aboutsummaryrefslogtreecommitdiff
path: root/SRC/zptrfs.f
diff options
context:
space:
mode:
authorjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
committerjason <jason@8a072113-8704-0410-8d35-dd094bca7971>2008-10-28 01:38:50 +0000
commitbaba851215b44ac3b60b9248eb02bcce7eb76247 (patch)
tree8c0f5c006875532a30d4409f5e94b0f310ff00a7 /SRC/zptrfs.f
Move LAPACK trunk into position.
Diffstat (limited to 'SRC/zptrfs.f')
-rw-r--r--SRC/zptrfs.f366
1 files changed, 366 insertions, 0 deletions
diff --git a/SRC/zptrfs.f b/SRC/zptrfs.f
new file mode 100644
index 00000000..26398365
--- /dev/null
+++ b/SRC/zptrfs.f
@@ -0,0 +1,366 @@
+ SUBROUTINE ZPTRFS( UPLO, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
+ $ FERR, BERR, WORK, RWORK, INFO )
+*
+* -- LAPACK routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, LDB, LDX, N, NRHS
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION BERR( * ), D( * ), DF( * ), FERR( * ),
+ $ RWORK( * )
+ COMPLEX*16 B( LDB, * ), E( * ), EF( * ), WORK( * ),
+ $ X( LDX, * )
+* ..
+*
+* Purpose
+* =======
+*
+* ZPTRFS improves the computed solution to a system of linear
+* equations when the coefficient matrix is Hermitian positive definite
+* and tridiagonal, and provides error bounds and backward error
+* estimates for the solution.
+*
+* Arguments
+* =========
+*
+* UPLO (input) CHARACTER*1
+* Specifies whether the superdiagonal or the subdiagonal of the
+* tridiagonal matrix A is stored and the form of the
+* factorization:
+* = 'U': E is the superdiagonal of A, and A = U**H*D*U;
+* = 'L': E is the subdiagonal of A, and A = L*D*L**H.
+* (The two forms are equivalent if A is real.)
+*
+* N (input) INTEGER
+* The order of the matrix A. N >= 0.
+*
+* NRHS (input) INTEGER
+* The number of right hand sides, i.e., the number of columns
+* of the matrix B. NRHS >= 0.
+*
+* D (input) DOUBLE PRECISION array, dimension (N)
+* The n real diagonal elements of the tridiagonal matrix A.
+*
+* E (input) COMPLEX*16 array, dimension (N-1)
+* The (n-1) off-diagonal elements of the tridiagonal matrix A
+* (see UPLO).
+*
+* DF (input) DOUBLE PRECISION array, dimension (N)
+* The n diagonal elements of the diagonal matrix D from
+* the factorization computed by ZPTTRF.
+*
+* EF (input) COMPLEX*16 array, dimension (N-1)
+* The (n-1) off-diagonal elements of the unit bidiagonal
+* factor U or L from the factorization computed by ZPTTRF
+* (see UPLO).
+*
+* B (input) COMPLEX*16 array, dimension (LDB,NRHS)
+* The right hand side matrix B.
+*
+* LDB (input) INTEGER
+* The leading dimension of the array B. LDB >= max(1,N).
+*
+* X (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
+* On entry, the solution matrix X, as computed by ZPTTRS.
+* On exit, the improved solution matrix X.
+*
+* LDX (input) INTEGER
+* The leading dimension of the array X. LDX >= max(1,N).
+*
+* FERR (output) DOUBLE PRECISION array, dimension (NRHS)
+* The forward error bound for each solution vector
+* X(j) (the j-th column of the solution matrix X).
+* If XTRUE is the true solution corresponding to X(j), FERR(j)
+* is an estimated upper bound for the magnitude of the largest
+* element in (X(j) - XTRUE) divided by the magnitude of the
+* largest element in X(j).
+*
+* BERR (output) DOUBLE PRECISION array, dimension (NRHS)
+* The componentwise relative backward error of each solution
+* vector X(j) (i.e., the smallest relative change in
+* any element of A or B that makes X(j) an exact solution).
+*
+* WORK (workspace) COMPLEX*16 array, dimension (N)
+*
+* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
+*
+* INFO (output) INTEGER
+* = 0: successful exit
+* < 0: if INFO = -i, the i-th argument had an illegal value
+*
+* Internal Parameters
+* ===================
+*
+* ITMAX is the maximum number of steps of iterative refinement.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ INTEGER ITMAX
+ PARAMETER ( ITMAX = 5 )
+ DOUBLE PRECISION ZERO
+ PARAMETER ( ZERO = 0.0D+0 )
+ DOUBLE PRECISION ONE
+ PARAMETER ( ONE = 1.0D+0 )
+ DOUBLE PRECISION TWO
+ PARAMETER ( TWO = 2.0D+0 )
+ DOUBLE PRECISION THREE
+ PARAMETER ( THREE = 3.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL UPPER
+ INTEGER COUNT, I, IX, J, NZ
+ DOUBLE PRECISION EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
+ COMPLEX*16 BI, CX, DX, EX, ZDUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IDAMAX
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL LSAME, IDAMAX, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA, ZAXPY, ZPTTRS
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION CABS1
+* ..
+* .. Statement Function definitions ..
+ CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ UPPER = LSAME( UPLO, 'U' )
+ IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
+ INFO = -9
+ ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
+ INFO = -11
+ END IF
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZPTRFS', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
+ DO 10 J = 1, NRHS
+ FERR( J ) = ZERO
+ BERR( J ) = ZERO
+ 10 CONTINUE
+ RETURN
+ END IF
+*
+* NZ = maximum number of nonzero elements in each row of A, plus 1
+*
+ NZ = 4
+ EPS = DLAMCH( 'Epsilon' )
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ SAFE1 = NZ*SAFMIN
+ SAFE2 = SAFE1 / EPS
+*
+* Do for each right hand side
+*
+ DO 100 J = 1, NRHS
+*
+ COUNT = 1
+ LSTRES = THREE
+ 20 CONTINUE
+*
+* Loop until stopping criterion is satisfied.
+*
+* Compute residual R = B - A * X. Also compute
+* abs(A)*abs(x) + abs(b) for use in the backward error bound.
+*
+ IF( UPPER ) THEN
+ IF( N.EQ.1 ) THEN
+ BI = B( 1, J )
+ DX = D( 1 )*X( 1, J )
+ WORK( 1 ) = BI - DX
+ RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
+ ELSE
+ BI = B( 1, J )
+ DX = D( 1 )*X( 1, J )
+ EX = E( 1 )*X( 2, J )
+ WORK( 1 ) = BI - DX - EX
+ RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
+ $ CABS1( E( 1 ) )*CABS1( X( 2, J ) )
+ DO 30 I = 2, N - 1
+ BI = B( I, J )
+ CX = DCONJG( E( I-1 ) )*X( I-1, J )
+ DX = D( I )*X( I, J )
+ EX = E( I )*X( I+1, J )
+ WORK( I ) = BI - CX - DX - EX
+ RWORK( I ) = CABS1( BI ) +
+ $ CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
+ $ CABS1( DX ) + CABS1( E( I ) )*
+ $ CABS1( X( I+1, J ) )
+ 30 CONTINUE
+ BI = B( N, J )
+ CX = DCONJG( E( N-1 ) )*X( N-1, J )
+ DX = D( N )*X( N, J )
+ WORK( N ) = BI - CX - DX
+ RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
+ $ CABS1( X( N-1, J ) ) + CABS1( DX )
+ END IF
+ ELSE
+ IF( N.EQ.1 ) THEN
+ BI = B( 1, J )
+ DX = D( 1 )*X( 1, J )
+ WORK( 1 ) = BI - DX
+ RWORK( 1 ) = CABS1( BI ) + CABS1( DX )
+ ELSE
+ BI = B( 1, J )
+ DX = D( 1 )*X( 1, J )
+ EX = DCONJG( E( 1 ) )*X( 2, J )
+ WORK( 1 ) = BI - DX - EX
+ RWORK( 1 ) = CABS1( BI ) + CABS1( DX ) +
+ $ CABS1( E( 1 ) )*CABS1( X( 2, J ) )
+ DO 40 I = 2, N - 1
+ BI = B( I, J )
+ CX = E( I-1 )*X( I-1, J )
+ DX = D( I )*X( I, J )
+ EX = DCONJG( E( I ) )*X( I+1, J )
+ WORK( I ) = BI - CX - DX - EX
+ RWORK( I ) = CABS1( BI ) +
+ $ CABS1( E( I-1 ) )*CABS1( X( I-1, J ) ) +
+ $ CABS1( DX ) + CABS1( E( I ) )*
+ $ CABS1( X( I+1, J ) )
+ 40 CONTINUE
+ BI = B( N, J )
+ CX = E( N-1 )*X( N-1, J )
+ DX = D( N )*X( N, J )
+ WORK( N ) = BI - CX - DX
+ RWORK( N ) = CABS1( BI ) + CABS1( E( N-1 ) )*
+ $ CABS1( X( N-1, J ) ) + CABS1( DX )
+ END IF
+ END IF
+*
+* Compute componentwise relative backward error from formula
+*
+* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) )
+*
+* where abs(Z) is the componentwise absolute value of the matrix
+* or vector Z. If the i-th component of the denominator is less
+* than SAFE2, then SAFE1 is added to the i-th components of the
+* numerator and denominator before dividing.
+*
+ S = ZERO
+ DO 50 I = 1, N
+ IF( RWORK( I ).GT.SAFE2 ) THEN
+ S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
+ ELSE
+ S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
+ $ ( RWORK( I )+SAFE1 ) )
+ END IF
+ 50 CONTINUE
+ BERR( J ) = S
+*
+* Test stopping criterion. Continue iterating if
+* 1) The residual BERR(J) is larger than machine epsilon, and
+* 2) BERR(J) decreased by at least a factor of 2 during the
+* last iteration, and
+* 3) At most ITMAX iterations tried.
+*
+ IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
+ $ COUNT.LE.ITMAX ) THEN
+*
+* Update solution and try again.
+*
+ CALL ZPTTRS( UPLO, N, 1, DF, EF, WORK, N, INFO )
+ CALL ZAXPY( N, DCMPLX( ONE ), WORK, 1, X( 1, J ), 1 )
+ LSTRES = BERR( J )
+ COUNT = COUNT + 1
+ GO TO 20
+ END IF
+*
+* Bound error from formula
+*
+* norm(X - XTRUE) / norm(X) .le. FERR =
+* norm( abs(inv(A))*
+* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X)
+*
+* where
+* norm(Z) is the magnitude of the largest component of Z
+* inv(A) is the inverse of A
+* abs(Z) is the componentwise absolute value of the matrix or
+* vector Z
+* NZ is the maximum number of nonzeros in any row of A, plus 1
+* EPS is machine epsilon
+*
+* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B))
+* is incremented by SAFE1 if the i-th component of
+* abs(A)*abs(X) + abs(B) is less than SAFE2.
+*
+ DO 60 I = 1, N
+ IF( RWORK( I ).GT.SAFE2 ) THEN
+ RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
+ ELSE
+ RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
+ $ SAFE1
+ END IF
+ 60 CONTINUE
+ IX = IDAMAX( N, RWORK, 1 )
+ FERR( J ) = RWORK( IX )
+*
+* Estimate the norm of inv(A).
+*
+* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
+*
+* m(i,j) = abs(A(i,j)), i = j,
+* m(i,j) = -abs(A(i,j)), i .ne. j,
+*
+* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'.
+*
+* Solve M(L) * x = e.
+*
+ RWORK( 1 ) = ONE
+ DO 70 I = 2, N
+ RWORK( I ) = ONE + RWORK( I-1 )*ABS( EF( I-1 ) )
+ 70 CONTINUE
+*
+* Solve D * M(L)' * x = b.
+*
+ RWORK( N ) = RWORK( N ) / DF( N )
+ DO 80 I = N - 1, 1, -1
+ RWORK( I ) = RWORK( I ) / DF( I ) +
+ $ RWORK( I+1 )*ABS( EF( I ) )
+ 80 CONTINUE
+*
+* Compute norm(inv(A)) = max(x(i)), 1<=i<=n.
+*
+ IX = IDAMAX( N, RWORK, 1 )
+ FERR( J ) = FERR( J )*ABS( RWORK( IX ) )
+*
+* Normalize error.
+*
+ LSTRES = ZERO
+ DO 90 I = 1, N
+ LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
+ 90 CONTINUE
+ IF( LSTRES.NE.ZERO )
+ $ FERR( J ) = FERR( J ) / LSTRES
+*
+ 100 CONTINUE
+*
+ RETURN
+*
+* End of ZPTRFS
+*
+ END