A(i:N,1:i-1)
+*
+ IP = IPIV( I )
+ IF ( I.GT.1 ) THEN
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( I-1, A( I, 1 ), LDA,
+ $ A( IP, 1 ), LDA )
+ END IF
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot interchange
+*
+* Swap rows i and IPIV(i) and i+1 and IPIV(i+1)
+* in A(i:N,1:i-1)
+*
+ IP = -IPIV( I )
+ IP2 = -IPIV( I+1 )
+ IF ( I.GT.1 ) THEN
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( I-1, A( I, 1 ), LDA,
+ $ A( IP, 1 ), LDA )
+ END IF
+ IF( IP2.NE.(I+1) ) THEN
+ CALL SSWAP( I-1, A( I+1, 1 ), LDA,
+ $ A( IP2, 1 ), LDA )
+ END IF
+ END IF
+ I = I + 1
+*
+ END IF
+ I = I + 1
+ END DO
+*
+ ELSE
+*
+* Revert A (A is lower)
+*
+*
+* Revert PERMUTATIONS
+*
+* Apply permutaions to submatrices of lower part of A
+* in reverse factorization order where i decreases from N to 1
+*
+ I = N
+ DO WHILE ( I.GE.1 )
+ IF( IPIV( I ).GT.0 ) THEN
+*
+* 1-by-1 pivot interchange
+*
+* Swap rows i and IPIV(i) in A(i:N,1:i-1)
+*
+ IP = IPIV( I )
+ IF ( I.GT.1 ) THEN
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( I-1, A( IP, 1 ), LDA,
+ $ A( I, 1 ), LDA )
+ END IF
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot interchange
+*
+* Swap rows i+1 and IPIV(i+1) and i and IPIV(i)
+* in A(i:N,1:i-1)
+*
+ I = I - 1
+ IP = -IPIV( I )
+ IP2 = -IPIV( I+1 )
+ IF ( I.GT.1 ) THEN
+ IF( IP2.NE.(I+1) ) THEN
+ CALL SSWAP( I-1, A( IP2, 1 ), LDA,
+ $ A( I+1, 1 ), LDA )
+ END IF
+ IF( IP.NE.I ) THEN
+ CALL SSWAP( I-1, A( IP, 1 ), LDA,
+ $ A( I, 1 ), LDA )
+ END IF
+ END IF
+*
+ END IF
+ I = I - 1
+ END DO
+*
+* Revert VALUE
+* Assign subdiagonal entries of D from array E to
+* subgiagonal entries of A.
+*
+ I = 1
+ DO WHILE ( I.LE.N-1 )
+ IF( IPIV( I ).LT.0 ) THEN
+ A( I + 1, I ) = E( I )
+ I = I + 1
+ END IF
+ I = I + 1
+ END DO
+*
+ END IF
+*
+* End A is LOWER
+*
+ END IF
+
+ RETURN
+*
+* End of SSYCONVF_ROOK
+*
+ END