aboutsummaryrefslogtreecommitdiff
path: root/SRC/zlarzt.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zlarzt.f
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zlarzt.f')
-rw-r--r--SRC/zlarzt.f186
1 files changed, 186 insertions, 0 deletions
diff --git a/SRC/zlarzt.f b/SRC/zlarzt.f
new file mode 100644
index 00000000..9242ed36
--- /dev/null
+++ b/SRC/zlarzt.f
@@ -0,0 +1,186 @@
+ SUBROUTINE ZLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER DIRECT, STOREV
+ INTEGER K, LDT, LDV, N
+* ..
+* .. Array Arguments ..
+ COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZLARZT forms the triangular factor T of a complex block reflector
+* H of order > n, which is defined as a product of k elementary
+* reflectors.
+*
+* If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
+*
+* If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
+*
+* If STOREV = 'C', the vector which defines the elementary reflector
+* H(i) is stored in the i-th column of the array V, and
+*
+* H = I - V * T * V'
+*
+* If STOREV = 'R', the vector which defines the elementary reflector
+* H(i) is stored in the i-th row of the array V, and
+*
+* H = I - V' * T * V
+*
+* Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
+*
+* Arguments
+* =========
+*
+* DIRECT (input) CHARACTER*1
+* Specifies the order in which the elementary reflectors are
+* multiplied to form the block reflector:
+* = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
+* = 'B': H = H(k) . . . H(2) H(1) (Backward)
+*
+* STOREV (input) CHARACTER*1
+* Specifies how the vectors which define the elementary
+* reflectors are stored (see also Further Details):
+* = 'C': columnwise (not supported yet)
+* = 'R': rowwise
+*
+* N (input) INTEGER
+* The order of the block reflector H. N >= 0.
+*
+* K (input) INTEGER
+* The order of the triangular factor T (= the number of
+* elementary reflectors). K >= 1.
+*
+* V (input/output) COMPLEX*16 array, dimension
+* (LDV,K) if STOREV = 'C'
+* (LDV,N) if STOREV = 'R'
+* The matrix V. See further details.
+*
+* LDV (input) INTEGER
+* The leading dimension of the array V.
+* If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
+*
+* TAU (input) COMPLEX*16 array, dimension (K)
+* TAU(i) must contain the scalar factor of the elementary
+* reflector H(i).
+*
+* T (output) COMPLEX*16 array, dimension (LDT,K)
+* The k by k triangular factor T of the block reflector.
+* If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
+* lower triangular. The rest of the array is not used.
+*
+* LDT (input) INTEGER
+* The leading dimension of the array T. LDT >= K.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
+*
+* The shape of the matrix V and the storage of the vectors which define
+* the H(i) is best illustrated by the following example with n = 5 and
+* k = 3. The elements equal to 1 are not stored; the corresponding
+* array elements are modified but restored on exit. The rest of the
+* array is not used.
+*
+* DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
+*
+* ______V_____
+* ( v1 v2 v3 ) / \
+* ( v1 v2 v3 ) ( v1 v1 v1 v1 v1 . . . . 1 )
+* V = ( v1 v2 v3 ) ( v2 v2 v2 v2 v2 . . . 1 )
+* ( v1 v2 v3 ) ( v3 v3 v3 v3 v3 . . 1 )
+* ( v1 v2 v3 )
+* . . .
+* . . .
+* 1 . .
+* 1 .
+* 1
+*
+* DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
+*
+* ______V_____
+* 1 / \
+* . 1 ( 1 . . . . v1 v1 v1 v1 v1 )
+* . . 1 ( . 1 . . . v2 v2 v2 v2 v2 )
+* . . . ( . . 1 . . v3 v3 v3 v3 v3 )
+* . . .
+* ( v1 v2 v3 )
+* ( v1 v2 v3 )
+* V = ( v1 v2 v3 )
+* ( v1 v2 v3 )
+* ( v1 v2 v3 )
+*
+* =====================================================================
+*
+* .. Parameters ..
+ COMPLEX*16 ZERO
+ PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I, INFO, J
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZGEMV, ZLACGV, ZTRMV
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. Executable Statements ..
+*
+* Check for currently supported options
+*
+ INFO = 0
+ IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
+ INFO = -2
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZLARZT', -INFO )
+ RETURN
+ END IF
+*
+ DO 20 I = K, 1, -1
+ IF( TAU( I ).EQ.ZERO ) THEN
+*
+* H(i) = I
+*
+ DO 10 J = I, K
+ T( J, I ) = ZERO
+ 10 CONTINUE
+ ELSE
+*
+* general case
+*
+ IF( I.LT.K ) THEN
+*
+* T(i+1:k,i) = - tau(i) * V(i+1:k,1:n) * V(i,1:n)'
+*
+ CALL ZLACGV( N, V( I, 1 ), LDV )
+ CALL ZGEMV( 'No transpose', K-I, N, -TAU( I ),
+ $ V( I+1, 1 ), LDV, V( I, 1 ), LDV, ZERO,
+ $ T( I+1, I ), 1 )
+ CALL ZLACGV( N, V( I, 1 ), LDV )
+*
+* T(i+1:k,i) = T(i+1:k,i+1:k) * T(i+1:k,i)
+*
+ CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
+ $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
+ END IF
+ T( I, I ) = TAU( I )
+ END IF
+ 20 CONTINUE
+ RETURN
+*
+* End of ZLARZT
+*
+ END