aboutsummaryrefslogtreecommitdiff
path: root/SRC/zhetrd_hb2st.F
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zhetrd_hb2st.F')
-rw-r--r--SRC/zhetrd_hb2st.F603
1 files changed, 603 insertions, 0 deletions
diff --git a/SRC/zhetrd_hb2st.F b/SRC/zhetrd_hb2st.F
new file mode 100644
index 00000000..5d62e30d
--- /dev/null
+++ b/SRC/zhetrd_hb2st.F
@@ -0,0 +1,603 @@
+*> \brief \b ZHBTRD
+*
+* @precisions fortran z -> s d c
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZHBTRD + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbtrd.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbtrd.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbtrd.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB,
+* D, E, HOUS, LHOUS, WORK, LWORK, INFO )
+*
+* #define PRECISION_COMPLEX
+*
+* #if defined(_OPENMP)
+* use omp_lib
+* #endif
+*
+* IMPLICIT NONE
+*
+* .. Scalar Arguments ..
+* CHARACTER STAGE1, UPLO, VECT
+* INTEGER N, KD, IB, LDAB, LHOUS, LWORK, INFO
+* ..
+* .. Array Arguments ..
+* DOUBLE PRECISION D( * ), E( * )
+* COMPLEX*16 AB( LDAB, * ), HOUS( * ), WORK( * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*>
+*> ZHBTRD reduces a complex Hermitian band matrix A to real symmetric
+*> tridiagonal form T by a unitary similarity transformation:
+*> Q**H * A * Q = T.
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] STAGE
+*> \verbatim
+*> STAGE is CHARACTER*1
+*> = 'N': "No": to mention that the stage 1 of the reduction
+*> from dense to band using the zhetrd_he2hb routine
+*> was not called before this routine to reproduce AB.
+*> In other term this routine is called as standalone.
+*> = 'Y': "Yes": to mention that the stage 1 of the
+*> reduction from dense to band using the zhetrd_he2hb
+*> routine has been called to produce AB (e.g., AB is
+*> the output of zhetrd_he2hb.
+*> \endverbatim
+*>
+*> \param[in] VECT
+*> \verbatim
+*> VECT is CHARACTER*1
+*> = 'N': No need for the Housholder representation,
+*> and thus LHOUS is of size max(1, 4*N);
+*> = 'V': the Householder representation is needed to
+*> either generate or to apply Q later on,
+*> then LHOUS is to be queried and computed.
+*> (NOT AVAILABLE IN THIS RELEASE).
+*> \endverbatim
+*>
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> = 'U': Upper triangle of A is stored;
+*> = 'L': Lower triangle of A is stored.
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] KD
+*> \verbatim
+*> KD is INTEGER
+*> The number of superdiagonals of the matrix A if UPLO = 'U',
+*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
+*> \endverbatim
+*>
+*> \param[in,out] AB
+*> \verbatim
+*> AB is COMPLEX*16 array, dimension (LDAB,N)
+*> On entry, the upper or lower triangle of the Hermitian band
+*> matrix A, stored in the first KD+1 rows of the array. The
+*> j-th column of A is stored in the j-th column of the array AB
+*> as follows:
+*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
+*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
+*> On exit, the diagonal elements of AB are overwritten by the
+*> diagonal elements of the tridiagonal matrix T; if KD > 0, the
+*> elements on the first superdiagonal (if UPLO = 'U') or the
+*> first subdiagonal (if UPLO = 'L') are overwritten by the
+*> off-diagonal elements of T; the rest of AB is overwritten by
+*> values generated during the reduction.
+*> \endverbatim
+*>
+*> \param[in] LDAB
+*> \verbatim
+*> LDAB is INTEGER
+*> The leading dimension of the array AB. LDAB >= KD+1.
+*> \endverbatim
+*>
+*> \param[out] D
+*> \verbatim
+*> D is DOUBLE PRECISION array, dimension (N)
+*> The diagonal elements of the tridiagonal matrix T.
+*> \endverbatim
+*>
+*> \param[out] E
+*> \verbatim
+*> E is DOUBLE PRECISION array, dimension (N-1)
+*> The off-diagonal elements of the tridiagonal matrix T:
+*> E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
+*> \endverbatim
+*>
+*> \param[out] HOUS
+*> \verbatim
+*> HOUS is COMPLEX*16 array, dimension LHOUS, that
+*> store the Householder representation.
+*> \endverbatim
+*>
+*> \param[in] LHOUS
+*> \verbatim
+*> LHOUS is INTEGER
+*> The dimension of the array HOUS. LHOUS = MAX(1, dimension)
+*> If LWORK = -1, or LHOUS=-1,
+*> then a query is assumed; the routine
+*> only calculates the optimal size of the HOUS array, returns
+*> this value as the first entry of the HOUS array, and no error
+*> message related to LHOUS is issued by XERBLA.
+*> LHOUS = MAX(1, dimension) where
+*> dimension = 4*N if VECT='N'
+*> not available now if VECT='H'
+*> \endverbatim
+*>
+*> \param[out] WORK
+*> \verbatim
+*> WORK is COMPLEX*16 array, dimension LWORK.
+*> \endverbatim
+*>
+*> \param[in] LWORK
+*> \verbatim
+*> LWORK is INTEGER
+*> The dimension of the array WORK. LWORK = MAX(1, dimension)
+*> If LWORK = -1, or LHOUS=-1,
+*> then a workspace query is assumed; the routine
+*> only calculates the optimal size of the WORK array, returns
+*> this value as the first entry of the WORK array, and no error
+*> message related to LWORK is issued by XERBLA.
+*> LWORK = MAX(1, dimension) where
+*> dimension = (2KD+1)*N + KD*NTHREADS
+*> where KD is the blocking size of the reduction,
+*> FACTOPTNB is the blocking used by the QR or LQ
+*> algorithm, usually FACTOPTNB=128 is a good choice
+*> NTHREADS is the number of threads used when
+*> openMP compilation is enabled, otherwise =1.
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*> < 0: if INFO = -i, the i-th argument had an illegal value
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2016
+*
+*> \ingroup complex16OTHERcomputational
+*
+*> \par Further Details:
+* =====================
+*>
+*> \verbatim
+*>
+*> Implemented by Azzam Haidar.
+*>
+*> All details are available on technical report, SC11, SC13 papers.
+*>
+*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
+*> Parallel reduction to condensed forms for symmetric eigenvalue problems
+*> using aggregated fine-grained and memory-aware kernels. In Proceedings
+*> of 2011 International Conference for High Performance Computing,
+*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
+*> Article 8 , 11 pages.
+*> http://doi.acm.org/10.1145/2063384.2063394
+*>
+*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
+*> An improved parallel singular value algorithm and its implementation
+*> for multicore hardware, In Proceedings of 2013 International Conference
+*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
+*> Denver, Colorado, USA, 2013.
+*> Article 90, 12 pages.
+*> http://doi.acm.org/10.1145/2503210.2503292
+*>
+*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
+*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
+*> calculations based on fine-grained memory aware tasks.
+*> International Journal of High Performance Computing Applications.
+*> Volume 28 Issue 2, Pages 196-209, May 2014.
+*> http://hpc.sagepub.com/content/28/2/196
+*>
+*> \endverbatim
+*>
+* =====================================================================
+ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB,
+ $ D, E, HOUS, LHOUS, WORK, LWORK, INFO )
+*
+#define PRECISION_COMPLEX
+*
+#if defined(_OPENMP)
+ use omp_lib
+#endif
+*
+ IMPLICIT NONE
+*
+* -- LAPACK computational routine (version 3.4.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER STAGE1, UPLO, VECT
+ INTEGER N, KD, LDAB, LHOUS, LWORK, INFO
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION D( * ), E( * )
+ COMPLEX*16 AB( LDAB, * ), HOUS( * ), WORK( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION RZERO
+ COMPLEX*16 ZERO, ONE
+ PARAMETER ( RZERO = 0.0D+0,
+ $ ZERO = ( 0.0D+0, 0.0D+0 ),
+ $ ONE = ( 1.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL LQUERY, WANTQ, UPPER, AFTERS1
+ INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST,
+ $ ED, STIND, EDIND, BLKLASTIND, COLPT, THED,
+ $ STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID,
+ $ NBTILES, TTYPE, TID, NTHREADS, DEBUG,
+ $ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS,
+ $ INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU,
+ $ SIZEV, SIZETAU, LDV, LHMIN, LWMIN
+#if defined (PRECISION_COMPLEX)
+ DOUBLE PRECISION ABSTMP
+ COMPLEX*16 TMP
+#endif
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZHB2ST_KERNELS, ZLACPY, ZLASET
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC MIN, MAX, CEILING, DBLE, REAL
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER ILAENV
+ EXTERNAL LSAME, ILAENV
+* ..
+* .. Executable Statements ..
+*
+* Determine the minimal workspace size required.
+* Test the input parameters
+*
+ DEBUG = 0
+ INFO = 0
+ AFTERS1 = LSAME( STAGE1, 'Y' )
+ WANTQ = LSAME( VECT, 'V' )
+ UPPER = LSAME( UPLO, 'U' )
+ LQUERY = ( LWORK.EQ.-1 ) .OR. ( LHOUS.EQ.-1 )
+*
+* Determine the block size, the workspace size and the hous size.
+*
+ IB = ILAENV( 18, 'ZHETRD_HB2ST', VECT, N, KD, -1, -1 )
+ LHMIN = ILAENV( 19, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 )
+ LWMIN = ILAENV( 20, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 )
+*
+ IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN
+ INFO = -1
+ ELSE IF( .NOT.LSAME( VECT, 'N' ) ) THEN
+ INFO = -2
+ ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
+ INFO = -3
+ ELSE IF( N.LT.0 ) THEN
+ INFO = -4
+ ELSE IF( KD.LT.0 ) THEN
+ INFO = -5
+ ELSE IF( LDAB.LT.(KD+1) ) THEN
+ INFO = -7
+ ELSE IF( LHOUS.LT.LHMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -11
+ ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
+ INFO = -13
+ END IF
+*
+ IF( INFO.EQ.0 ) THEN
+ HOUS( 1 ) = LHMIN
+ WORK( 1 ) = LWMIN
+ END IF
+*
+ IF( INFO.NE.0 ) THEN
+ CALL XERBLA( 'ZHETRD_HB2ST', -INFO )
+ RETURN
+ ELSE IF( LQUERY ) THEN
+ RETURN
+ END IF
+*
+* Quick return if possible
+*
+ IF( N.EQ.0 ) THEN
+ WORK( 1 ) = 1
+ RETURN
+ END IF
+*
+* Determine pointer position
+*
+ LDV = KD + IB
+ SIZETAU = 2 * N
+ SIZEV = 2 * N
+ INDTAU = 1
+ INDV = INDTAU + SIZETAU
+ LDA = 2 * KD + 1
+ SIZEA = LDA * N
+ INDA = 1
+ INDW = INDA + SIZEA
+ NTHREADS = 1
+ TID = 0
+*
+ IF( UPPER ) THEN
+ APOS = INDA + KD
+ AWPOS = INDA
+ DPOS = APOS + KD
+ OFDPOS = DPOS - 1
+ ABDPOS = KD + 1
+ ABOFDPOS = KD
+ ELSE
+ APOS = INDA
+ AWPOS = INDA + KD + 1
+ DPOS = APOS
+ OFDPOS = DPOS + 1
+ ABDPOS = 1
+ ABOFDPOS = 2
+
+ ENDIF
+*
+* Case KD=0:
+* The matrix is diagonal. We just copy it (convert to "real" for
+* complex because D is double and the imaginary part should be 0)
+* and store it in D. A sequential code here is better or
+* in a parallel environment it might need two cores for D and E
+*
+ IF( KD.EQ.0 ) THEN
+ DO 30 I = 1, N
+ D( I ) = DBLE( AB( ABDPOS, I ) )
+ 30 CONTINUE
+ DO 40 I = 1, N-1
+ E( I ) = RZERO
+ 40 CONTINUE
+ GOTO 200
+ END IF
+*
+* Case KD=1:
+* The matrix is already Tridiagonal. We have to make diagonal
+* and offdiagonal elements real, and store them in D and E.
+* For that, for real precision just copy the diag and offdiag
+* to D and E while for the COMPLEX case the bulge chasing is
+* performed to convert the hermetian tridiagonal to symmetric
+* tridiagonal. A simpler coversion formula might be used, but then
+* updating the Q matrix will be required and based if Q is generated
+* or not this might complicate the story.
+*
+C IF( KD.EQ.1 .AND. N.GT.(KD+1) .AND. AFTERS1 ) THEN
+ IF( KD.EQ.1 ) THEN
+ DO 50 I = 1, N
+ D( I ) = DBLE( AB( ABDPOS, I ) )
+ 50 CONTINUE
+#if defined (PRECISION_COMPLEX)
+*
+* make off-diagonal elements real and copy them to E
+*
+ IF( UPPER ) THEN
+ DO 60 I = 1, N - 1
+ TMP = AB( ABOFDPOS, I+1 )
+ ABSTMP = ABS( TMP )
+ AB( ABOFDPOS, I+1 ) = ABSTMP
+ E( I ) = ABSTMP
+ IF( ABSTMP.NE.RZERO ) THEN
+ TMP = TMP / ABSTMP
+ ELSE
+ TMP = ONE
+ END IF
+ IF( I.LT.N-1 )
+ $ AB( ABOFDPOS, I+2 ) = AB( ABOFDPOS, I+2 )*TMP
+C IF( WANTZ ) THEN
+C CALL ZSCAL( N, DCONJG( TMP ), Q( 1, I+1 ), 1 )
+C END IF
+ 60 CONTINUE
+ ELSE
+ DO 70 I = 1, N - 1
+ TMP = AB( ABOFDPOS, I )
+ ABSTMP = ABS( TMP )
+ AB( ABOFDPOS, I ) = ABSTMP
+ E( I ) = ABSTMP
+ IF( ABSTMP.NE.RZERO ) THEN
+ TMP = TMP / ABSTMP
+ ELSE
+ TMP = ONE
+ END IF
+ IF( I.LT.N-1 )
+ $ AB( ABOFDPOS, I+1 ) = AB( ABOFDPOS, I+1 )*TMP
+C IF( WANTQ ) THEN
+C CALL ZSCAL( N, TMP, Q( 1, I+1 ), 1 )
+C END IF
+ 70 CONTINUE
+ ENDIF
+#else
+ IF( UPPER ) THEN
+ DO 60 I = 1, N-1
+ E( I ) = DBLE( AB( ABOFDPOS, I+1 ) )
+ 60 CONTINUE
+ ELSE
+ DO 70 I = 1, N-1
+ E( I ) = DBLE( AB( ABOFDPOS, I ) )
+ 70 CONTINUE
+ ENDIF
+#endif
+ GOTO 200
+ END IF
+*
+* Main code start here.
+* Reduce the hermitian band of A to a tridiagonal matrix.
+*
+ THGRSIZ = N
+ GRSIZ = 1
+ SHIFT = 3
+ NBTILES = CEILING( REAL(N)/REAL(KD) )
+ STEPERCOL = CEILING( REAL(SHIFT)/REAL(GRSIZ) )
+ THGRNB = CEILING( REAL(N-1)/REAL(THGRSIZ) )
+*
+ CALL ZLACPY( "A", KD+1, N, AB, LDAB, WORK( APOS ), LDA )
+ CALL ZLASET( "A", KD, N, ZERO, ZERO, WORK( AWPOS ), LDA )
+*
+*
+* openMP parallelisation start here
+*
+#if defined(_OPENMP)
+!$OMP PARALLEL PRIVATE( TID, THGRID, BLKLASTIND )
+!$OMP$ PRIVATE( THED, I, M, K, ST, ED, STT, SWEEPID )
+!$OMP$ PRIVATE( MYID, TTYPE, COLPT, STIND, EDIND )
+!$OMP$ SHARED ( UPLO, WANTQ, INDV, INDTAU, HOUS, WORK)
+!$OMP$ SHARED ( N, KD, IB, NBTILES, LDA, LDV, INDA )
+!$OMP$ SHARED ( STEPERCOL, THGRNB, THGRSIZ, GRSIZ, SHIFT )
+!$OMP MASTER
+#endif
+*
+* main bulge chasing loop
+*
+ DO 100 THGRID = 1, THGRNB
+ STT = (THGRID-1)*THGRSIZ+1
+ THED = MIN( (STT + THGRSIZ -1), (N-1))
+ DO 110 I = STT, N-1
+ ED = MIN( I, THED )
+ IF( STT.GT.ED ) GOTO 100
+ DO 120 M = 1, STEPERCOL
+ ST = STT
+ DO 130 SWEEPID = ST, ED
+ DO 140 K = 1, GRSIZ
+ MYID = (I-SWEEPID)*(STEPERCOL*GRSIZ)
+ $ + (M-1)*GRSIZ + K
+ IF ( MYID.EQ.1 ) THEN
+ TTYPE = 1
+ ELSE
+ TTYPE = MOD( MYID, 2 ) + 2
+ ENDIF
+
+ IF( TTYPE.EQ.2 ) THEN
+ COLPT = (MYID/2)*KD + SWEEPID
+ STIND = COLPT-KD+1
+ EDIND = MIN(COLPT,N)
+ BLKLASTIND = COLPT
+ ELSE
+ COLPT = ((MYID+1)/2)*KD + SWEEPID
+ STIND = COLPT-KD+1
+ EDIND = MIN(COLPT,N)
+ IF( ( STIND.GE.EDIND-1 ).AND.
+ $ ( EDIND.EQ.N ) ) THEN
+ BLKLASTIND = N
+ ELSE
+ BLKLASTIND = 0
+ ENDIF
+ ENDIF
+*
+* Call the kernel
+*
+#if defined(_OPENMP)
+ IF( TTYPE.NE.1 ) THEN
+!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
+!$OMP$ DEPEND(in:WORK(MYID-1))
+!$OMP$ DEPEND(out:WORK(MYID))
+ TID = OMP_GET_THREAD_NUM()
+ CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE,
+ $ STIND, EDIND, SWEEPID, N, KD, IB,
+ $ WORK ( INDA ), LDA,
+ $ HOUS( INDV ), HOUS( INDTAU ), LDV,
+ $ WORK( INDW + TID*KD ) )
+!$OMP END TASK
+ ELSE
+!$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1))
+!$OMP$ DEPEND(out:WORK(MYID))
+ TID = OMP_GET_THREAD_NUM()
+ CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE,
+ $ STIND, EDIND, SWEEPID, N, KD, IB,
+ $ WORK ( INDA ), LDA,
+ $ HOUS( INDV ), HOUS( INDTAU ), LDV,
+ $ WORK( INDW + TID*KD ) )
+!$OMP END TASK
+ ENDIF
+#else
+ CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE,
+ $ STIND, EDIND, SWEEPID, N, KD, IB,
+ $ WORK ( INDA ), LDA,
+ $ HOUS( INDV ), HOUS( INDTAU ), LDV,
+ $ WORK( INDW + TID*KD ) )
+#endif
+ IF ( BLKLASTIND.GE.(N-1) ) THEN
+ STT = STT + 1
+ GOTO 130
+ ENDIF
+ 140 CONTINUE
+ 130 CONTINUE
+ 120 CONTINUE
+ 110 CONTINUE
+ 100 CONTINUE
+*
+#if defined(_OPENMP)
+!$OMP END MASTER
+!$OMP END PARALLEL
+#endif
+*
+* Copy the diagonal from A to D. Note that D is REAL thus only
+* the Real part is needed, the imaginary part should be zero.
+*
+ DO 150 I = 1, N
+ D( I ) = DBLE( WORK( DPOS+(I-1)*LDA ) )
+ 150 CONTINUE
+*
+* Copy the off diagonal from A to E. Note that E is REAL thus only
+* the Real part is needed, the imaginary part should be zero.
+*
+ IF( UPPER ) THEN
+ DO 160 I = 1, N-1
+ E( I ) = DBLE( WORK( OFDPOS+I*LDA ) )
+ 160 CONTINUE
+ ELSE
+ DO 170 I = 1, N-1
+ E( I ) = DBLE( WORK( OFDPOS+(I-1)*LDA ) )
+ 170 CONTINUE
+ ENDIF
+*
+ 200 CONTINUE
+*
+ HOUS( 1 ) = LHMIN
+ WORK( 1 ) = LWMIN
+ RETURN
+*
+* End of ZHETRD_HB2ST
+*
+ END
+#undef PRECISION_COMPLEX
+