aboutsummaryrefslogtreecommitdiff
path: root/SRC/zlags2.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zlags2.f
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zlags2.f')
-rw-r--r--SRC/zlags2.f308
1 files changed, 308 insertions, 0 deletions
diff --git a/SRC/zlags2.f b/SRC/zlags2.f
new file mode 100644
index 00000000..293f75e4
--- /dev/null
+++ b/SRC/zlags2.f
@@ -0,0 +1,308 @@
+ SUBROUTINE ZLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
+ $ SNV, CSQ, SNQ )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ LOGICAL UPPER
+ DOUBLE PRECISION A1, A3, B1, B3, CSQ, CSU, CSV
+ COMPLEX*16 A2, B2, SNQ, SNU, SNV
+* ..
+*
+* Purpose
+* =======
+*
+* ZLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
+* that if ( UPPER ) then
+*
+* U'*A*Q = U'*( A1 A2 )*Q = ( x 0 )
+* ( 0 A3 ) ( x x )
+* and
+* V'*B*Q = V'*( B1 B2 )*Q = ( x 0 )
+* ( 0 B3 ) ( x x )
+*
+* or if ( .NOT.UPPER ) then
+*
+* U'*A*Q = U'*( A1 0 )*Q = ( x x )
+* ( A2 A3 ) ( 0 x )
+* and
+* V'*B*Q = V'*( B1 0 )*Q = ( x x )
+* ( B2 B3 ) ( 0 x )
+* where
+*
+* U = ( CSU SNU ), V = ( CSV SNV ),
+* ( -CONJG(SNU) CSU ) ( -CONJG(SNV) CSV )
+*
+* Q = ( CSQ SNQ )
+* ( -CONJG(SNQ) CSQ )
+*
+* Z' denotes the conjugate transpose of Z.
+*
+* The rows of the transformed A and B are parallel. Moreover, if the
+* input 2-by-2 matrix A is not zero, then the transformed (1,1) entry
+* of A is not zero. If the input matrices A and B are both not zero,
+* then the transformed (2,2) element of B is not zero, except when the
+* first rows of input A and B are parallel and the second rows are
+* zero.
+*
+* Arguments
+* =========
+*
+* UPPER (input) LOGICAL
+* = .TRUE.: the input matrices A and B are upper triangular.
+* = .FALSE.: the input matrices A and B are lower triangular.
+*
+* A1 (input) DOUBLE PRECISION
+* A2 (input) COMPLEX*16
+* A3 (input) DOUBLE PRECISION
+* On entry, A1, A2 and A3 are elements of the input 2-by-2
+* upper (lower) triangular matrix A.
+*
+* B1 (input) DOUBLE PRECISION
+* B2 (input) COMPLEX*16
+* B3 (input) DOUBLE PRECISION
+* On entry, B1, B2 and B3 are elements of the input 2-by-2
+* upper (lower) triangular matrix B.
+*
+* CSU (output) DOUBLE PRECISION
+* SNU (output) COMPLEX*16
+* The desired unitary matrix U.
+*
+* CSV (output) DOUBLE PRECISION
+* SNV (output) COMPLEX*16
+* The desired unitary matrix V.
+*
+* CSQ (output) DOUBLE PRECISION
+* SNQ (output) COMPLEX*16
+* The desired unitary matrix Q.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION A, AUA11, AUA12, AUA21, AUA22, AVB12, AVB11,
+ $ AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2,
+ $ SNL, SNR, UA11R, UA22R, VB11R, VB22R
+ COMPLEX*16 B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11,
+ $ VB12, VB21, VB22
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLASV2, ZLARTG
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION ABS1
+* ..
+* .. Statement Function definitions ..
+ ABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) )
+* ..
+* .. Executable Statements ..
+*
+ IF( UPPER ) THEN
+*
+* Input matrices A and B are upper triangular matrices
+*
+* Form matrix C = A*adj(B) = ( a b )
+* ( 0 d )
+*
+ A = A1*B3
+ D = A3*B1
+ B = A2*B1 - A1*B2
+ FB = ABS( B )
+*
+* Transform complex 2-by-2 matrix C to real matrix by unitary
+* diagonal matrix diag(1,D1).
+*
+ D1 = ONE
+ IF( FB.NE.ZERO )
+ $ D1 = B / FB
+*
+* The SVD of real 2 by 2 triangular C
+*
+* ( CSL -SNL )*( A B )*( CSR SNR ) = ( R 0 )
+* ( SNL CSL ) ( 0 D ) ( -SNR CSR ) ( 0 T )
+*
+ CALL DLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL )
+*
+ IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) )
+ $ THEN
+*
+* Compute the (1,1) and (1,2) elements of U'*A and V'*B,
+* and (1,2) element of |U|'*|A| and |V|'*|B|.
+*
+ UA11R = CSL*A1
+ UA12 = CSL*A2 + D1*SNL*A3
+*
+ VB11R = CSR*B1
+ VB12 = CSR*B2 + D1*SNR*B3
+*
+ AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 )
+ AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 )
+*
+* zero (1,2) elements of U'*A and V'*B
+*
+ IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( -DCMPLX( VB11R ), DCONJG( VB12 ), CSQ, SNQ,
+ $ R )
+ ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( -DCMPLX( UA11R ), DCONJG( UA12 ), CSQ, SNQ,
+ $ R )
+ ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 /
+ $ ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN
+ CALL ZLARTG( -DCMPLX( UA11R ), DCONJG( UA12 ), CSQ, SNQ,
+ $ R )
+ ELSE
+ CALL ZLARTG( -DCMPLX( VB11R ), DCONJG( VB12 ), CSQ, SNQ,
+ $ R )
+ END IF
+*
+ CSU = CSL
+ SNU = -D1*SNL
+ CSV = CSR
+ SNV = -D1*SNR
+*
+ ELSE
+*
+* Compute the (2,1) and (2,2) elements of U'*A and V'*B,
+* and (2,2) element of |U|'*|A| and |V|'*|B|.
+*
+ UA21 = -DCONJG( D1 )*SNL*A1
+ UA22 = -DCONJG( D1 )*SNL*A2 + CSL*A3
+*
+ VB21 = -DCONJG( D1 )*SNR*B1
+ VB22 = -DCONJG( D1 )*SNR*B2 + CSR*B3
+*
+ AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 )
+ AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 )
+*
+* zero (2,2) elements of U'*A and V'*B, and then swap.
+*
+ IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( -DCONJG( VB21 ), DCONJG( VB22 ), CSQ, SNQ,
+ $ R )
+ ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( -DCONJG( UA21 ), DCONJG( UA22 ), CSQ, SNQ,
+ $ R )
+ ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 /
+ $ ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN
+ CALL ZLARTG( -DCONJG( UA21 ), DCONJG( UA22 ), CSQ, SNQ,
+ $ R )
+ ELSE
+ CALL ZLARTG( -DCONJG( VB21 ), DCONJG( VB22 ), CSQ, SNQ,
+ $ R )
+ END IF
+*
+ CSU = SNL
+ SNU = D1*CSL
+ CSV = SNR
+ SNV = D1*CSR
+*
+ END IF
+*
+ ELSE
+*
+* Input matrices A and B are lower triangular matrices
+*
+* Form matrix C = A*adj(B) = ( a 0 )
+* ( c d )
+*
+ A = A1*B3
+ D = A3*B1
+ C = A2*B3 - A3*B2
+ FC = ABS( C )
+*
+* Transform complex 2-by-2 matrix C to real matrix by unitary
+* diagonal matrix diag(d1,1).
+*
+ D1 = ONE
+ IF( FC.NE.ZERO )
+ $ D1 = C / FC
+*
+* The SVD of real 2 by 2 triangular C
+*
+* ( CSL -SNL )*( A 0 )*( CSR SNR ) = ( R 0 )
+* ( SNL CSL ) ( C D ) ( -SNR CSR ) ( 0 T )
+*
+ CALL DLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL )
+*
+ IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) )
+ $ THEN
+*
+* Compute the (2,1) and (2,2) elements of U'*A and V'*B,
+* and (2,1) element of |U|'*|A| and |V|'*|B|.
+*
+ UA21 = -D1*SNR*A1 + CSR*A2
+ UA22R = CSR*A3
+*
+ VB21 = -D1*SNL*B1 + CSL*B2
+ VB22R = CSL*B3
+*
+ AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 )
+ AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 )
+*
+* zero (2,1) elements of U'*A and V'*B.
+*
+ IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( DCMPLX( VB22R ), VB21, CSQ, SNQ, R )
+ ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( DCMPLX( UA22R ), UA21, CSQ, SNQ, R )
+ ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 /
+ $ ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN
+ CALL ZLARTG( DCMPLX( UA22R ), UA21, CSQ, SNQ, R )
+ ELSE
+ CALL ZLARTG( DCMPLX( VB22R ), VB21, CSQ, SNQ, R )
+ END IF
+*
+ CSU = CSR
+ SNU = -DCONJG( D1 )*SNR
+ CSV = CSL
+ SNV = -DCONJG( D1 )*SNL
+*
+ ELSE
+*
+* Compute the (1,1) and (1,2) elements of U'*A and V'*B,
+* and (1,1) element of |U|'*|A| and |V|'*|B|.
+*
+ UA11 = CSR*A1 + DCONJG( D1 )*SNR*A2
+ UA12 = DCONJG( D1 )*SNR*A3
+*
+ VB11 = CSL*B1 + DCONJG( D1 )*SNL*B2
+ VB12 = DCONJG( D1 )*SNL*B3
+*
+ AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 )
+ AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 )
+*
+* zero (1,1) elements of U'*A and V'*B, and then swap.
+*
+ IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( VB12, VB11, CSQ, SNQ, R )
+ ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN
+ CALL ZLARTG( UA12, UA11, CSQ, SNQ, R )
+ ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 /
+ $ ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN
+ CALL ZLARTG( UA12, UA11, CSQ, SNQ, R )
+ ELSE
+ CALL ZLARTG( VB12, VB11, CSQ, SNQ, R )
+ END IF
+*
+ CSU = SNR
+ SNU = DCONJG( D1 )*CSR
+ CSV = SNL
+ SNV = DCONJG( D1 )*CSL
+*
+ END IF
+*
+ END IF
+*
+ RETURN
+*
+* End of ZLAGS2
+*
+ END