aboutsummaryrefslogtreecommitdiff
path: root/SRC
diff options
context:
space:
mode:
authorigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2012-11-10 02:33:57 +0000
committerigor175 <igor175@8a072113-8704-0410-8d35-dd094bca7971>2012-11-10 02:33:57 +0000
commitaad0dfbf803be14e8d38c16ea47c696d767cd618 (patch)
treebee9a5b684cd3053fa8313ceb41fac74b8d7215c /SRC
parent0ba273bce8a653c888148e40bb336a07e133a8e5 (diff)
added clahef_rook.f and zlahef_rook.f
Diffstat (limited to 'SRC')
-rw-r--r--SRC/CMakeLists.txt20
-rw-r--r--SRC/Makefile20
-rw-r--r--SRC/clahef_rook.f1125
-rw-r--r--SRC/zlahef_rook.f1125
4 files changed, 2270 insertions, 20 deletions
diff --git a/SRC/CMakeLists.txt b/SRC/CMakeLists.txt
index e0935de2..0c9bd5fc 100644
--- a/SRC/CMakeLists.txt
+++ b/SRC/CMakeLists.txt
@@ -113,7 +113,7 @@ set(SLASRC
slaqtr.f slar1v.f slar2v.f ilaslr.f ilaslc.f
slarf.f slarfb.f slarfg.f slarfgp.f slarft.f slarfx.f slargv.f
slarrv.f slartv.f
- slarz.f slarzb.f slarzt.f slaswp.f slasy2.f slasyf.f
+ slarz.f slarzb.f slarzt.f slaswp.f slasy2.f slasyf.f slasyf_rook.f
slatbs.f slatdf.f slatps.f slatrd.f slatrs.f slatrz.f slatzm.f
slauu2.f slauum.f sopgtr.f sopmtr.f sorg2l.f sorg2r.f
sorgbr.f sorghr.f sorgl2.f sorglq.f sorgql.f sorgqr.f sorgr2.f
@@ -134,7 +134,7 @@ set(SLASRC
ssygst.f ssygv.f ssygvd.f ssygvx.f ssyrfs.f ssysv.f ssysvx.f
ssytd2.f ssytf2.f ssytrd.f ssytrf.f ssytri.f ssytri2.f ssytri2x.f
ssyswapr.f ssytrs.f ssytrs2.f ssyconv.f
- ssytf2_rook.f slasyf_rook.f ssytrf_rook.f ssytrs_rook.f
+ ssytf2_rook.f ssytrf_rook.f ssytrs_rook.f
ssytri_rook.f ssycon_rook.f ssysv_rook.f
stbcon.f
stbrfs.f stbtrs.f stgevc.f stgex2.f stgexc.f stgsen.f
@@ -187,7 +187,7 @@ set(CLASRC
clacgv.f clacon.f clacn2.f clacp2.f clacpy.f clacrm.f clacrt.f cladiv.f
claed0.f claed7.f claed8.f
claein.f claesy.f claev2.f clags2.f clagtm.f
- clahef.f clahqr.f
+ clahef.f clahef_rook.f clahqr.f
clahrd.f clahr2.f claic1.f clals0.f clalsa.f clalsd.f clangb.f clange.f clangt.f
clanhb.f clanhe.f
clanhp.f clanhs.f clanht.f clansb.f clansp.f clansy.f clantb.f
@@ -198,7 +198,7 @@ set(CLASRC
clarf.f clarfb.f clarfg.f clarfgp.f clarft.f
clarfx.f clargv.f clarnv.f clarrv.f clartg.f clartv.f
clarz.f clarzb.f clarzt.f clascl.f claset.f clasr.f classq.f
- claswp.f clasyf.f clatbs.f clatdf.f clatps.f clatrd.f clatrs.f clatrz.f
+ claswp.f clasyf.f clasyf_rook.f clatbs.f clatdf.f clatps.f clatrd.f clatrs.f clatrz.f
clatzm.f clauu2.f clauum.f cpbcon.f cpbequ.f cpbrfs.f cpbstf.f cpbsv.f
cpbsvx.f cpbtf2.f cpbtrf.f cpbtrs.f cpocon.f cpoequ.f cporfs.f
cposv.f cposvx.f cpotf2.f cpotrf.f cpotri.f cpotrs.f cpstrf.f cpstf2.f
@@ -210,7 +210,7 @@ set(CLASRC
csyr.f csyrfs.f csysv.f csysvx.f csytf2.f csytrf.f csytri.f
csytri2.f csytri2x.f csyswapr.f
csytrs.f csytrs2.f csyconv.f
- csytf2_rook.f clasyf_rook.f csytrf_rook.f csytrs_rook.f
+ csytf2_rook.f csytrf_rook.f csytrs_rook.f
csytri_rook.f csycon_rook.f csysv_rook.f
ctbcon.f ctbrfs.f ctbtrs.f ctgevc.f ctgex2.f
ctgexc.f ctgsen.f ctgsja.f ctgsna.f ctgsy2.f ctgsyl.f ctpcon.f
@@ -267,7 +267,7 @@ set(DLASRC
dlaqtr.f dlar1v.f dlar2v.f iladlr.f iladlc.f
dlarf.f dlarfb.f dlarfg.f dlarfgp.f dlarft.f dlarfx.f dlargv.f
dlarrv.f dlartv.f
- dlarz.f dlarzb.f dlarzt.f dlaswp.f dlasy2.f dlasyf.f
+ dlarz.f dlarzb.f dlarzt.f dlaswp.f dlasy2.f dlasyf.f dlasyf_rook.f
dlatbs.f dlatdf.f dlatps.f dlatrd.f dlatrs.f dlatrz.f dlatzm.f dlauu2.f
dlauum.f dopgtr.f dopmtr.f dorg2l.f dorg2r.f
dorgbr.f dorghr.f dorgl2.f dorglq.f dorgql.f dorgqr.f dorgr2.f
@@ -289,7 +289,7 @@ set(DLASRC
dsysv.f dsysvx.f
dsytd2.f dsytf2.f dsytrd.f dsytrf.f dsytri.f dsytrs.f dsytrs2.f
dsytri2.f dsytri2x.f dsyswapr.f dsyconv.f
- dsytf2_rook.f dlasyf_rook.f dsytrf_rook.f dsytrs_rook.f
+ dsytf2_rook.f dsytrf_rook.f dsytrs_rook.f
dsytri_rook.f dsycon_rook.f dsysv_rook.f
dtbcon.f
dtbrfs.f dtbtrs.f dtgevc.f dtgex2.f dtgexc.f dtgsen.f
@@ -340,7 +340,7 @@ set(ZLASRC
zlacgv.f zlacon.f zlacn2.f zlacp2.f zlacpy.f zlacrm.f zlacrt.f zladiv.f
zlaed0.f zlaed7.f zlaed8.f
zlaein.f zlaesy.f zlaev2.f zlags2.f zlagtm.f
- zlahef.f zlahqr.f
+ zlahef.f zlahef_rook.f zlahqr.f
zlahrd.f zlahr2.f zlaic1.f zlals0.f zlalsa.f zlalsd.f zlangb.f zlange.f
zlangt.f zlanhb.f
zlanhe.f
@@ -353,7 +353,7 @@ set(ZLASRC
zlarfg.f zlarfgp.f zlarft.f
zlarfx.f zlargv.f zlarnv.f zlarrv.f zlartg.f zlartv.f
zlarz.f zlarzb.f zlarzt.f zlascl.f zlaset.f zlasr.f
- zlassq.f zlaswp.f zlasyf.f
+ zlassq.f zlaswp.f zlasyf.f zlasyf_rook.f
zlatbs.f zlatdf.f zlatps.f zlatrd.f zlatrs.f zlatrz.f zlatzm.f zlauu2.f
zlauum.f zpbcon.f zpbequ.f zpbrfs.f zpbstf.f zpbsv.f
zpbsvx.f zpbtf2.f zpbtrf.f zpbtrs.f zpocon.f zpoequ.f zporfs.f
@@ -366,7 +366,7 @@ set(ZLASRC
zsyr.f zsyrfs.f zsysv.f zsysvx.f zsytf2.f zsytrf.f zsytri.f
zsytri2.f zsytri2x.f zsyswapr.f
zsytrs.f zsytrs2.f zsyconv.f
- zsytf2_rook.f zlasyf_rook.f zsytrf_rook.f zsytrs_rook.f
+ zsytf2_rook.f zsytrf_rook.f zsytrs_rook.f
zsytri_rook.f zsycon_rook.f zsysv_rook.f
ztbcon.f ztbrfs.f ztbtrs.f ztgevc.f ztgex2.f
ztgexc.f ztgsen.f ztgsja.f ztgsna.f ztgsy2.f ztgsyl.f ztpcon.f
diff --git a/SRC/Makefile b/SRC/Makefile
index 0679f3de..e5729cdd 100644
--- a/SRC/Makefile
+++ b/SRC/Makefile
@@ -118,7 +118,7 @@ SLASRC = \
slaqtr.o slar1v.o slar2v.o ilaslr.o ilaslc.o \
slarf.o slarfb.o slarfg.o slarfgp.o slarft.o slarfx.o slargv.o \
slarrv.o slartv.o \
- slarz.o slarzb.o slarzt.o slaswp.o slasy2.o slasyf.o \
+ slarz.o slarzb.o slarzt.o slaswp.o slasy2.o slasyf.o slasyf_rook.o \
slatbs.o slatdf.o slatps.o slatrd.o slatrs.o slatrz.o slatzm.o \
slauu2.o slauum.o sopgtr.o sopmtr.o sorg2l.o sorg2r.o \
sorgbr.o sorghr.o sorgl2.o sorglq.o sorgql.o sorgqr.o sorgr2.o \
@@ -140,7 +140,7 @@ SLASRC = \
ssygst.o ssygv.o ssygvd.o ssygvx.o ssyrfs.o ssysv.o ssysvx.o \
ssytd2.o ssytf2.o ssytrd.o ssytrf.o ssytri.o ssytri2.o ssytri2x.o \
ssyswapr.o ssytrs.o ssytrs2.o ssyconv.o \
- ssytf2_rook.o slasyf_rook.o ssytrf_rook.o ssytrs_rook.o \
+ ssytf2_rook.o ssytrf_rook.o ssytrs_rook.o \
ssytri_rook.o ssycon_rook.o ssysv_rook.o \
stbcon.o \
stbrfs.o stbtrs.o stgevc.o stgex2.o stgexc.o stgsen.o \
@@ -194,7 +194,7 @@ CLASRC = \
clacgv.o clacon.o clacn2.o clacp2.o clacpy.o clacrm.o clacrt.o cladiv.o \
claed0.o claed7.o claed8.o \
claein.o claesy.o claev2.o clags2.o clagtm.o \
- clahef.o clahqr.o \
+ clahef.o clahef_rook.o clahqr.o \
clahrd.o clahr2.o claic1.o clals0.o clalsa.o clalsd.o clangb.o clange.o clangt.o \
clanhb.o clanhe.o \
clanhp.o clanhs.o clanht.o clansb.o clansp.o clansy.o clantb.o \
@@ -205,7 +205,7 @@ CLASRC = \
clarf.o clarfb.o clarfg.o clarft.o clarfgp.o \
clarfx.o clargv.o clarnv.o clarrv.o clartg.o clartv.o \
clarz.o clarzb.o clarzt.o clascl.o claset.o clasr.o classq.o \
- claswp.o clasyf.o clatbs.o clatdf.o clatps.o clatrd.o clatrs.o clatrz.o \
+ claswp.o clasyf.o clasyf_rook.o clatbs.o clatdf.o clatps.o clatrd.o clatrs.o clatrz.o \
clatzm.o clauu2.o clauum.o cpbcon.o cpbequ.o cpbrfs.o cpbstf.o cpbsv.o \
cpbsvx.o cpbtf2.o cpbtrf.o cpbtrs.o cpocon.o cpoequ.o cporfs.o \
cposv.o cposvx.o cpotf2.o cpotri.o cpstrf.o cpstf2.o \
@@ -217,7 +217,7 @@ CLASRC = \
csycon.o csymv.o \
csyr.o csyrfs.o csysv.o csysvx.o csytf2.o csytrf.o csytri.o csytri2.o csytri2x.o \
csyswapr.o csytrs.o csytrs2.o csyconv.o \
- csytf2_rook.o clasyf_rook.o csytrf_rook.o csytrs_rook.o \
+ csytf2_rook.o csytrf_rook.o csytrs_rook.o \
csytri_rook.o csycon_rook.o csysv_rook.o \
ctbcon.o ctbrfs.o ctbtrs.o ctgevc.o ctgex2.o \
ctgexc.o ctgsen.o ctgsja.o ctgsna.o ctgsy2.o ctgsyl.o ctpcon.o \
@@ -276,7 +276,7 @@ DLASRC = \
dlaqtr.o dlar1v.o dlar2v.o iladlr.o iladlc.o \
dlarf.o dlarfb.o dlarfg.o dlarfgp.o dlarft.o dlarfx.o \
dlargv.o dlarrv.o dlartv.o \
- dlarz.o dlarzb.o dlarzt.o dlaswp.o dlasy2.o dlasyf.o \
+ dlarz.o dlarzb.o dlarzt.o dlaswp.o dlasy2.o dlasyf.o dlasyf_rook.o \
dlatbs.o dlatdf.o dlatps.o dlatrd.o dlatrs.o dlatrz.o dlatzm.o dlauu2.o \
dlauum.o dopgtr.o dopmtr.o dorg2l.o dorg2r.o \
dorgbr.o dorghr.o dorgl2.o dorglq.o dorgql.o dorgqr.o dorgr2.o \
@@ -299,7 +299,7 @@ DLASRC = \
dsysv.o dsysvx.o \
dsytd2.o dsytf2.o dsytrd.o dsytrf.o dsytri.o dsytri2.o dsytri2x.o \
dsyswapr.o dsytrs.o dsytrs2.o dsyconv.o \
- dsytf2_rook.o dlasyf_rook.o dsytrf_rook.o dsytrs_rook.o \
+ dsytf2_rook.o dsytrf_rook.o dsytrs_rook.o \
dsytri_rook.o dsycon_rook.o dsysv_rook.o \
dtbcon.o dtbrfs.o dtbtrs.o dtgevc.o dtgex2.o dtgexc.o dtgsen.o \
dtgsja.o dtgsna.o dtgsy2.o dtgsyl.o dtpcon.o dtprfs.o dtptri.o \
@@ -351,7 +351,7 @@ ZLASRC = \
zlacgv.o zlacon.o zlacn2.o zlacp2.o zlacpy.o zlacrm.o zlacrt.o zladiv.o \
zlaed0.o zlaed7.o zlaed8.o \
zlaein.o zlaesy.o zlaev2.o zlags2.o zlagtm.o \
- zlahef.o zlahqr.o \
+ zlahef.o zlahef_rook.o zlahqr.o \
zlahrd.o zlahr2.o zlaic1.o zlals0.o zlalsa.o zlalsd.o zlangb.o zlange.o \
zlangt.o zlanhb.o \
zlanhe.o \
@@ -364,7 +364,7 @@ ZLASRC = \
zlarfg.o zlarft.o zlarfgp.o \
zlarfx.o zlargv.o zlarnv.o zlarrv.o zlartg.o zlartv.o \
zlarz.o zlarzb.o zlarzt.o zlascl.o zlaset.o zlasr.o \
- zlassq.o zlaswp.o zlasyf.o \
+ zlassq.o zlaswp.o zlasyf.o zlasyf_rook.o \
zlatbs.o zlatdf.o zlatps.o zlatrd.o zlatrs.o zlatrz.o zlatzm.o zlauu2.o \
zlauum.o zpbcon.o zpbequ.o zpbrfs.o zpbstf.o zpbsv.o \
zpbsvx.o zpbtf2.o zpbtrf.o zpbtrs.o zpocon.o zpoequ.o zporfs.o \
@@ -377,7 +377,7 @@ ZLASRC = \
zsycon.o zsymv.o \
zsyr.o zsyrfs.o zsysv.o zsysvx.o zsytf2.o zsytrf.o zsytri.o zsytri2.o zsytri2x.o \
zsyswapr.o zsytrs.o zsytrs2.o zsyconv.o \
- zsytf2_rook.o zlasyf_rook.o zsytrf_rook.o zsytrs_rook.o \
+ zsytf2_rook.o zsytrf_rook.o zsytrs_rook.o \
zsytri_rook.o zsycon_rook.o zsysv_rook.o \
ztbcon.o ztbrfs.o ztbtrs.o ztgevc.o ztgex2.o \
ztgexc.o ztgsen.o ztgsja.o ztgsna.o ztgsy2.o ztgsyl.o ztpcon.o \
diff --git a/SRC/clahef_rook.f b/SRC/clahef_rook.f
new file mode 100644
index 00000000..820b56f4
--- /dev/null
+++ b/SRC/clahef_rook.f
@@ -0,0 +1,1125 @@
+* \brief \b CLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CLAHEF_ROOK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahef_rook.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahef_rook.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahef_rook.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, KB, LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX A( LDA, * ), W( LDW, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> CLAHEF_ROOK computes a partial factorization of a complex Hermitian
+*> matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting
+*> method. The partial factorization has the form:
+*>
+*> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
+*> ( 0 U22 ) ( 0 D ) ( U12**H U22**H )
+*>
+*> A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
+*> ( L21 I ) ( 0 A22 ) ( 0 I )
+*>
+*> where the order of D is at most NB. The actual order is returned in
+*> the argument KB, and is either NB or NB-1, or N if N <= NB.
+*> Note that U**H denotes the conjugate transpose of U.
+*>
+*> CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses
+*> blocked code (calling Level 3 BLAS) to update the submatrix
+*> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> Hermitian matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The maximum number of columns of the matrix A that should be
+*> factored. NB should be at least 2 to allow for 2-by-2 pivot
+*> blocks.
+*> \endverbatim
+*>
+*> \param[out] KB
+*> \verbatim
+*> KB is INTEGER
+*> The number of columns of A that were actually factored.
+*> KB is either NB-1 or NB, or N if N <= NB.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
+*> n-by-n upper triangular part of A contains the upper
+*> triangular part of the matrix A, and the strictly lower
+*> triangular part of A is not referenced. If UPLO = 'L', the
+*> leading n-by-n lower triangular part of A contains the lower
+*> triangular part of the matrix A, and the strictly upper
+*> triangular part of A is not referenced.
+*> On exit, A contains details of the partial factorization.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> Details of the interchanges and the block structure of D.
+*>
+*> If UPLO = 'U':
+*> Only the last KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
+*> interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k-1 and -IPIV(k-1) were inerchaged,
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*>
+*> If UPLO = 'L':
+*> Only the first KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
+*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k+1 and -IPIV(k+1) were inerchaged,
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is COMPLEX array, dimension (LDW,NB)
+*> \endverbatim
+*>
+*> \param[in] LDW
+*> \verbatim
+*> LDW is INTEGER
+*> The leading dimension of the array W. LDW >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
+*> has been completed, but the block diagonal matrix D is
+*> exactly singular.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2012
+*
+*> \ingroup complexHEcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2012, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE CLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
+ $ INFO )
+*
+* -- LAPACK computational routine (version 3.4.2) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* September 2012
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, KB, LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX A( LDA, * ), W( LDW, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ REAL ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ COMPLEX CONE
+ PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
+ REAL EIGHT, SEVTEN
+ PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL DONE
+ INTEGER IMAX, ITEMP, II, J, JB, JJ, JMAX, JP1, JP2, K,
+ $ KK, KKW, KP, KSTEP, KW, P
+ REAL ABSAKK, ALPHA, COLMAX, STEMP, R1, ROWMAX, T,
+ $ SFMIN
+ COMPLEX D11, D21, D22, Z
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ICAMAX
+ REAL SLAMCH
+ EXTERNAL LSAME, ICAMAX, SLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL CCOPY, CSSCAL, CGEMM, CGEMV, CLACGV, CSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, CONJG, IMAG, MAX, MIN, REAL, SQRT
+* ..
+* .. Statement Functions ..
+ REAL CABS1
+* ..
+* .. Statement Function definitions ..
+ CABS1( Z ) = ABS( REAL( Z ) ) + ABS( IMAG( Z ) )
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Initialize ALPHA for use in choosing pivot block size.
+*
+ ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
+*
+* Compute machine safe minimum
+*
+ SFMIN = SLAMCH( 'S' )
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+*
+* Factorize the trailing columns of A using the upper triangle
+* of A and working backwards, and compute the matrix W = U12*D
+* for use in updating A11
+*
+* K is the main loop index, decreasing from N in steps of 1 or 2
+*
+ K = N
+ 10 CONTINUE
+*
+* KW is the column of W which corresponds to column K of A
+*
+ KW = NB + K - N
+*
+* Exit from loop
+*
+ IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
+ $ GO TO 30
+*
+ KSTEP = 1
+ P = K
+*
+* Copy column K of A to column KW of W and update it
+*
+ IF( K.GT.1 )
+ $ CALL CCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
+ W( K, KW ) = REAL( A( K, K ) )
+ IF( K.LT.N ) THEN
+ CALL CGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
+ $ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
+ W( K, KW ) = REAL( W( K, KW ) )
+ END IF
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( REAL( W( K, K ) ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value
+*
+ IF( K.GT.1 ) THEN
+ IMAX = ICAMAX( K-1, W( 1, KW ), 1 )
+ COLMAX = CABS1( W( IMAX, KW ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ IF( K.GT.1 )
+ $ CALL CCOPY( K-1, W( 1, K ), 1, A( 1, KW ), 1 )
+ A( K, K ) = REAL( A( K, K ) )
+ ELSE
+*
+* ============================================================
+*
+* Test for interchange
+*
+* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+*
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 12 CONTINUE
+*
+* Begin pivot search loop body
+*
+*
+* Copy column IMAX to column KW-1 of W and update it
+*
+ IF( IMAX.GT.1 )
+ $ CALL CCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
+ $ 1 )
+ W( IMAX, KW-1 ) = REAL( A( IMAX, IMAX ) )
+ CALL CCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
+ $ W( IMAX+1, KW-1 ), 1 )
+ CALL CLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
+ IF( K.LT.N ) THEN
+ CALL CGEMV( 'No transpose', K, N-K, -CONE,
+ $ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
+ $ CONE, W( 1, KW-1 ), 1 )
+ W( IMAX, KW-1 ) = REAL( W( IMAX, KW-1 ) )
+ END IF
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = IMAX + ICAMAX( K-IMAX, W( IMAX+1, KW-1 ),
+ $ 1 )
+ ROWMAX = CABS1( W( JMAX, KW-1 ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.GT.1 ) THEN
+ ITEMP = ICAMAX( IMAX-1, W( 1, KW-1 ), 1 )
+ STEMP = CABS1( W( ITEMP, KW-1 ) )
+ IF( STEMP.GT.ROWMAX ) THEN
+ ROWMAX = STEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for
+* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABS( REAL( W( IMAX,KW-1 ) ) )
+ $ .LT.ALPHA*ROWMAX ) ) THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+*
+* copy column KW-1 of W to column KW of W
+*
+ CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
+*
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX.EQ.COLMAX,
+* (used to handle NaN and Inf)
+*
+ ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
+ $ THEN
+*
+* interchange rows and columns K-1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot not found: set params and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+*
+* Copy updated JMAXth (next IMAXth) column to Kth of W
+*
+ CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
+*
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT.DONE ) GOTO 12
+*
+ END IF
+*
+* ============================================================
+*
+* KK is the column of A where pivoting step stopped
+*
+ KK = K - KSTEP + 1
+*
+* KKW is the column of W which corresponds to column KK of A
+*
+ KKW = NB + KK - N
+*
+* Interchange rows and columns P and K.
+* Updated column P is already stored in column KW of W.
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Copy non-updated column KK+1 to column P of submatrix A
+* at step K. No need to copy element into columns
+* K and K-1 of A for 2-by-2 pivot, since these columns
+* will be later overwritten.
+*
+ A( P, P ) = REAL( A( K, K ) )
+ CALL CCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
+ $ LDA )
+ CALL CLACGV( K-1-P, A( P, P+1 ), LDA )
+ IF( P.GT.1 )
+ $ CALL CCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
+*
+* Interchange rows KK and KP in first K-1 columns of A
+* (columns K and K-1 of A for 2-by-2 pivot will be
+* later overwritten). Interchange rows KK and KP
+* in last KW to NB columns of W.
+*
+ IF( K.LT.N )
+ $ CALL CSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
+ $ LDA )
+ CALL CSWAP( N-K+1, W( K, KW ), LDW, W( P, KW ),
+ $ LDW )
+ END IF
+*
+* Interchange rows and columns KP and KK.
+* Updated column KP is already stored in column KKW of W.
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP of submatrix A
+* at step K. No need to copy element into column K
+* (or K and K-1 for 2-by-2 pivot) of A, since these columns
+* will be later overwritten.
+*
+ A( KP, KP ) = REAL( A( KK, KK ) )
+ CALL CCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
+ $ LDA )
+ CALL CLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
+ IF( KP.GT.1 )
+ $ CALL CCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
+*
+* Interchange rows KK and KP in last K+1 to N columns of A
+* (columns K (or K and K-1 for 2-by-2 pivot) of A will be
+* later overwritten). Interchange rows KK and KP
+* in last KKW to NB columns of W.
+*
+ IF( K.LT.N )
+ $ CALL CSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
+ $ LDA )
+ CALL CSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
+ $ LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column kw of W now holds
+*
+* W(kw) = U(k)*D(k),
+*
+* where U(k) is the k-th column of U
+*
+* (1) Store subdiag. elements of column U(k)
+* and 1-by-1 block D(k) in column k of A.
+* (NOTE: Diagonal element U(k,k) is a UNIT element
+* and not stored)
+* A(k,k) := D(k,k) = W(k,kw)
+* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
+*
+* (NOTE: No need to use for Hermitian matrix
+* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
+* element D(k,k) from W (potentially saves only one load))
+ CALL CCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
+ IF( K.GT.1 ) THEN
+*
+* Handle division by a small number
+*
+ T = REAL( A( K, K ) )
+ IF( ABS( T ).GE.SFMIN ) THEN
+ R1 = ONE / T
+ CALL CSSCAL( K-1, R1, A( 1, K ), 1 )
+ ELSE
+* (NOTE: No need to check if T=D(k,k) is NOT ZERO,
+* since that was ensured earlier in pivot search)
+ DO 14 II = 1, K-1
+ A( II, K ) = A( II, K ) / T
+ 14 CONTINUE
+ END IF
+*
+* (2) Conjugate column W(kw)
+*
+ CALL CLACGV( K-1, W( 1, KW ), 1 )
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
+*
+* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
+*
+* where U(k) and U(k-1) are the k-th and (k-1)-th columns
+* of U
+*
+* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
+* block D(k-1:k,k-1:k) in columns k-1 and k of A.
+* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
+* block and not stored)
+* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
+* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
+* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
+*
+ IF( K.GT.2 ) THEN
+*
+* Compose the columns of the inverse of 2-by-2 pivot
+* block D in the following way to reduce the number
+* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
+* this inverse
+*
+* D**(-1) = ( d11 cj(d21) )**(-1) =
+* ( d21 d22 )
+*
+* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
+* ( (-d21) ( d11 ) )
+*
+* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
+*
+* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
+* ( ( -1 ) ( d11/conj(d21) ) )
+*
+* = 1/(|d21|**2) * 1/(D22*D11-1) *
+*
+* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* Handle division by a small number. (NOTE: order of
+* operations is important)
+*
+* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
+* ( (( -1 ) ) (( D22 ) ) )
+*
+ D21 = W( K-1, KW )
+ D11 = W( K, KW ) / CONJG( D21 )
+ D22 = W( K-1, KW-1 ) / D21
+ T = ONE / ( REAL( D11*D22 )-ONE )
+*
+* Update elements in columns A(k-1) and A(k) as
+* dot products of rows of ( W(kw-1) W(kw) ) and columns
+* of D**(-1)
+*
+ DO 20 J = 1, K - 2
+ A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
+ $ D21 )
+ A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
+ $ CONJG( D21 ) )
+ 20 CONTINUE
+ END IF
+*
+* Copy D(k) to A
+*
+ A( K-1, K-1 ) = W( K-1, KW-1 )
+ A( K-1, K ) = W( K-1, KW )
+ A( K, K ) = W( K, KW )
+*
+* (2) Conjugate columns W(kw) and W(kw-1)
+*
+ CALL CLACGV( K-1, W( 1, KW ), 1 )
+ CALL CLACGV( K-2, W( 1, KW-1 ), 1 )
+*
+ END IF
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K-1 ) = -KP
+ END IF
+*
+* Decrease K and return to the start of the main loop
+*
+ K = K - KSTEP
+ GO TO 10
+*
+ 30 CONTINUE
+*
+* Update the upper triangle of A11 (= A(1:k,1:k)) as
+*
+* A11 := A11 - U12*D*U12**H = A11 - U12*W**H
+*
+* computing blocks of NB columns at a time (note that conjg(W) is
+* actually stored)
+*
+ DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
+ JB = MIN( NB, K-J+1 )
+*
+* Update the upper triangle of the diagonal block
+*
+ DO 40 JJ = J, J + JB - 1
+ A( JJ, JJ ) = REAL( A( JJ, JJ ) )
+ CALL CGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
+ $ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
+ $ A( J, JJ ), 1 )
+ A( JJ, JJ ) = REAL( A( JJ, JJ ) )
+ 40 CONTINUE
+*
+* Update the rectangular superdiagonal block
+*
+ CALL CGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
+ $ -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
+ $ CONE, A( 1, J ), LDA )
+ 50 CONTINUE
+*
+* Put U12 in standard form by partially undoing the interchanges
+* in of rows in columns k+1:n looping backwards from k+1 to 1
+*
+ J = K + 1
+ 60 CONTINUE
+*
+* Undo the interchanges (if any) of rows J and JP2
+* (or J and JP2, and J+1 and JP1) at each step J
+*
+ KSTEP = 1
+ JP1 = 1
+* (Here, J is a diagonal index)
+ JJ = J
+ JP2 = IPIV( J )
+ IF( JP2.LT.0 ) THEN
+ JP2 = -JP2
+* (Here, J is a diagonal index)
+ J = J + 1
+ JP1 = -IPIV( J )
+ KSTEP = 2
+ END IF
+* (NOTE: Here, J is used to determine row length. Length N-J+1
+* of the rows to swap back doesn't include diagonal element)
+ J = J + 1
+ IF( JP2.NE.JJ .AND. J.LE.N )
+ $ CALL CSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
+ JJ = JJ + 1
+ IF( JP1.NE.JJ .AND. KSTEP.EQ.2 .AND. J.LE.N )
+ $ CALL CSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
+ IF( J.LT.N )
+ $ GO TO 60
+*
+* Set KB to the number of columns factorized
+*
+ KB = N - K
+*
+ ELSE
+*
+* Factorize the leading columns of A using the lower triangle
+* of A and working forwards, and compute the matrix W = L21*D
+* for use in updating A22
+*
+* K is the main loop index, increasing from 1 in steps of 1 or 2
+*
+ K = 1
+ 70 CONTINUE
+*
+ IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
+ $ GO TO 90
+*
+ KSTEP = 1
+ P = K
+*
+* Copy column K of A to column K of W and update column K of W
+*
+ W( K, K ) = REAL( A( K, K ) )
+ IF( K.LT.N )
+ $ CALL CCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
+ IF( K.GT.1 ) THEN
+ CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
+ $ LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
+ W( K, K ) = REAL( W( K, K ) )
+ END IF
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( REAL( W( K, K ) ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value
+*
+ IF( K.LT.N ) THEN
+ IMAX = K + ICAMAX( N-K, W( K+1, K ), 1 )
+ COLMAX = CABS1( W( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ A( K, K ) = REAL( A( K, K ) )
+ IF( K.LT.N )
+ $ CALL CCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
+ ELSE
+*
+* ============================================================
+*
+* Test for interchange
+*
+* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+*
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 72 CONTINUE
+*
+* Begin pivot search loop body
+*
+*
+* Copy column IMAX to column k+1 of W and update it
+*
+ CALL CCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
+ CALL CLACGV( IMAX-K, W( K, K+1 ), 1 )
+ W( IMAX, K+1 ) = REAL( A( IMAX, IMAX ) )
+ IF( IMAX.LT.N )
+ $ CALL CCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
+ $ W( IMAX+1, K+1 ), 1 )
+ IF( K.GT.1 ) THEN
+ CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE,
+ $ A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
+ $ CONE, W( K, K+1 ), 1 )
+ W( IMAX, K+1 ) = REAL( W( IMAX, K+1 ) )
+ END IF
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = K - 1 + ICAMAX( IMAX-K, W( K, K+1 ), 1 )
+ ROWMAX = CABS1( W( JMAX, K+1 ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.LT.N ) THEN
+ ITEMP = IMAX + ICAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
+ STEMP = CABS1( W( ITEMP, K+1 ) )
+ IF( STEMP.GT.ROWMAX ) THEN
+ ROWMAX = STEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for
+* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABS( REAL( W( IMAX,K+1 ) ) )
+ $ .LT.ALPHA*ROWMAX ) ) THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+*
+* copy column K+1 of W to column K of W
+*
+ CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
+*
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX.EQ.COLMAX,
+* (used to handle NaN and Inf)
+*
+ ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
+ $ THEN
+*
+* interchange rows and columns K+1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot not found: set params and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+*
+* Copy updated JMAXth (next IMAXth) column to Kth of W
+*
+ CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
+*
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT.DONE ) GOTO 72
+*
+ END IF
+*
+* ============================================================
+*
+* KK is the column of A where pivoting step stopped
+*
+ KK = K + KSTEP - 1
+*
+* Interchange rows and columns P and K (only for 2-by-2 pivot).
+* Updated column P is already stored in column K of W.
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Copy non-updated column KK-1 to column P of submatrix A
+* at step K. No need to copy element into columns
+* K and K+1 of A for 2-by-2 pivot, since these columns
+* will be later overwritten.
+*
+ A( P, P ) = REAL( A( K, K ) )
+ CALL CCOPY( P-K-2, A( K+2, K ), 1, A( P, K+2 ), LDA )
+ CALL CLACGV( P-K-1, A( P, K+1 ), LDA )
+ IF( P.LT.N )
+ $ CALL CCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
+*
+* Interchange rows KK and KP in first K-1 columns of A
+* (columns K and K+1 of A for 2-by-2 pivot will be
+* later overwritten). Interchange rows KK and KP
+* in first KK columns of W.
+*
+ IF( K.GT.1 )
+ $ CALL CSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
+ CALL CSWAP( K, W( K, 1 ), LDW, W( P, 1 ), LDW )
+ END IF
+*
+* Interchange rows and columns KP and KK.
+* Updated column KP is already stored in column KK of W.
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP of submatrix A
+* at step K. No need to copy element into column K
+* (or K and K+1 for 2-by-2 pivot) of A, since these columns
+* will be later overwritten.
+*
+ A( KP, KP ) = REAL( A( KK, KK ) )
+ CALL CCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
+ $ LDA )
+ CALL CLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
+ IF( KP.LT.N )
+ $ CALL CCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
+*
+* Interchange rows KK and KP in first K-1 columns of A
+* (columns K (or K and K+1 for 2-by-2 pivot) of A will be
+* later overwritten). Interchange rows KK and KP
+* in first KK columns of W.
+*
+ IF( K.GT.1 )
+ $ CALL CSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
+ CALL CSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k of W now holds
+*
+* W(k) = L(k)*D(k),
+*
+* where L(k) is the k-th column of L
+*
+* (1) Store subdiag. elements of column L(k)
+* and 1-by-1 block D(k) in column k of A.
+* (NOTE: Diagonal element L(k,k) is a UNIT element
+* and not stored)
+* A(k,k) := D(k,k) = W(k,k)
+* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
+*
+* (NOTE: No need to use for Hermitian matrix
+* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
+* element D(k,k) from W (potentially saves only one load))
+ CALL CCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
+ IF( K.LT.N ) THEN
+*
+* Handle division by a small number
+*
+ T = REAL( A( K, K ) )
+ IF( ABS( T ).GE.SFMIN ) THEN
+ R1 = ONE / T
+ CALL CSSCAL( N-K, R1, A( K+1, K ), 1 )
+ ELSE
+* (NOTE: No need to check if T=D(k,k) is NOT ZERO,
+* since that was ensured earlier in pivot search)
+ DO 74 II = K + 1, N
+ A( II, K ) = A( II, K ) / T
+ 74 CONTINUE
+ END IF
+*
+* (2) Conjugate column W(k)
+*
+ CALL CLACGV( N-K, W( K+1, K ), 1 )
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
+*
+* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
+*
+* where L(k) and L(k+1) are the k-th and (k+1)-th columns
+* of L
+*
+* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
+* block D(k:k+1,k:k+1) in columns k and k+1 of A.
+* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
+* block and not stored.
+* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
+* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
+* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
+*
+ IF( K.LT.N-1 ) THEN
+*
+* Compose the columns of the inverse of 2-by-2 pivot
+* block D in the following way to reduce the number
+* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
+* this inverse
+*
+* D**(-1) = ( d11 cj(d21) )**(-1) =
+* ( d21 d22 )
+*
+* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
+* ( (-d21) ( d11 ) )
+*
+* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
+*
+* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
+* ( ( -1 ) ( d11/conj(d21) ) )
+*
+* = 1/(|d21|**2) * 1/(D22*D11-1) *
+*
+* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* Handle division by a small number. (NOTE: order of
+* operations is important)
+*
+* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
+* ( (( -1 ) ) (( D22 ) ) )
+*
+ D21 = W( K+1, K )
+ D11 = W( K+1, K+1 ) / D21
+ D22 = W( K, K ) / CONJG( D21 )
+ T = ONE / ( REAL( D11*D22 )-ONE )
+*
+* Update elements in columns A(k) and A(k+1) as
+* dot products of rows of ( W(k) W(k+1) ) and columns
+* of D**(-1)
+*
+ DO 80 J = K + 2, N
+ A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
+ $ CONJG( D21 ) )
+ A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
+ $ D21 )
+ 80 CONTINUE
+ END IF
+*
+* Copy D(k) to A
+*
+ A( K, K ) = W( K, K )
+ A( K+1, K ) = W( K+1, K )
+ A( K+1, K+1 ) = W( K+1, K+1 )
+*
+* (2) Conjugate columns W(k) and W(k+1)
+*
+ CALL CLACGV( N-K, W( K+1, K ), 1 )
+ CALL CLACGV( N-K-1, W( K+2, K+1 ), 1 )
+*
+ END IF
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K+1 ) = -KP
+ END IF
+*
+* Increase K and return to the start of the main loop
+*
+ K = K + KSTEP
+ GO TO 70
+*
+ 90 CONTINUE
+*
+* Update the lower triangle of A22 (= A(k:n,k:n)) as
+*
+* A22 := A22 - L21*D*L21**H = A22 - L21*W**H
+*
+* computing blocks of NB columns at a time (note that conjg(W) is
+* actually stored)
+*
+ DO 110 J = K, N, NB
+ JB = MIN( NB, N-J+1 )
+*
+* Update the lower triangle of the diagonal block
+*
+ DO 100 JJ = J, J + JB - 1
+ A( JJ, JJ ) = REAL( A( JJ, JJ ) )
+ CALL CGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
+ $ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
+ $ A( JJ, JJ ), 1 )
+ A( JJ, JJ ) = REAL( A( JJ, JJ ) )
+ 100 CONTINUE
+*
+* Update the rectangular subdiagonal block
+*
+ IF( J+JB.LE.N )
+ $ CALL CGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
+ $ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
+ $ LDW, CONE, A( J+JB, J ), LDA )
+ 110 CONTINUE
+*
+* Put L21 in standard form by partially undoing the interchanges
+* of rows in columns 1:k-1 looping backwards from k-1 to 1
+*
+ J = K - 1
+ 120 CONTINUE
+*
+* Undo the interchanges (if any) of rows J and JP2
+* (or J and JP2, and J-1 and JP1) at each step J
+*
+ KSTEP = 1
+ JP1 = 1
+* (Here, J is a diagonal index)
+ JJ = J
+ JP2 = IPIV( J )
+ IF( JP2.LT.0 ) THEN
+ JP2 = -JP2
+* (Here, J is a diagonal index)
+ J = J - 1
+ JP1 = -IPIV( J )
+ KSTEP = 2
+ END IF
+* (NOTE: Here, J is used to determine row length. Length J
+* of the rows to swap back doesn't include diagonal element)
+ J = J - 1
+ IF( JP2.NE.JJ .AND. J.GE.1 )
+ $ CALL CSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
+ JJ = JJ - 1
+ IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.GE.1 )
+ $ CALL CSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
+ IF( J.GT.1 )
+ $ GO TO 120
+*
+* Set KB to the number of columns factorized
+*
+ KB = K - 1
+*
+ END IF
+ RETURN
+*
+* End of CLAHEF_ROOK
+*
+ END
diff --git a/SRC/zlahef_rook.f b/SRC/zlahef_rook.f
new file mode 100644
index 00000000..b6626eaa
--- /dev/null
+++ b/SRC/zlahef_rook.f
@@ -0,0 +1,1125 @@
+* \brief \b ZLAHEF_ROOK computes a partial factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZLAHEF_ROOK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_rook.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_rook.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_rook.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, KB, LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX*16 A( LDA, * ), W( LDW, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZLAHEF_ROOK computes a partial factorization of a complex Hermitian
+*> matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting
+*> method. The partial factorization has the form:
+*>
+*> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
+*> ( 0 U22 ) ( 0 D ) ( U12**H U22**H )
+*>
+*> A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L'
+*> ( L21 I ) ( 0 A22 ) ( 0 I )
+*>
+*> where the order of D is at most NB. The actual order is returned in
+*> the argument KB, and is either NB or NB-1, or N if N <= NB.
+*> Note that U**H denotes the conjugate transpose of U.
+*>
+*> ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses
+*> blocked code (calling Level 3 BLAS) to update the submatrix
+*> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> Hermitian matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The maximum number of columns of the matrix A that should be
+*> factored. NB should be at least 2 to allow for 2-by-2 pivot
+*> blocks.
+*> \endverbatim
+*>
+*> \param[out] KB
+*> \verbatim
+*> KB is INTEGER
+*> The number of columns of A that were actually factored.
+*> KB is either NB-1 or NB, or N if N <= NB.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
+*> n-by-n upper triangular part of A contains the upper
+*> triangular part of the matrix A, and the strictly lower
+*> triangular part of A is not referenced. If UPLO = 'L', the
+*> leading n-by-n lower triangular part of A contains the lower
+*> triangular part of the matrix A, and the strictly upper
+*> triangular part of A is not referenced.
+*> On exit, A contains details of the partial factorization.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> Details of the interchanges and the block structure of D.
+*>
+*> If UPLO = 'U':
+*> Only the last KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
+*> interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k-1 and -IPIV(k-1) were inerchaged,
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*>
+*> If UPLO = 'L':
+*> Only the first KB elements of IPIV are set.
+*>
+*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
+*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
+*>
+*> If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
+*> columns k and -IPIV(k) were interchanged and rows and
+*> columns k+1 and -IPIV(k+1) were inerchaged,
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is COMPLEX*16 array, dimension (LDW,NB)
+*> \endverbatim
+*>
+*> \param[in] LDW
+*> \verbatim
+*> LDW is INTEGER
+*> The leading dimension of the array W. LDW >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
+*> has been completed, but the block diagonal matrix D is
+*> exactly singular.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2012
+*
+*> \ingroup complex16HEcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2012, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE ZLAHEF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW,
+ $ INFO )
+*
+* -- LAPACK computational routine (version 3.4.2) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* September 2012
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, KB, LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX*16 A( LDA, * ), W( LDW, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ COMPLEX*16 CONE
+ PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
+ DOUBLE PRECISION EIGHT, SEVTEN
+ PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
+* ..
+* .. Local Scalars ..
+ LOGICAL DONE
+ INTEGER IMAX, ITEMP, II, J, JB, JJ, JMAX, JP1, JP2, K,
+ $ KK, KKW, KP, KSTEP, KW, P
+ DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, DTEMP, R1, ROWMAX, T,
+ $ SFMIN
+ COMPLEX*16 D11, D21, D22, Z
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IZAMAX
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL LSAME, IZAMAX, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION CABS1
+* ..
+* .. Statement Function definitions ..
+ CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Initialize ALPHA for use in choosing pivot block size.
+*
+ ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
+*
+* Compute machine safe minimum
+*
+ SFMIN = DLAMCH( 'S' )
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+*
+* Factorize the trailing columns of A using the upper triangle
+* of A and working backwards, and compute the matrix W = U12*D
+* for use in updating A11
+*
+* K is the main loop index, decreasing from N in steps of 1 or 2
+*
+ K = N
+ 10 CONTINUE
+*
+* KW is the column of W which corresponds to column K of A
+*
+ KW = NB + K - N
+*
+* Exit from loop
+*
+ IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
+ $ GO TO 30
+*
+ KSTEP = 1
+ P = K
+*
+* Copy column K of A to column KW of W and update it
+*
+ IF( K.GT.1 )
+ $ CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
+ W( K, KW ) = DBLE( A( K, K ) )
+ IF( K.LT.N ) THEN
+ CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
+ $ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
+ W( K, KW ) = DBLE( W( K, KW ) )
+ END IF
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( DBLE( W( K, K ) ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value
+*
+ IF( K.GT.1 ) THEN
+ IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
+ COLMAX = CABS1( W( IMAX, KW ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ IF( K.GT.1 )
+ $ CALL ZCOPY( K-1, W( 1, K ), 1, A( 1, KW ), 1 )
+ A( K, K ) = DBLE( A( K, K ) )
+ ELSE
+*
+* ============================================================
+*
+* Test for interchange
+*
+* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+*
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 12 CONTINUE
+*
+* Begin pivot search loop body
+*
+*
+* Copy column IMAX to column KW-1 of W and update it
+*
+ IF( IMAX.GT.1 )
+ $ CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
+ $ 1 )
+ W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
+ CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
+ $ W( IMAX+1, KW-1 ), 1 )
+ CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
+ IF( K.LT.N ) THEN
+ CALL ZGEMV( 'No transpose', K, N-K, -CONE,
+ $ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
+ $ CONE, W( 1, KW-1 ), 1 )
+ W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
+ END IF
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
+ $ 1 )
+ ROWMAX = CABS1( W( JMAX, KW-1 ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.GT.1 ) THEN
+ ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
+ DTEMP = CABS1( W( ITEMP, KW-1 ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for
+* ABS( DBLE( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABS( DBLE( W( IMAX,KW-1 ) ) )
+ $ .LT.ALPHA*ROWMAX ) ) THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+*
+* copy column KW-1 of W to column KW of W
+*
+ CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
+*
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX.EQ.COLMAX,
+* (used to handle NaN and Inf)
+*
+ ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
+ $ THEN
+*
+* interchange rows and columns K-1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot not found: set params and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+*
+* Copy updated JMAXth (next IMAXth) column to Kth of W
+*
+ CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
+*
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT.DONE ) GOTO 12
+*
+ END IF
+*
+* ============================================================
+*
+* KK is the column of A where pivoting step stopped
+*
+ KK = K - KSTEP + 1
+*
+* KKW is the column of W which corresponds to column KK of A
+*
+ KKW = NB + KK - N
+*
+* Interchange rows and columns P and K.
+* Updated column P is already stored in column KW of W.
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Copy non-updated column KK+1 to column P of submatrix A
+* at step K. No need to copy element into columns
+* K and K-1 of A for 2-by-2 pivot, since these columns
+* will be later overwritten.
+*
+ A( P, P ) = DBLE( A( K, K ) )
+ CALL ZCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
+ $ LDA )
+ CALL ZLACGV( K-1-P, A( P, P+1 ), LDA )
+ IF( P.GT.1 )
+ $ CALL ZCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
+*
+* Interchange rows KK and KP in first K-1 columns of A
+* (columns K and K-1 of A for 2-by-2 pivot will be
+* later overwritten). Interchange rows KK and KP
+* in last KW to NB columns of W.
+*
+ IF( K.LT.N )
+ $ CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
+ $ LDA )
+ CALL ZSWAP( N-K+1, W( K, KW ), LDW, W( P, KW ),
+ $ LDW )
+ END IF
+*
+* Interchange rows and columns KP and KK.
+* Updated column KP is already stored in column KKW of W.
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP of submatrix A
+* at step K. No need to copy element into column K
+* (or K and K-1 for 2-by-2 pivot) of A, since these columns
+* will be later overwritten.
+*
+ A( KP, KP ) = DBLE( A( KK, KK ) )
+ CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
+ $ LDA )
+ CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
+ IF( KP.GT.1 )
+ $ CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
+*
+* Interchange rows KK and KP in last K+1 to N columns of A
+* (columns K (or K and K-1 for 2-by-2 pivot) of A will be
+* later overwritten). Interchange rows KK and KP
+* in last KKW to NB columns of W.
+*
+ IF( K.LT.N )
+ $ CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
+ $ LDA )
+ CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
+ $ LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column kw of W now holds
+*
+* W(kw) = U(k)*D(k),
+*
+* where U(k) is the k-th column of U
+*
+* (1) Store subdiag. elements of column U(k)
+* and 1-by-1 block D(k) in column k of A.
+* (NOTE: Diagonal element U(k,k) is a UNIT element
+* and not stored)
+* A(k,k) := D(k,k) = W(k,kw)
+* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
+*
+* (NOTE: No need to use for Hermitian matrix
+* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
+* element D(k,k) from W (potentially saves only one load))
+ CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
+ IF( K.GT.1 ) THEN
+*
+* Handle division by a small number
+*
+ T = DBLE( A( K, K ) )
+ IF( ABS( T ).GE.SFMIN ) THEN
+ R1 = ONE / T
+ CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
+ ELSE
+* (NOTE: No need to check if T=D(k,k) is NOT ZERO,
+* since that was ensured earlier in pivot search)
+ DO 14 II = 1, K-1
+ A( II, K ) = A( II, K ) / T
+ 14 CONTINUE
+ END IF
+*
+* (2) Conjugate column W(kw)
+*
+ CALL ZLACGV( K-1, W( 1, KW ), 1 )
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
+*
+* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
+*
+* where U(k) and U(k-1) are the k-th and (k-1)-th columns
+* of U
+*
+* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
+* block D(k-1:k,k-1:k) in columns k-1 and k of A.
+* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
+* block and not stored)
+* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
+* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
+* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
+*
+ IF( K.GT.2 ) THEN
+*
+* Compose the columns of the inverse of 2-by-2 pivot
+* block D in the following way to reduce the number
+* of FLOPS when we myltiply panel ( W(kw-1) W(kw) ) by
+* this inverse
+*
+* D**(-1) = ( d11 cj(d21) )**(-1) =
+* ( d21 d22 )
+*
+* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
+* ( (-d21) ( d11 ) )
+*
+* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
+*
+* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
+* ( ( -1 ) ( d11/conj(d21) ) )
+*
+* = 1/(|d21|**2) * 1/(D22*D11-1) *
+*
+* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* Handle division by a small number. (NOTE: order of
+* operations is important)
+*
+* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
+* ( (( -1 ) ) (( D22 ) ) )
+*
+ D21 = W( K-1, KW )
+ D11 = W( K, KW ) / DCONJG( D21 )
+ D22 = W( K-1, KW-1 ) / D21
+ T = ONE / ( DBLE( D11*D22 )-ONE )
+*
+* Update elements in columns A(k-1) and A(k) as
+* dot products of rows of ( W(kw-1) W(kw) ) and columns
+* of D**(-1)
+*
+ DO 20 J = 1, K - 2
+ A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
+ $ D21 )
+ A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
+ $ DCONJG( D21 ) )
+ 20 CONTINUE
+ END IF
+*
+* Copy D(k) to A
+*
+ A( K-1, K-1 ) = W( K-1, KW-1 )
+ A( K-1, K ) = W( K-1, KW )
+ A( K, K ) = W( K, KW )
+*
+* (2) Conjugate columns W(kw) and W(kw-1)
+*
+ CALL ZLACGV( K-1, W( 1, KW ), 1 )
+ CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
+*
+ END IF
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K-1 ) = -KP
+ END IF
+*
+* Decrease K and return to the start of the main loop
+*
+ K = K - KSTEP
+ GO TO 10
+*
+ 30 CONTINUE
+*
+* Update the upper triangle of A11 (= A(1:k,1:k)) as
+*
+* A11 := A11 - U12*D*U12**H = A11 - U12*W**H
+*
+* computing blocks of NB columns at a time (note that conjg(W) is
+* actually stored)
+*
+ DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
+ JB = MIN( NB, K-J+1 )
+*
+* Update the upper triangle of the diagonal block
+*
+ DO 40 JJ = J, J + JB - 1
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
+ $ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
+ $ A( J, JJ ), 1 )
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ 40 CONTINUE
+*
+* Update the rectangular superdiagonal block
+*
+ CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
+ $ -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
+ $ CONE, A( 1, J ), LDA )
+ 50 CONTINUE
+*
+* Put U12 in standard form by partially undoing the interchanges
+* in of rows in columns k+1:n looping backwards from k+1 to 1
+*
+ J = K + 1
+ 60 CONTINUE
+*
+* Undo the interchanges (if any) of rows J and JP2
+* (or J and JP2, and J+1 and JP1) at each step J
+*
+ KSTEP = 1
+ JP1 = 1
+* (Here, J is a diagonal index)
+ JJ = J
+ JP2 = IPIV( J )
+ IF( JP2.LT.0 ) THEN
+ JP2 = -JP2
+* (Here, J is a diagonal index)
+ J = J + 1
+ JP1 = -IPIV( J )
+ KSTEP = 2
+ END IF
+* (NOTE: Here, J is used to determine row length. Length N-J+1
+* of the rows to swap back doesn't include diagonal element)
+ J = J + 1
+ IF( JP2.NE.JJ .AND. J.LE.N )
+ $ CALL ZSWAP( N-J+1, A( JP2, J ), LDA, A( JJ, J ), LDA )
+ JJ = JJ + 1
+ IF( JP1.NE.JJ .AND. KSTEP.EQ.2 .AND. J.LE.N )
+ $ CALL ZSWAP( N-J+1, A( JP1, J ), LDA, A( JJ, J ), LDA )
+ IF( J.LT.N )
+ $ GO TO 60
+*
+* Set KB to the number of columns factorized
+*
+ KB = N - K
+*
+ ELSE
+*
+* Factorize the leading columns of A using the lower triangle
+* of A and working forwards, and compute the matrix W = L21*D
+* for use in updating A22
+*
+* K is the main loop index, increasing from 1 in steps of 1 or 2
+*
+ K = 1
+ 70 CONTINUE
+*
+ IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
+ $ GO TO 90
+*
+ KSTEP = 1
+ P = K
+*
+* Copy column K of A to column K of W and update column K of W
+*
+ W( K, K ) = DBLE( A( K, K ) )
+ IF( K.LT.N )
+ $ CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
+ IF( K.GT.1 ) THEN
+ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
+ $ LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
+ W( K, K ) = DBLE( W( K, K ) )
+ END IF
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( DBLE( W( K, K ) ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value
+*
+ IF( K.LT.N ) THEN
+ IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
+ COLMAX = CABS1( W( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ A( K, K ) = DBLE( A( K, K ) )
+ IF( K.LT.N )
+ $ CALL ZCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
+ ELSE
+*
+* ============================================================
+*
+* Test for interchange
+*
+* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+*
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 72 CONTINUE
+*
+* Begin pivot search loop body
+*
+*
+* Copy column IMAX to column k+1 of W and update it
+*
+ CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
+ CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
+ W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
+ IF( IMAX.LT.N )
+ $ CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
+ $ W( IMAX+1, K+1 ), 1 )
+ IF( K.GT.1 ) THEN
+ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
+ $ A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
+ $ CONE, W( K, K+1 ), 1 )
+ W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
+ END IF
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
+ ROWMAX = CABS1( W( JMAX, K+1 ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.LT.N ) THEN
+ ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
+ DTEMP = CABS1( W( ITEMP, K+1 ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Equivalent to testing for
+* ABS( DBLE( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABS( DBLE( W( IMAX,K+1 ) ) )
+ $ .LT.ALPHA*ROWMAX ) ) THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+*
+* copy column K+1 of W to column K of W
+*
+ CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
+*
+ DONE = .TRUE.
+*
+* Equivalent to testing for ROWMAX.EQ.COLMAX,
+* (used to handle NaN and Inf)
+*
+ ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
+ $ THEN
+*
+* interchange rows and columns K+1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+ ELSE
+*
+* Pivot not found: set params and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+*
+* Copy updated JMAXth (next IMAXth) column to Kth of W
+*
+ CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
+*
+ END IF
+*
+* End pivot search loop body
+*
+ IF( .NOT.DONE ) GOTO 72
+*
+ END IF
+*
+* ============================================================
+*
+* KK is the column of A where pivoting step stopped
+*
+ KK = K + KSTEP - 1
+*
+* Interchange rows and columns P and K (only for 2-by-2 pivot).
+* Updated column P is already stored in column K of W.
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Copy non-updated column KK-1 to column P of submatrix A
+* at step K. No need to copy element into columns
+* K and K+1 of A for 2-by-2 pivot, since these columns
+* will be later overwritten.
+*
+ A( P, P ) = DBLE( A( K, K ) )
+ CALL ZCOPY( P-K-2, A( K+2, K ), 1, A( P, K+2 ), LDA )
+ CALL ZLACGV( P-K-1, A( P, K+1 ), LDA )
+ IF( P.LT.N )
+ $ CALL ZCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
+*
+* Interchange rows KK and KP in first K-1 columns of A
+* (columns K and K+1 of A for 2-by-2 pivot will be
+* later overwritten). Interchange rows KK and KP
+* in first KK columns of W.
+*
+ IF( K.GT.1 )
+ $ CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
+ CALL ZSWAP( K, W( K, 1 ), LDW, W( P, 1 ), LDW )
+ END IF
+*
+* Interchange rows and columns KP and KK.
+* Updated column KP is already stored in column KK of W.
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP of submatrix A
+* at step K. No need to copy element into column K
+* (or K and K+1 for 2-by-2 pivot) of A, since these columns
+* will be later overwritten.
+*
+ A( KP, KP ) = DBLE( A( KK, KK ) )
+ CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
+ $ LDA )
+ CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
+ IF( KP.LT.N )
+ $ CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
+*
+* Interchange rows KK and KP in first K-1 columns of A
+* (columns K (or K and K+1 for 2-by-2 pivot) of A will be
+* later overwritten). Interchange rows KK and KP
+* in first KK columns of W.
+*
+ IF( K.GT.1 )
+ $ CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
+ CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k of W now holds
+*
+* W(k) = L(k)*D(k),
+*
+* where L(k) is the k-th column of L
+*
+* (1) Store subdiag. elements of column L(k)
+* and 1-by-1 block D(k) in column k of A.
+* (NOTE: Diagonal element L(k,k) is a UNIT element
+* and not stored)
+* A(k,k) := D(k,k) = W(k,k)
+* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
+*
+* (NOTE: No need to use for Hermitian matrix
+* A( K, K ) = DBLE( W( K, K) ) to separately copy diagonal
+* element D(k,k) from W (potentially saves only one load))
+ CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
+ IF( K.LT.N ) THEN
+*
+* Handle division by a small number
+*
+ T = DBLE( A( K, K ) )
+ IF( ABS( T ).GE.SFMIN ) THEN
+ R1 = ONE / T
+ CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
+ ELSE
+* (NOTE: No need to check if T=D(k,k) is NOT ZERO,
+* since that was ensured earlier in pivot search)
+ DO 74 II = K + 1, N
+ A( II, K ) = A( II, K ) / T
+ 74 CONTINUE
+ END IF
+*
+* (2) Conjugate column W(k)
+*
+ CALL ZLACGV( N-K, W( K+1, K ), 1 )
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
+*
+* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
+*
+* where L(k) and L(k+1) are the k-th and (k+1)-th columns
+* of L
+*
+* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
+* block D(k:k+1,k:k+1) in columns k and k+1 of A.
+* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
+* block and not stored.
+* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
+* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
+* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
+*
+ IF( K.LT.N-1 ) THEN
+*
+* Compose the columns of the inverse of 2-by-2 pivot
+* block D in the following way to reduce the number
+* of FLOPS when we myltiply panel ( W(k) W(k+1) ) by
+* this inverse
+*
+* D**(-1) = ( d11 cj(d21) )**(-1) =
+* ( d21 d22 )
+*
+* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
+* ( (-d21) ( d11 ) )
+*
+* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
+*
+* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
+* ( ( -1 ) ( d11/conj(d21) ) )
+*
+* = 1/(|d21|**2) * 1/(D22*D11-1) *
+*
+* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* Handle division by a small number. (NOTE: order of
+* operations is important)
+*
+* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
+* ( (( -1 ) ) (( D22 ) ) )
+*
+ D21 = W( K+1, K )
+ D11 = W( K+1, K+1 ) / D21
+ D22 = W( K, K ) / DCONJG( D21 )
+ T = ONE / ( DBLE( D11*D22 )-ONE )
+*
+* Update elements in columns A(k) and A(k+1) as
+* dot products of rows of ( W(k) W(k+1) ) and columns
+* of D**(-1)
+*
+ DO 80 J = K + 2, N
+ A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
+ $ DCONJG( D21 ) )
+ A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
+ $ D21 )
+ 80 CONTINUE
+ END IF
+*
+* Copy D(k) to A
+*
+ A( K, K ) = W( K, K )
+ A( K+1, K ) = W( K+1, K )
+ A( K+1, K+1 ) = W( K+1, K+1 )
+*
+* (2) Conjugate columns W(k) and W(k+1)
+*
+ CALL ZLACGV( N-K, W( K+1, K ), 1 )
+ CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
+*
+ END IF
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K+1 ) = -KP
+ END IF
+*
+* Increase K and return to the start of the main loop
+*
+ K = K + KSTEP
+ GO TO 70
+*
+ 90 CONTINUE
+*
+* Update the lower triangle of A22 (= A(k:n,k:n)) as
+*
+* A22 := A22 - L21*D*L21**H = A22 - L21*W**H
+*
+* computing blocks of NB columns at a time (note that conjg(W) is
+* actually stored)
+*
+ DO 110 J = K, N, NB
+ JB = MIN( NB, N-J+1 )
+*
+* Update the lower triangle of the diagonal block
+*
+ DO 100 JJ = J, J + JB - 1
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
+ $ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
+ $ A( JJ, JJ ), 1 )
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ 100 CONTINUE
+*
+* Update the rectangular subdiagonal block
+*
+ IF( J+JB.LE.N )
+ $ CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
+ $ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
+ $ LDW, CONE, A( J+JB, J ), LDA )
+ 110 CONTINUE
+*
+* Put L21 in standard form by partially undoing the interchanges
+* of rows in columns 1:k-1 looping backwards from k-1 to 1
+*
+ J = K - 1
+ 120 CONTINUE
+*
+* Undo the interchanges (if any) of rows J and JP2
+* (or J and JP2, and J-1 and JP1) at each step J
+*
+ KSTEP = 1
+ JP1 = 1
+* (Here, J is a diagonal index)
+ JJ = J
+ JP2 = IPIV( J )
+ IF( JP2.LT.0 ) THEN
+ JP2 = -JP2
+* (Here, J is a diagonal index)
+ J = J - 1
+ JP1 = -IPIV( J )
+ KSTEP = 2
+ END IF
+* (NOTE: Here, J is used to determine row length. Length J
+* of the rows to swap back doesn't include diagonal element)
+ J = J - 1
+ IF( JP2.NE.JJ .AND. J.GE.1 )
+ $ CALL ZSWAP( J, A( JP2, 1 ), LDA, A( JJ, 1 ), LDA )
+ JJ = JJ - 1
+ IF( KSTEP.EQ.2 .AND. JP1.NE.JJ .AND. J.GE.1 )
+ $ CALL ZSWAP( J, A( JP1, 1 ), LDA, A( JJ, 1 ), LDA )
+ IF( J.GT.1 )
+ $ GO TO 120
+*
+* Set KB to the number of columns factorized
+*
+ KB = K - 1
+*
+ END IF
+ RETURN
+*
+* End of ZLAHEF_ROOK
+*
+ END