aboutsummaryrefslogtreecommitdiff
path: root/SRC/zheevd_2stage.f
diff options
context:
space:
mode:
authorRenegade <Renegate@Renegates-MacBook-Pro.local>2016-11-06 20:35:15 -0500
committerRenegade <Renegate@Renegates-MacBook-Pro.local>2016-11-06 20:35:15 -0500
commitb9c9d7631188cdf4c658a808a0748dbef848b863 (patch)
treea18908ffdfd87e880c8ef219fa3fcb7357f307ba /SRC/zheevd_2stage.f
parentf9c3afd2ecda142d2e54a1fad7b7b6c157626166 (diff)
adding the 2stage symmetric eigenvalue routines drivers checking
Diffstat (limited to 'SRC/zheevd_2stage.f')
-rw-r--r--SRC/zheevd_2stage.f451
1 files changed, 451 insertions, 0 deletions
diff --git a/SRC/zheevd_2stage.f b/SRC/zheevd_2stage.f
new file mode 100644
index 00000000..79a0e886
--- /dev/null
+++ b/SRC/zheevd_2stage.f
@@ -0,0 +1,451 @@
+*> \brief <b> ZHEEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
+*
+* @precisions fortran z -> s d c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZHEEVD_2STAGE + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zheevd_2stage.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zheevd_2stage.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zheevd_2stage.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZHEEVD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
+* RWORK, LRWORK, IWORK, LIWORK, INFO )
+*
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBZ, UPLO
+* INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+* INTEGER IWORK( * )
+* DOUBLE PRECISION RWORK( * ), W( * )
+* COMPLEX*16 A( LDA, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZHEEVD_2STAGE computes all eigenvalues and, optionally, eigenvectors of a
+*> complex Hermitian matrix A using the 2stage technique for
+*> the reduction to tridiagonal. If eigenvectors are desired, it uses a
+*> divide and conquer algorithm.
+*>
+*> The divide and conquer algorithm makes very mild assumptions about
+*> floating point arithmetic. It will work on machines with a guard
+*> digit in add/subtract, or on those binary machines without guard
+*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
+*> without guard digits, but we know of none.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBZ
+*> \verbatim
+*> JOBZ is CHARACTER*1
+*> = 'N': Compute eigenvalues only;
+*> = 'V': Compute eigenvalues and eigenvectors.
+*> Not available in this release.
+*> \endverbatim
+*>
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA, N)
+*> On entry, the Hermitian matrix A. If UPLO = 'U', the
+*> leading N-by-N upper triangular part of A contains the
+*> upper triangular part of the matrix A. If UPLO = 'L',
+*> the leading N-by-N lower triangular part of A contains
+*> the lower triangular part of the matrix A.
+*> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
+*> orthonormal eigenvectors of the matrix A.
+*> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
+*> or the upper triangle (if UPLO='U') of A, including the
+*> diagonal, is destroyed.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is DOUBLE PRECISION array, dimension (N)
+*> If INFO = 0, the eigenvalues in ascending order.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK.
+*> If N <= 1, LWORK must be at least 1.
+*> If JOBZ = 'N' and N > 1, LWORK must be queried.
+*> LWORK = MAX(1, dimension) where
+*> dimension = max(stage1,stage2) + (KD+1)*N + N+1
+*> = N*KD + N*max(KD+1,FACTOPTNB)
+*> + max(2*KD*KD, KD*NTHREADS)
+*> + (KD+1)*N + N+1
+*> where KD is the blocking size of the reduction,
+*> FACTOPTNB is the blocking used by the QR or LQ
+*> algorithm, usually FACTOPTNB=128 is a good choice
+*> NTHREADS is the number of threads used when
+*> openMP compilation is enabled, otherwise =1.
+*> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal sizes of the WORK, RWORK and
+*> IWORK arrays, returns these values as the first entries of
+*> the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array,
+*> dimension (LRWORK)
+*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> The dimension of the array RWORK.
+*> If N <= 1, LRWORK must be at least 1.
+*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
+*> If JOBZ = 'V' and N > 1, LRWORK must be at least
+*> 1 + 5*N + 2*N**2.
+*>
+*> If LRWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the optimal sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
+*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+*> \endverbatim
+*>
+*> \param[in] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The dimension of the array IWORK.
+*> If N <= 1, LIWORK must be at least 1.
+*> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
+*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
+*>
+*> If LIWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the optimal sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
+*> to converge; i off-diagonal elements of an intermediate
+*> tridiagonal form did not converge to zero;
+*> if INFO = i and JOBZ = 'V', then the algorithm failed
+*> to compute an eigenvalue while working on the submatrix
+*> lying in rows and columns INFO/(N+1) through
+*> mod(INFO,N+1).
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2016
+*
+*> \ingroup complex16HEeigen
+*
+*> \par Further Details:
+* =====================
+*>
+*> Modified description of INFO. Sven, 16 Feb 05.
+*
+*> \par Contributors:
+* ==================
+*>
+*> Jeff Rutter, Computer Science Division, University of California
+*> at Berkeley, USA
+*>
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> All details about the 2stage techniques are available in:
+*>
+*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
+*> Parallel reduction to condensed forms for symmetric eigenvalue problems
+*> using aggregated fine-grained and memory-aware kernels. In Proceedings
+*> of 2011 International Conference for High Performance Computing,
+*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
+*> Article 8 , 11 pages.
+*> http://doi.acm.org/10.1145/2063384.2063394
+*>
+*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
+*> An improved parallel singular value algorithm and its implementation
+*> for multicore hardware, In Proceedings of 2013 International Conference
+*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
+*> Denver, Colorado, USA, 2013.
+*> Article 90, 12 pages.
+*> http://doi.acm.org/10.1145/2503210.2503292
+*>
+*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
+*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
+*> calculations based on fine-grained memory aware tasks.
+*> International Journal of High Performance Computing Applications.
+*> Volume 28 Issue 2, Pages 196-209, May 2014.
+*> http://hpc.sagepub.com/content/28/2/196
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE ZHEEVD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK,
+ $ RWORK, LRWORK, IWORK, LIWORK, INFO )
+*
+ IMPLICIT NONE
+*
+* -- LAPACK driver routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, LDA, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION RWORK( * ), W( * )
+ COMPLEX*16 A( LDA, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+ COMPLEX*16 CONE
+ PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LOWER, LQUERY, WANTZ
+ INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWK2,
+ $ INDWRK, ISCALE, LIWMIN, LLRWK, LLWORK,
+ $ LLWRK2, LRWMIN, LWMIN,
+ $ LHTRD, LWTRD, KD, IB, INDHOUS
+
+
+ DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
+ $ SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANHE
+ EXTERNAL LSAME, ILAENV, DLAMCH, ZLANHE
+* ..
+* .. External Subroutines ..
+ EXTERNAL DSCAL, DSTERF, XERBLA, ZLACPY, ZLASCL,
+ $ ZSTEDC, ZUNMTR, ZHETRD_2STAGE
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, MAX, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ LOWER = LSAME( UPLO, 'L' )
+ LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
+ INFO = -5
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ IF( N.LE.1 ) THEN
+ LWMIN = 1
+ LRWMIN = 1
+ LIWMIN = 1
+ ELSE
+ KD = ILAENV( 17, 'ZHETRD_2STAGE', JOBZ, N, -1, -1, -1 )
+ IB = ILAENV( 18, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1 )
+ LHTRD = ILAENV( 19, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
+ LWTRD = ILAENV( 20, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 )
+ IF( WANTZ ) THEN
+ LWMIN = 2*N + N*N
+ LRWMIN = 1 + 5*N + 2*N**2
+ LIWMIN = 3 + 5*N
+ ELSE
+ LWMIN = N + 1 + LHTRD + LWTRD
+ LRWMIN = N
+ LIWMIN = 1
+ END IF
+ END IF
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -8
+ ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -10
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -12
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHEEVD_2STAGE', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( N.EQ.1 ) THEN
+ W( 1 ) = DBLE( A( 1, 1 ) )
+ IF( WANTZ )
+ $ A( 1, 1 ) = CONE
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ EPS = DLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = SQRT( BIGNUM )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ANRM = ZLANHE( 'M', UPLO, N, A, LDA, RWORK )
+ ISCALE = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 )
+ $ CALL ZLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
+*
+* Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
+*
+ INDE = 1
+ INDRWK = INDE + N
+ LLRWK = LRWORK - INDRWK + 1
+ INDTAU = 1
+ INDHOUS = INDTAU + N
+ INDWRK = INDHOUS + LHTRD
+ LLWORK = LWORK - INDWRK + 1
+ INDWK2 = INDWRK + N*N
+ LLWRK2 = LWORK - INDWK2 + 1
+*
+ CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, W, RWORK( INDE ),
+ $ WORK( INDTAU ), WORK( INDHOUS ), LHTRD,
+ $ WORK( INDWRK ), LLWORK, IINFO )
+*
+* For eigenvalues only, call DSTERF. For eigenvectors, first call
+* ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
+* tridiagonal matrix, then call ZUNMTR to multiply it to the
+* Householder transformations represented as Householder vectors in
+* A.
+*
+ IF( .NOT.WANTZ ) THEN
+ CALL DSTERF( N, W, RWORK( INDE ), INFO )
+ ELSE
+ CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK( INDWRK ), N,
+ $ WORK( INDWK2 ), LLWRK2, RWORK( INDRWK ), LLRWK,
+ $ IWORK, LIWORK, INFO )
+ CALL ZUNMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
+ $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
+ CALL ZLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = N
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ RETURN
+*
+* End of ZHEEVD_2STAGE
+*
+ END