aboutsummaryrefslogtreecommitdiff
path: root/SRC/DEPRECATED/cgelsx.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/DEPRECATED/cgelsx.f')
-rw-r--r--SRC/DEPRECATED/cgelsx.f447
1 files changed, 447 insertions, 0 deletions
diff --git a/SRC/DEPRECATED/cgelsx.f b/SRC/DEPRECATED/cgelsx.f
new file mode 100644
index 00000000..39380e6a
--- /dev/null
+++ b/SRC/DEPRECATED/cgelsx.f
@@ -0,0 +1,447 @@
+*> \brief <b> CGELSX solves overdetermined or underdetermined systems for GE matrices</b>
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download CGELSX + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsx.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsx.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsx.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE CGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
+* WORK, RWORK, INFO )
+*
+* .. Scalar Arguments ..
+* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
+* REAL RCOND
+* ..
+* .. Array Arguments ..
+* INTEGER JPVT( * )
+* REAL RWORK( * )
+* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> This routine is deprecated and has been replaced by routine CGELSY.
+*>
+*> CGELSX computes the minimum-norm solution to a complex linear least
+*> squares problem:
+*> minimize || A * X - B ||
+*> using a complete orthogonal factorization of A. A is an M-by-N
+*> matrix which may be rank-deficient.
+*>
+*> Several right hand side vectors b and solution vectors x can be
+*> handled in a single call; they are stored as the columns of the
+*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
+*> matrix X.
+*>
+*> The routine first computes a QR factorization with column pivoting:
+*> A * P = Q * [ R11 R12 ]
+*> [ 0 R22 ]
+*> with R11 defined as the largest leading submatrix whose estimated
+*> condition number is less than 1/RCOND. The order of R11, RANK,
+*> is the effective rank of A.
+*>
+*> Then, R22 is considered to be negligible, and R12 is annihilated
+*> by unitary transformations from the right, arriving at the
+*> complete orthogonal factorization:
+*> A * P = Q * [ T11 0 ] * Z
+*> [ 0 0 ]
+*> The minimum-norm solution is then
+*> X = P * Z**H [ inv(T11)*Q1**H*B ]
+*> [ 0 ]
+*> where Q1 consists of the first RANK columns of Q.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] M
+*> \verbatim
+*> M is INTEGER
+*> The number of rows of the matrix A. M >= 0.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The number of columns of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NRHS
+*> \verbatim
+*> NRHS is INTEGER
+*> The number of right hand sides, i.e., the number of
+*> columns of matrices B and X. NRHS >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX array, dimension (LDA,N)
+*> On entry, the M-by-N matrix A.
+*> On exit, A has been overwritten by details of its
+*> complete orthogonal factorization.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,M).
+*> \endverbatim
+*>
+*> \param[in,out] B
+*> \verbatim
+*> B is COMPLEX array, dimension (LDB,NRHS)
+*> On entry, the M-by-NRHS right hand side matrix B.
+*> On exit, the N-by-NRHS solution matrix X.
+*> If m >= n and RANK = n, the residual sum-of-squares for
+*> the solution in the i-th column is given by the sum of
+*> squares of elements N+1:M in that column.
+*> \endverbatim
+*>
+*> \param[in] LDB
+*> \verbatim
+*> LDB is INTEGER
+*> The leading dimension of the array B. LDB >= max(1,M,N).
+*> \endverbatim
+*>
+*> \param[in,out] JPVT
+*> \verbatim
+*> JPVT is INTEGER array, dimension (N)
+*> On entry, if JPVT(i) .ne. 0, the i-th column of A is an
+*> initial column, otherwise it is a free column. Before
+*> the QR factorization of A, all initial columns are
+*> permuted to the leading positions; only the remaining
+*> free columns are moved as a result of column pivoting
+*> during the factorization.
+*> On exit, if JPVT(i) = k, then the i-th column of A*P
+*> was the k-th column of A.
+*> \endverbatim
+*>
+*> \param[in] RCOND
+*> \verbatim
+*> RCOND is REAL
+*> RCOND is used to determine the effective rank of A, which
+*> is defined as the order of the largest leading triangular
+*> submatrix R11 in the QR factorization with pivoting of A,
+*> whose estimated condition number < 1/RCOND.
+*> \endverbatim
+*>
+*> \param[out] RANK
+*> \verbatim
+*> RANK is INTEGER
+*> The effective rank of A, i.e., the order of the submatrix
+*> R11. This is the same as the order of the submatrix T11
+*> in the complete orthogonal factorization of A.
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX array, dimension
+*> (min(M,N) + max( N, 2*min(M,N)+NRHS )),
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is REAL array, dimension (2*N)
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2011
+*
+*> \ingroup complexGEsolve
+*
+* =====================================================================
+ SUBROUTINE CGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
+ $ WORK, RWORK, INFO )
+*
+* -- LAPACK driver routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2011
+*
+* .. Scalar Arguments ..
+ INTEGER INFO, LDA, LDB, M, N, NRHS, RANK
+ REAL RCOND
+* ..
+* .. Array Arguments ..
+ INTEGER JPVT( * )
+ REAL RWORK( * )
+ COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ INTEGER IMAX, IMIN
+ PARAMETER ( IMAX = 1, IMIN = 2 )
+ REAL ZERO, ONE, DONE, NTDONE
+ PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, DONE = ZERO,
+ $ NTDONE = ONE )
+ COMPLEX CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
+ $ CONE = ( 1.0E+0, 0.0E+0 ) )
+* ..
+* .. Local Scalars ..
+ INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
+ REAL ANRM, BIGNUM, BNRM, SMAX, SMAXPR, SMIN, SMINPR,
+ $ SMLNUM
+ COMPLEX C1, C2, S1, S2, T1, T2
+* ..
+* .. External Subroutines ..
+ EXTERNAL CGEQPF, CLAIC1, CLASCL, CLASET, CLATZM, CTRSM,
+ $ CTZRQF, CUNM2R, SLABAD, XERBLA
+* ..
+* .. External Functions ..
+ REAL CLANGE, SLAMCH
+ EXTERNAL CLANGE, SLAMCH
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, CONJG, MAX, MIN
+* ..
+* .. Executable Statements ..
+*
+ MN = MIN( M, N )
+ ISMIN = MN + 1
+ ISMAX = 2*MN + 1
+*
+* Test the input arguments.
+*
+ INFO = 0
+ IF( M.LT.0 ) THEN
+ INFO = -1
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -2
+ ELSE IF( NRHS.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
+ INFO = -5
+ ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
+ INFO = -7
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'CGELSX', -INFO )
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( MIN( M, N, NRHS ).EQ.0 ) THEN
+ RANK = 0
+ RETURN
+ END IF
+*
+* Get machine parameters
+*
+ SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
+ BIGNUM = ONE / SMLNUM
+ CALL SLABAD( SMLNUM, BIGNUM )
+*
+* Scale A, B if max elements outside range [SMLNUM,BIGNUM]
+*
+ ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
+ IASCL = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
+ IASCL = 1
+ ELSE IF( ANRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
+ IASCL = 2
+ ELSE IF( ANRM.EQ.ZERO ) THEN
+*
+* Matrix all zero. Return zero solution.
+*
+ CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ RANK = 0
+ GO TO 100
+ END IF
+*
+ BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
+ IBSCL = 0
+ IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
+*
+* Scale matrix norm up to SMLNUM
+*
+ CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
+ IBSCL = 1
+ ELSE IF( BNRM.GT.BIGNUM ) THEN
+*
+* Scale matrix norm down to BIGNUM
+*
+ CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
+ IBSCL = 2
+ END IF
+*
+* Compute QR factorization with column pivoting of A:
+* A * P = Q * R
+*
+ CALL CGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), RWORK,
+ $ INFO )
+*
+* complex workspace MN+N. Real workspace 2*N. Details of Householder
+* rotations stored in WORK(1:MN).
+*
+* Determine RANK using incremental condition estimation
+*
+ WORK( ISMIN ) = CONE
+ WORK( ISMAX ) = CONE
+ SMAX = ABS( A( 1, 1 ) )
+ SMIN = SMAX
+ IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
+ RANK = 0
+ CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
+ GO TO 100
+ ELSE
+ RANK = 1
+ END IF
+*
+ 10 CONTINUE
+ IF( RANK.LT.MN ) THEN
+ I = RANK + 1
+ CALL CLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
+ $ A( I, I ), SMINPR, S1, C1 )
+ CALL CLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
+ $ A( I, I ), SMAXPR, S2, C2 )
+*
+ IF( SMAXPR*RCOND.LE.SMINPR ) THEN
+ DO 20 I = 1, RANK
+ WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
+ WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
+ 20 CONTINUE
+ WORK( ISMIN+RANK ) = C1
+ WORK( ISMAX+RANK ) = C2
+ SMIN = SMINPR
+ SMAX = SMAXPR
+ RANK = RANK + 1
+ GO TO 10
+ END IF
+ END IF
+*
+* Logically partition R = [ R11 R12 ]
+* [ 0 R22 ]
+* where R11 = R(1:RANK,1:RANK)
+*
+* [R11,R12] = [ T11, 0 ] * Y
+*
+ IF( RANK.LT.N )
+ $ CALL CTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
+*
+* Details of Householder rotations stored in WORK(MN+1:2*MN)
+*
+* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS)
+*
+ CALL CUNM2R( 'Left', 'Conjugate transpose', M, NRHS, MN, A, LDA,
+ $ WORK( 1 ), B, LDB, WORK( 2*MN+1 ), INFO )
+*
+* workspace NRHS
+*
+* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
+*
+ CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
+ $ NRHS, CONE, A, LDA, B, LDB )
+*
+ DO 40 I = RANK + 1, N
+ DO 30 J = 1, NRHS
+ B( I, J ) = CZERO
+ 30 CONTINUE
+ 40 CONTINUE
+*
+* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS)
+*
+ IF( RANK.LT.N ) THEN
+ DO 50 I = 1, RANK
+ CALL CLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
+ $ CONJG( WORK( MN+I ) ), B( I, 1 ),
+ $ B( RANK+1, 1 ), LDB, WORK( 2*MN+1 ) )
+ 50 CONTINUE
+ END IF
+*
+* workspace NRHS
+*
+* B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
+*
+ DO 90 J = 1, NRHS
+ DO 60 I = 1, N
+ WORK( 2*MN+I ) = NTDONE
+ 60 CONTINUE
+ DO 80 I = 1, N
+ IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
+ IF( JPVT( I ).NE.I ) THEN
+ K = I
+ T1 = B( K, J )
+ T2 = B( JPVT( K ), J )
+ 70 CONTINUE
+ B( JPVT( K ), J ) = T1
+ WORK( 2*MN+K ) = DONE
+ T1 = T2
+ K = JPVT( K )
+ T2 = B( JPVT( K ), J )
+ IF( JPVT( K ).NE.I )
+ $ GO TO 70
+ B( I, J ) = T1
+ WORK( 2*MN+K ) = DONE
+ END IF
+ END IF
+ 80 CONTINUE
+ 90 CONTINUE
+*
+* Undo scaling
+*
+ IF( IASCL.EQ.1 ) THEN
+ CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
+ CALL CLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
+ $ INFO )
+ ELSE IF( IASCL.EQ.2 ) THEN
+ CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
+ CALL CLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
+ $ INFO )
+ END IF
+ IF( IBSCL.EQ.1 ) THEN
+ CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
+ ELSE IF( IBSCL.EQ.2 ) THEN
+ CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
+ END IF
+*
+ 100 CONTINUE
+*
+ RETURN
+*
+* End of CGELSX
+*
+ END