aboutsummaryrefslogtreecommitdiff
path: root/SRC/zhbevd_2stage.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zhbevd_2stage.f')
-rw-r--r--SRC/zhbevd_2stage.f458
1 files changed, 458 insertions, 0 deletions
diff --git a/SRC/zhbevd_2stage.f b/SRC/zhbevd_2stage.f
new file mode 100644
index 00000000..e4daae74
--- /dev/null
+++ b/SRC/zhbevd_2stage.f
@@ -0,0 +1,458 @@
+*> \brief <b> ZHBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
+*
+* @precisions fortran z -> s d c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZHBEVD_2STAGE + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevd_2stage.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevd_2stage.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevd_2stage.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
+* WORK, LWORK, RWORK, LRWORK, IWORK,
+* LIWORK, INFO )
+*
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER JOBZ, UPLO
+* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+* INTEGER IWORK( * )
+* DOUBLE PRECISION RWORK( * ), W( * )
+* COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZHBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
+*> a complex Hermitian band matrix A using the 2stage technique for
+*> the reduction to tridiagonal. If eigenvectors are desired, it
+*> uses a divide and conquer algorithm.
+*>
+*> The divide and conquer algorithm makes very mild assumptions about
+*> floating point arithmetic. It will work on machines with a guard
+*> digit in add/subtract, or on those binary machines without guard
+*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
+*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
+*> without guard digits, but we know of none.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] JOBZ
+*> \verbatim
+*> JOBZ is CHARACTER*1
+*> = 'N': Compute eigenvalues only;
+*> = 'V': Compute eigenvalues and eigenvectors.
+*> Not available in this release.
+*> \endverbatim
+*>
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KD
+*> \verbatim
+*> KD is INTEGER
+*> The number of superdiagonals of the matrix A if UPLO = 'U',
+*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is COMPLEX*16 array, dimension (LDAB, N)
+*> On entry, the upper or lower triangle of the Hermitian band
+*> matrix A, stored in the first KD+1 rows of the array. The
+*> j-th column of A is stored in the j-th column of the array AB
+*> as follows:
+*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
+*>
+*> On exit, AB is overwritten by values generated during the
+*> reduction to tridiagonal form. If UPLO = 'U', the first
+*> superdiagonal and the diagonal of the tridiagonal matrix T
+*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
+*> the diagonal and first subdiagonal of T are returned in the
+*> first two rows of AB.
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= KD + 1.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is DOUBLE PRECISION array, dimension (N)
+*> If INFO = 0, the eigenvalues in ascending order.
+*> \endverbatim
+*>
+*> \param[out] Z
+*> \verbatim
+*> Z is COMPLEX*16 array, dimension (LDZ, N)
+*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
+*> eigenvectors of the matrix A, with the i-th column of Z
+*> holding the eigenvector associated with W(i).
+*> If JOBZ = 'N', then Z is not referenced.
+*> \endverbatim
+*>
+*> \param[in] LDZ
+*> \verbatim
+*> LDZ is INTEGER
+*> The leading dimension of the array Z. LDZ >= 1, and if
+*> JOBZ = 'V', LDZ >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
+*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The length of the array WORK. LWORK >= 1, when N <= 1;
+*> otherwise
+*> If JOBZ = 'N' and N > 1, LWORK must be queried.
+*> LWORK = MAX(1, dimension) where
+*> dimension = (2KD+1)*N + KD*NTHREADS
+*> where KD is the size of the band.
+*> NTHREADS is the number of threads used when
+*> openMP compilation is enabled, otherwise =1.
+*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
+*>
+*> If LWORK = -1, then a workspace query is assumed; the routine
+*> only calculates the optimal sizes of the WORK, RWORK and
+*> IWORK arrays, returns these values as the first entries of
+*> the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] RWORK
+*> \verbatim
+*> RWORK is DOUBLE PRECISION array,
+*> dimension (LRWORK)
+*> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
+*> \endverbatim
+*>
+*> \param[in] LRWORK
+*> \verbatim
+*> LRWORK is INTEGER
+*> The dimension of array RWORK.
+*> If N <= 1, LRWORK must be at least 1.
+*> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
+*> If JOBZ = 'V' and N > 1, LRWORK must be at least
+*> 1 + 5*N + 2*N**2.
+*>
+*> If LRWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the optimal sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] IWORK
+*> \verbatim
+*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
+*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
+*> \endverbatim
+*>
+*> \param[in] LIWORK
+*> \verbatim
+*> LIWORK is INTEGER
+*> The dimension of array IWORK.
+*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
+*> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
+*>
+*> If LIWORK = -1, then a workspace query is assumed; the
+*> routine only calculates the optimal sizes of the WORK, RWORK
+*> and IWORK arrays, returns these values as the first entries
+*> of the WORK, RWORK and IWORK arrays, and no error message
+*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit.
+*> < 0: if INFO = -i, the i-th argument had an illegal value.
+*> > 0: if INFO = i, the algorithm failed to converge; i
+*> off-diagonal elements of an intermediate tridiagonal
+*> form did not converge to zero.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2016
+*
+*> \ingroup complex16OTHEReigen
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> All details about the 2stage techniques are available in:
+*>
+*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
+*> Parallel reduction to condensed forms for symmetric eigenvalue problems
+*> using aggregated fine-grained and memory-aware kernels. In Proceedings
+*> of 2011 International Conference for High Performance Computing,
+*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
+*> Article 8 , 11 pages.
+*> http://doi.acm.org/10.1145/2063384.2063394
+*>
+*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
+*> An improved parallel singular value algorithm and its implementation
+*> for multicore hardware, In Proceedings of 2013 International Conference
+*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
+*> Denver, Colorado, USA, 2013.
+*> Article 90, 12 pages.
+*> http://doi.acm.org/10.1145/2503210.2503292
+*>
+*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
+*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
+*> calculations based on fine-grained memory aware tasks.
+*> International Journal of High Performance Computing Applications.
+*> Volume 28 Issue 2, Pages 196-209, May 2014.
+*> http://hpc.sagepub.com/content/28/2/196
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE ZHBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
+ $ WORK, LWORK, RWORK, LRWORK, IWORK,
+ $ LIWORK, INFO )
+*
+ IMPLICIT NONE
+*
+* -- LAPACK driver routine (version 3.6.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER JOBZ, UPLO
+ INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
+* ..
+* .. Array Arguments ..
+ INTEGER IWORK( * )
+ DOUBLE PRECISION RWORK( * ), W( * )
+ COMPLEX*16 AB( LDAB, * ), WORK( * ), Z( LDZ, * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
+ COMPLEX*16 CZERO, CONE
+ PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ),
+ $ CONE = ( 1.0D0, 0.0D0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LOWER, LQUERY, WANTZ
+ INTEGER IINFO, IMAX, INDE, INDWK2, INDRWK, ISCALE,
+ $ LLWORK, INDWK, LHTRD, LWTRD, IB, INDHOUS,
+ $ LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
+ DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
+ $ SMLNUM
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ DOUBLE PRECISION DLAMCH, ZLANHB
+ EXTERNAL LSAME, DLAMCH, ZLANHB, ILAENV
+* ..
+* .. External Subroutines ..
+ EXTERNAL DSCAL, DSTERF, XERBLA, ZGEMM, ZLACPY,
+ $ ZLASCL, ZSTEDC, ZHETRD_HB2ST
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE, SQRT
+* ..
+* .. Executable Statements ..
+*
+* Test the input parameters.
+*
+ WANTZ = LSAME( JOBZ, 'V' )
+ LOWER = LSAME( UPLO, 'L' )
+ LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
+*
+ INFO = 0
+ IF( N.LE.1 ) THEN
+ LWMIN = 1
+ LRWMIN = 1
+ LIWMIN = 1
+ ELSE
+ IB = ILAENV( 18, 'ZHETRD_HB2ST', JOBZ, N, KD, -1, -1 )
+ LHTRD = ILAENV( 19, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
+ LWTRD = ILAENV( 20, 'ZHETRD_HB2ST', JOBZ, N, KD, IB, -1 )
+ IF( WANTZ ) THEN
+ LWMIN = 2*N**2
+ LRWMIN = 1 + 5*N + 2*N**2
+ LIWMIN = 3 + 5*N
+ ELSE
+ LWMIN = MAX( N, LHTRD + LWTRD )
+ LRWMIN = N
+ LIWMIN = 1
+ END IF
+ END IF
+ IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
+ INFO = -2
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -3
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( LDAB.LT.KD+1 ) THEN
+ INFO = -6
+ ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
+ INFO = -9
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+*
+ IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -15
+ END IF
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHBEVD_2STAGE', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 )
+ $ RETURN
+*
+ IF( N.EQ.1 ) THEN
+ W( 1 ) = DBLE( AB( 1, 1 ) )
+ IF( WANTZ )
+ $ Z( 1, 1 ) = CONE
+ RETURN
+ END IF
+*
+* Get machine constants.
+*
+ SAFMIN = DLAMCH( 'Safe minimum' )
+ EPS = DLAMCH( 'Precision' )
+ SMLNUM = SAFMIN / EPS
+ BIGNUM = ONE / SMLNUM
+ RMIN = SQRT( SMLNUM )
+ RMAX = SQRT( BIGNUM )
+*
+* Scale matrix to allowable range, if necessary.
+*
+ ANRM = ZLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
+ ISCALE = 0
+ IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
+ ISCALE = 1
+ SIGMA = RMIN / ANRM
+ ELSE IF( ANRM.GT.RMAX ) THEN
+ ISCALE = 1
+ SIGMA = RMAX / ANRM
+ END IF
+ IF( ISCALE.EQ.1 ) THEN
+ IF( LOWER ) THEN
+ CALL ZLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ ELSE
+ CALL ZLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
+ END IF
+ END IF
+*
+* Call ZHBTRD_HB2ST to reduce Hermitian band matrix to tridiagonal form.
+*
+ INDE = 1
+ INDRWK = INDE + N
+ LLRWK = LRWORK - INDRWK + 1
+ INDHOUS = 1
+ INDWK = INDHOUS + LHTRD
+ LLWORK = LWORK - INDWK + 1
+ INDWK2 = INDWK + N*N
+ LLWK2 = LWORK - INDWK2 + 1
+*
+ CALL ZHETRD_HB2ST( "N", JOBZ, UPLO, N, KD, AB, LDAB, W,
+ $ RWORK( INDE ), WORK( INDHOUS ), LHTRD,
+ $ WORK( INDWK ), LLWORK, IINFO )
+*
+* For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC.
+*
+ IF( .NOT.WANTZ ) THEN
+ CALL DSTERF( N, W, RWORK( INDE ), INFO )
+ ELSE
+ CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
+ $ LLWK2, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
+ $ INFO )
+ CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
+ $ WORK( INDWK2 ), N )
+ CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
+ END IF
+*
+* If matrix was scaled, then rescale eigenvalues appropriately.
+*
+ IF( ISCALE.EQ.1 ) THEN
+ IF( INFO.EQ.0 ) THEN
+ IMAX = N
+ ELSE
+ IMAX = INFO - 1
+ END IF
+ CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
+ END IF
+*
+ WORK( 1 ) = LWMIN
+ RWORK( 1 ) = LRWMIN
+ IWORK( 1 ) = LIWMIN
+ RETURN
+*
+* End of ZHBEVD_2STAGE
+*
+ END