aboutsummaryrefslogtreecommitdiff
path: root/SRC/zlahef_rk.f
diff options
context:
space:
mode:
Diffstat (limited to 'SRC/zlahef_rk.f')
-rw-r--r--SRC/zlahef_rk.f1234
1 files changed, 1234 insertions, 0 deletions
diff --git a/SRC/zlahef_rk.f b/SRC/zlahef_rk.f
new file mode 100644
index 00000000..cf8c8586
--- /dev/null
+++ b/SRC/zlahef_rk.f
@@ -0,0 +1,1234 @@
+*> \brief \b ZLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
+*
+* =========== DOCUMENTATION ===========
+*
+* Online html documentation available at
+* http://www.netlib.org/lapack/explore-html/
+*
+*> \htmlonly
+*> Download ZLAHEF_RK + dependencies
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_rk.f">
+*> [TGZ]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_rk.f">
+*> [ZIP]</a>
+*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_rk.f">
+*> [TXT]</a>
+*> \endhtmlonly
+*
+* Definition:
+* ===========
+*
+* SUBROUTINE ZLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
+* INFO )
+*
+* .. Scalar Arguments ..
+* CHARACTER UPLO
+* INTEGER INFO, KB, LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+* INTEGER IPIV( * )
+* COMPLEX*16 A( LDA, * ), E( * ), W( LDW, * )
+* ..
+*
+*
+*> \par Purpose:
+* =============
+*>
+*> \verbatim
+*> ZLAHEF_RK computes a partial factorization of a complex Hermitian
+*> matrix A using the bounded Bunch-Kaufman (rook) diagonal
+*> pivoting method. The partial factorization has the form:
+*>
+*> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
+*> ( 0 U22 ) ( 0 D ) ( U12**H U22**H )
+*>
+*> A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L',
+*> ( L21 I ) ( 0 A22 ) ( 0 I )
+*>
+*> where the order of D is at most NB. The actual order is returned in
+*> the argument KB, and is either NB or NB-1, or N if N <= NB.
+*>
+*> ZLAHEF_RK is an auxiliary routine called by ZHETRF_RK. It uses
+*> blocked code (calling Level 3 BLAS) to update the submatrix
+*> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
+*> \endverbatim
+*
+* Arguments:
+* ==========
+*
+*> \param[in] UPLO
+*> \verbatim
+*> UPLO is CHARACTER*1
+*> Specifies whether the upper or lower triangular part of the
+*> Hermitian matrix A is stored:
+*> = 'U': Upper triangular
+*> = 'L': Lower triangular
+*> \endverbatim
+*>
+*> \param[in] N
+*> \verbatim
+*> N is INTEGER
+*> The order of the matrix A. N >= 0.
+*> \endverbatim
+*>
+*> \param[in] NB
+*> \verbatim
+*> NB is INTEGER
+*> The maximum number of columns of the matrix A that should be
+*> factored. NB should be at least 2 to allow for 2-by-2 pivot
+*> blocks.
+*> \endverbatim
+*>
+*> \param[out] KB
+*> \verbatim
+*> KB is INTEGER
+*> The number of columns of A that were actually factored.
+*> KB is either NB-1 or NB, or N if N <= NB.
+*> \endverbatim
+*>
+*> \param[in,out] A
+*> \verbatim
+*> A is COMPLEX*16 array, dimension (LDA,N)
+*> On entry, the Hermitian matrix A.
+*> If UPLO = 'U': the leading N-by-N upper triangular part
+*> of A contains the upper triangular part of the matrix A,
+*> and the strictly lower triangular part of A is not
+*> referenced.
+*>
+*> If UPLO = 'L': the leading N-by-N lower triangular part
+*> of A contains the lower triangular part of the matrix A,
+*> and the strictly upper triangular part of A is not
+*> referenced.
+*>
+*> On exit, contains:
+*> a) ONLY diagonal elements of the Hermitian block diagonal
+*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
+*> (superdiagonal (or subdiagonal) elements of D
+*> are stored on exit in array E), and
+*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
+*> If UPLO = 'L': factor L in the subdiagonal part of A.
+*> \endverbatim
+*>
+*> \param[in] LDA
+*> \verbatim
+*> LDA is INTEGER
+*> The leading dimension of the array A. LDA >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] E
+*> \verbatim
+*> E is COMPLEX*16 array, dimension (N)
+*> On exit, contains the superdiagonal (or subdiagonal)
+*> elements of the Hermitian block diagonal matrix D
+*> with 1-by-1 or 2-by-2 diagonal blocks, where
+*> If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
+*> If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
+*>
+*> NOTE: For 1-by-1 diagonal block D(k), where
+*> 1 <= k <= N, the element E(k) is set to 0 in both
+*> UPLO = 'U' or UPLO = 'L' cases.
+*> \endverbatim
+*>
+*> \param[out] IPIV
+*> \verbatim
+*> IPIV is INTEGER array, dimension (N)
+*> IPIV describes the permutation matrix P in the factorization
+*> of matrix A as follows. The absolute value of IPIV(k)
+*> represents the index of row and column that were
+*> interchanged with the k-th row and column. The value of UPLO
+*> describes the order in which the interchanges were applied.
+*> Also, the sign of IPIV represents the block structure of
+*> the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
+*> diagonal blocks which correspond to 1 or 2 interchanges
+*> at each factorization step.
+*>
+*> If UPLO = 'U',
+*> ( in factorization order, k decreases from N to 1 ):
+*> a) A single positive entry IPIV(k) > 0 means:
+*> D(k,k) is a 1-by-1 diagonal block.
+*> If IPIV(k) != k, rows and columns k and IPIV(k) were
+*> interchanged in the submatrix A(1:N,N-KB+1:N);
+*> If IPIV(k) = k, no interchange occurred.
+*>
+*>
+*> b) A pair of consecutive negative entries
+*> IPIV(k) < 0 and IPIV(k-1) < 0 means:
+*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
+*> (NOTE: negative entries in IPIV appear ONLY in pairs).
+*> 1) If -IPIV(k) != k, rows and columns
+*> k and -IPIV(k) were interchanged
+*> in the matrix A(1:N,N-KB+1:N).
+*> If -IPIV(k) = k, no interchange occurred.
+*> 2) If -IPIV(k-1) != k-1, rows and columns
+*> k-1 and -IPIV(k-1) were interchanged
+*> in the submatrix A(1:N,N-KB+1:N).
+*> If -IPIV(k-1) = k-1, no interchange occurred.
+*>
+*> c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
+*>
+*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
+*>
+*> If UPLO = 'L',
+*> ( in factorization order, k increases from 1 to N ):
+*> a) A single positive entry IPIV(k) > 0 means:
+*> D(k,k) is a 1-by-1 diagonal block.
+*> If IPIV(k) != k, rows and columns k and IPIV(k) were
+*> interchanged in the submatrix A(1:N,1:KB).
+*> If IPIV(k) = k, no interchange occurred.
+*>
+*> b) A pair of consecutive negative entries
+*> IPIV(k) < 0 and IPIV(k+1) < 0 means:
+*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
+*> (NOTE: negative entries in IPIV appear ONLY in pairs).
+*> 1) If -IPIV(k) != k, rows and columns
+*> k and -IPIV(k) were interchanged
+*> in the submatrix A(1:N,1:KB).
+*> If -IPIV(k) = k, no interchange occurred.
+*> 2) If -IPIV(k+1) != k+1, rows and columns
+*> k-1 and -IPIV(k-1) were interchanged
+*> in the submatrix A(1:N,1:KB).
+*> If -IPIV(k+1) = k+1, no interchange occurred.
+*>
+*> c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
+*>
+*> d) NOTE: Any entry IPIV(k) is always NONZERO on output.
+*> \endverbatim
+*>
+*> \param[out] W
+*> \verbatim
+*> W is COMPLEX*16 array, dimension (LDW,NB)
+*> \endverbatim
+*>
+*> \param[in] LDW
+*> \verbatim
+*> LDW is INTEGER
+*> The leading dimension of the array W. LDW >= max(1,N).
+*> \endverbatim
+*>
+*> \param[out] INFO
+*> \verbatim
+*> INFO is INTEGER
+*> = 0: successful exit
+*>
+*> < 0: If INFO = -k, the k-th argument had an illegal value
+*>
+*> > 0: If INFO = k, the matrix A is singular, because:
+*> If UPLO = 'U': column k in the upper
+*> triangular part of A contains all zeros.
+*> If UPLO = 'L': column k in the lower
+*> triangular part of A contains all zeros.
+*>
+*> Therefore D(k,k) is exactly zero, and superdiagonal
+*> elements of column k of U (or subdiagonal elements of
+*> column k of L ) are all zeros. The factorization has
+*> been completed, but the block diagonal matrix D is
+*> exactly singular, and division by zero will occur if
+*> it is used to solve a system of equations.
+*>
+*> NOTE: INFO only stores the first occurrence of
+*> a singularity, any subsequent occurrence of singularity
+*> is not stored in INFO even though the factorization
+*> always completes.
+*> \endverbatim
+*
+* Authors:
+* ========
+*
+*> \author Univ. of Tennessee
+*> \author Univ. of California Berkeley
+*> \author Univ. of Colorado Denver
+*> \author NAG Ltd.
+*
+*> \date November 2016
+*
+*> \ingroup complex16HEcomputational
+*
+*> \par Contributors:
+* ==================
+*>
+*> \verbatim
+*>
+*> November 2016, Igor Kozachenko,
+*> Computer Science Division,
+*> University of California, Berkeley
+*>
+*> September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
+*> School of Mathematics,
+*> University of Manchester
+*>
+*> \endverbatim
+*
+* =====================================================================
+ SUBROUTINE ZLAHEF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
+ $ INFO )
+*
+* -- LAPACK computational routine (version 3.7.0) --
+* -- LAPACK is a software package provided by Univ. of Tennessee, --
+* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
+* November 2016
+*
+* .. Scalar Arguments ..
+ CHARACTER UPLO
+ INTEGER INFO, KB, LDA, LDW, N, NB
+* ..
+* .. Array Arguments ..
+ INTEGER IPIV( * )
+ COMPLEX*16 A( LDA, * ), W( LDW, * ), E( * )
+* ..
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+ COMPLEX*16 CONE
+ PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
+ DOUBLE PRECISION EIGHT, SEVTEN
+ PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
+ COMPLEX*16 CZERO
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+ LOGICAL DONE
+ INTEGER IMAX, ITEMP, II, J, JB, JJ, JMAX, K, KK, KKW,
+ $ KP, KSTEP, KW, P
+ DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, DTEMP, R1, ROWMAX, T,
+ $ SFMIN
+ COMPLEX*16 D11, D21, D22, Z
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ INTEGER IZAMAX
+ DOUBLE PRECISION DLAMCH
+ EXTERNAL LSAME, IZAMAX, DLAMCH
+* ..
+* .. External Subroutines ..
+ EXTERNAL ZCOPY, ZDSCAL, ZGEMM, ZGEMV, ZLACGV, ZSWAP
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCONJG, DIMAG, MAX, MIN, SQRT
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION CABS1
+* ..
+* .. Statement Function definitions ..
+ CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
+* ..
+* .. Executable Statements ..
+*
+ INFO = 0
+*
+* Initialize ALPHA for use in choosing pivot block size.
+*
+ ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
+*
+* Compute machine safe minimum
+*
+ SFMIN = DLAMCH( 'S' )
+*
+ IF( LSAME( UPLO, 'U' ) ) THEN
+*
+* Factorize the trailing columns of A using the upper triangle
+* of A and working backwards, and compute the matrix W = U12*D
+* for use in updating A11 (note that conjg(W) is actually stored)
+* Initilize the first entry of array E, where superdiagonal
+* elements of D are stored
+*
+ E( 1 ) = CZERO
+*
+* K is the main loop index, decreasing from N in steps of 1 or 2
+*
+ K = N
+ 10 CONTINUE
+*
+* KW is the column of W which corresponds to column K of A
+*
+ KW = NB + K - N
+*
+* Exit from loop
+*
+ IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
+ $ GO TO 30
+*
+ KSTEP = 1
+ P = K
+*
+* Copy column K of A to column KW of W and update it
+*
+ IF( K.GT.1 )
+ $ CALL ZCOPY( K-1, A( 1, K ), 1, W( 1, KW ), 1 )
+ W( K, KW ) = DBLE( A( K, K ) )
+ IF( K.LT.N ) THEN
+ CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
+ $ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
+ W( K, KW ) = DBLE( W( K, KW ) )
+ END IF
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( DBLE( W( K, KW ) ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value.
+* Determine both COLMAX and IMAX.
+*
+ IF( K.GT.1 ) THEN
+ IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
+ COLMAX = CABS1( W( IMAX, KW ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero or underflow: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ A( K, K ) = DBLE( W( K, KW ) )
+ IF( K.GT.1 )
+ $ CALL ZCOPY( K-1, W( 1, KW ), 1, A( 1, K ), 1 )
+*
+* Set E( K ) to zero
+*
+ IF( K.GT.1 )
+ $ E( K ) = CZERO
+*
+ ELSE
+*
+* ============================================================
+*
+* BEGIN pivot search
+*
+* Case(1)
+* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
+* (used to handle NaN and Inf)
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+*
+ ELSE
+*
+* Lop until pivot found
+*
+ DONE = .FALSE.
+*
+ 12 CONTINUE
+*
+* BEGIN pivot search loop body
+*
+*
+* Copy column IMAX to column KW-1 of W and update it
+*
+ IF( IMAX.GT.1 )
+ $ CALL ZCOPY( IMAX-1, A( 1, IMAX ), 1, W( 1, KW-1 ),
+ $ 1 )
+ W( IMAX, KW-1 ) = DBLE( A( IMAX, IMAX ) )
+*
+ CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
+ $ W( IMAX+1, KW-1 ), 1 )
+ CALL ZLACGV( K-IMAX, W( IMAX+1, KW-1 ), 1 )
+*
+ IF( K.LT.N ) THEN
+ CALL ZGEMV( 'No transpose', K, N-K, -CONE,
+ $ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
+ $ CONE, W( 1, KW-1 ), 1 )
+ W( IMAX, KW-1 ) = DBLE( W( IMAX, KW-1 ) )
+ END IF
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ),
+ $ 1 )
+ ROWMAX = CABS1( W( JMAX, KW-1 ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.GT.1 ) THEN
+ ITEMP = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
+ DTEMP = CABS1( W( ITEMP, KW-1 ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Case(2)
+* Equivalent to testing for
+* ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABS( DBLE( W( IMAX,KW-1 ) ) )
+ $ .LT.ALPHA*ROWMAX ) ) THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+*
+* copy column KW-1 of W to column KW of W
+*
+ CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
+*
+ DONE = .TRUE.
+*
+* Case(3)
+* Equivalent to testing for ROWMAX.EQ.COLMAX,
+* (used to handle NaN and Inf)
+*
+ ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
+ $ THEN
+*
+* interchange rows and columns K-1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+*
+* Case(4)
+ ELSE
+*
+* Pivot not found: set params and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+*
+* Copy updated JMAXth (next IMAXth) column to Kth of W
+*
+ CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
+*
+ END IF
+*
+*
+* END pivot search loop body
+*
+ IF( .NOT.DONE ) GOTO 12
+*
+ END IF
+*
+* END pivot search
+*
+* ============================================================
+*
+* KK is the column of A where pivoting step stopped
+*
+ KK = K - KSTEP + 1
+*
+* KKW is the column of W which corresponds to column KK of A
+*
+ KKW = NB + KK - N
+*
+* Interchange rows and columns P and K.
+* Updated column P is already stored in column KW of W.
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Copy non-updated column K to column P of submatrix A
+* at step K. No need to copy element into columns
+* K and K-1 of A for 2-by-2 pivot, since these columns
+* will be later overwritten.
+*
+ A( P, P ) = DBLE( A( K, K ) )
+ CALL ZCOPY( K-1-P, A( P+1, K ), 1, A( P, P+1 ),
+ $ LDA )
+ CALL ZLACGV( K-1-P, A( P, P+1 ), LDA )
+ IF( P.GT.1 )
+ $ CALL ZCOPY( P-1, A( 1, K ), 1, A( 1, P ), 1 )
+*
+* Interchange rows K and P in the last K+1 to N columns of A
+* (columns K and K-1 of A for 2-by-2 pivot will be
+* later overwritten). Interchange rows K and P
+* in last KKW to NB columns of W.
+*
+ IF( K.LT.N )
+ $ CALL ZSWAP( N-K, A( K, K+1 ), LDA, A( P, K+1 ),
+ $ LDA )
+ CALL ZSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ),
+ $ LDW )
+ END IF
+*
+* Interchange rows and columns KP and KK.
+* Updated column KP is already stored in column KKW of W.
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP of submatrix A
+* at step K. No need to copy element into column K
+* (or K and K-1 for 2-by-2 pivot) of A, since these columns
+* will be later overwritten.
+*
+ A( KP, KP ) = DBLE( A( KK, KK ) )
+ CALL ZCOPY( KK-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
+ $ LDA )
+ CALL ZLACGV( KK-1-KP, A( KP, KP+1 ), LDA )
+ IF( KP.GT.1 )
+ $ CALL ZCOPY( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
+*
+* Interchange rows KK and KP in last K+1 to N columns of A
+* (columns K (or K and K-1 for 2-by-2 pivot) of A will be
+* later overwritten). Interchange rows KK and KP
+* in last KKW to NB columns of W.
+*
+ IF( K.LT.N )
+ $ CALL ZSWAP( N-K, A( KK, K+1 ), LDA, A( KP, K+1 ),
+ $ LDA )
+ CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
+ $ LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column kw of W now holds
+*
+* W(kw) = U(k)*D(k),
+*
+* where U(k) is the k-th column of U
+*
+* (1) Store subdiag. elements of column U(k)
+* and 1-by-1 block D(k) in column k of A.
+* (NOTE: Diagonal element U(k,k) is a UNIT element
+* and not stored)
+* A(k,k) := D(k,k) = W(k,kw)
+* A(1:k-1,k) := U(1:k-1,k) = W(1:k-1,kw)/D(k,k)
+*
+* (NOTE: No need to use for Hermitian matrix
+* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
+* element D(k,k) from W (potentially saves only one load))
+ CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
+ IF( K.GT.1 ) THEN
+*
+* (NOTE: No need to check if A(k,k) is NOT ZERO,
+* since that was ensured earlier in pivot search:
+* case A(k,k) = 0 falls into 2x2 pivot case(3))
+*
+* Handle division by a small number
+*
+ T = DBLE( A( K, K ) )
+ IF( ABS( T ).GE.SFMIN ) THEN
+ R1 = ONE / T
+ CALL ZDSCAL( K-1, R1, A( 1, K ), 1 )
+ ELSE
+ DO 14 II = 1, K-1
+ A( II, K ) = A( II, K ) / T
+ 14 CONTINUE
+ END IF
+*
+* (2) Conjugate column W(kw)
+*
+ CALL ZLACGV( K-1, W( 1, KW ), 1 )
+*
+* Store the superdiagonal element of D in array E
+*
+ E( K ) = CZERO
+*
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns kw and kw-1 of W now hold
+*
+* ( W(kw-1) W(kw) ) = ( U(k-1) U(k) )*D(k)
+*
+* where U(k) and U(k-1) are the k-th and (k-1)-th columns
+* of U
+*
+* (1) Store U(1:k-2,k-1) and U(1:k-2,k) and 2-by-2
+* block D(k-1:k,k-1:k) in columns k-1 and k of A.
+* (NOTE: 2-by-2 diagonal block U(k-1:k,k-1:k) is a UNIT
+* block and not stored)
+* A(k-1:k,k-1:k) := D(k-1:k,k-1:k) = W(k-1:k,kw-1:kw)
+* A(1:k-2,k-1:k) := U(1:k-2,k:k-1:k) =
+* = W(1:k-2,kw-1:kw) * ( D(k-1:k,k-1:k)**(-1) )
+*
+ IF( K.GT.2 ) THEN
+*
+* Factor out the columns of the inverse of 2-by-2 pivot
+* block D, so that each column contains 1, to reduce the
+* number of FLOPS when we multiply panel
+* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
+*
+* D**(-1) = ( d11 cj(d21) )**(-1) =
+* ( d21 d22 )
+*
+* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
+* ( (-d21) ( d11 ) )
+*
+* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
+*
+* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
+* ( ( -1 ) ( d11/conj(d21) ) )
+*
+* = 1/(|d21|**2) * 1/(D22*D11-1) *
+*
+* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* Handle division by a small number. (NOTE: order of
+* operations is important)
+*
+* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
+* ( (( -1 ) ) (( D22 ) ) ),
+*
+* where D11 = d22/d21,
+* D22 = d11/conj(d21),
+* D21 = d21,
+* T = 1/(D22*D11-1).
+*
+* (NOTE: No need to check for division by ZERO,
+* since that was ensured earlier in pivot search:
+* (a) d21 != 0 in 2x2 pivot case(4),
+* since |d21| should be larger than |d11| and |d22|;
+* (b) (D22*D11 - 1) != 0, since from (a),
+* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
+*
+ D21 = W( K-1, KW )
+ D11 = W( K, KW ) / DCONJG( D21 )
+ D22 = W( K-1, KW-1 ) / D21
+ T = ONE / ( DBLE( D11*D22 )-ONE )
+*
+* Update elements in columns A(k-1) and A(k) as
+* dot products of rows of ( W(kw-1) W(kw) ) and columns
+* of D**(-1)
+*
+ DO 20 J = 1, K - 2
+ A( J, K-1 ) = T*( ( D11*W( J, KW-1 )-W( J, KW ) ) /
+ $ D21 )
+ A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
+ $ DCONJG( D21 ) )
+ 20 CONTINUE
+ END IF
+*
+* Copy diagonal elements of D(K) to A,
+* copy superdiagonal element of D(K) to E(K) and
+* ZERO out superdiagonal entry of A
+*
+ A( K-1, K-1 ) = W( K-1, KW-1 )
+ A( K-1, K ) = CZERO
+ A( K, K ) = W( K, KW )
+ E( K ) = W( K-1, KW )
+ E( K-1 ) = CZERO
+*
+* (2) Conjugate columns W(kw) and W(kw-1)
+*
+ CALL ZLACGV( K-1, W( 1, KW ), 1 )
+ CALL ZLACGV( K-2, W( 1, KW-1 ), 1 )
+*
+ END IF
+*
+* End column K is nonsingular
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K-1 ) = -KP
+ END IF
+*
+* Decrease K and return to the start of the main loop
+*
+ K = K - KSTEP
+ GO TO 10
+*
+ 30 CONTINUE
+*
+* Update the upper triangle of A11 (= A(1:k,1:k)) as
+*
+* A11 := A11 - U12*D*U12**H = A11 - U12*W**H
+*
+* computing blocks of NB columns at a time (note that conjg(W) is
+* actually stored)
+*
+ DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
+ JB = MIN( NB, K-J+1 )
+*
+* Update the upper triangle of the diagonal block
+*
+ DO 40 JJ = J, J + JB - 1
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
+ $ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
+ $ A( J, JJ ), 1 )
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ 40 CONTINUE
+*
+* Update the rectangular superdiagonal block
+*
+ IF( J.GE.2 )
+ $ CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
+ $ -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
+ $ CONE, A( 1, J ), LDA )
+ 50 CONTINUE
+*
+* Set KB to the number of columns factorized
+*
+ KB = N - K
+*
+ ELSE
+*
+* Factorize the leading columns of A using the lower triangle
+* of A and working forwards, and compute the matrix W = L21*D
+* for use in updating A22 (note that conjg(W) is actually stored)
+*
+* Initilize the unused last entry of the subdiagonal array E.
+*
+ E( N ) = CZERO
+*
+* K is the main loop index, increasing from 1 in steps of 1 or 2
+*
+ K = 1
+ 70 CONTINUE
+*
+* Exit from loop
+*
+ IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
+ $ GO TO 90
+*
+ KSTEP = 1
+ P = K
+*
+* Copy column K of A to column K of W and update column K of W
+*
+ W( K, K ) = DBLE( A( K, K ) )
+ IF( K.LT.N )
+ $ CALL ZCOPY( N-K, A( K+1, K ), 1, W( K+1, K ), 1 )
+ IF( K.GT.1 ) THEN
+ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
+ $ LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
+ W( K, K ) = DBLE( W( K, K ) )
+ END IF
+*
+* Determine rows and columns to be interchanged and whether
+* a 1-by-1 or 2-by-2 pivot block will be used
+*
+ ABSAKK = ABS( DBLE( W( K, K ) ) )
+*
+* IMAX is the row-index of the largest off-diagonal element in
+* column K, and COLMAX is its absolute value.
+* Determine both COLMAX and IMAX.
+*
+ IF( K.LT.N ) THEN
+ IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
+ COLMAX = CABS1( W( IMAX, K ) )
+ ELSE
+ COLMAX = ZERO
+ END IF
+*
+ IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
+*
+* Column K is zero or underflow: set INFO and continue
+*
+ IF( INFO.EQ.0 )
+ $ INFO = K
+ KP = K
+ A( K, K ) = DBLE( W( K, K ) )
+ IF( K.LT.N )
+ $ CALL ZCOPY( N-K, W( K+1, K ), 1, A( K+1, K ), 1 )
+*
+* Set E( K ) to zero
+*
+ IF( K.LT.N )
+ $ E( K ) = CZERO
+*
+ ELSE
+*
+* ============================================================
+*
+* BEGIN pivot search
+*
+* Case(1)
+* Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
+*
+* no interchange, use 1-by-1 pivot block
+*
+ KP = K
+*
+ ELSE
+*
+ DONE = .FALSE.
+*
+* Loop until pivot found
+*
+ 72 CONTINUE
+*
+* BEGIN pivot search loop body
+*
+*
+* Copy column IMAX to column k+1 of W and update it
+*
+ CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
+ CALL ZLACGV( IMAX-K, W( K, K+1 ), 1 )
+ W( IMAX, K+1 ) = DBLE( A( IMAX, IMAX ) )
+*
+ IF( IMAX.LT.N )
+ $ CALL ZCOPY( N-IMAX, A( IMAX+1, IMAX ), 1,
+ $ W( IMAX+1, K+1 ), 1 )
+*
+ IF( K.GT.1 ) THEN
+ CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE,
+ $ A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
+ $ CONE, W( K, K+1 ), 1 )
+ W( IMAX, K+1 ) = DBLE( W( IMAX, K+1 ) )
+ END IF
+*
+* JMAX is the column-index of the largest off-diagonal
+* element in row IMAX, and ROWMAX is its absolute value.
+* Determine both ROWMAX and JMAX.
+*
+ IF( IMAX.NE.K ) THEN
+ JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
+ ROWMAX = CABS1( W( JMAX, K+1 ) )
+ ELSE
+ ROWMAX = ZERO
+ END IF
+*
+ IF( IMAX.LT.N ) THEN
+ ITEMP = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
+ DTEMP = CABS1( W( ITEMP, K+1 ) )
+ IF( DTEMP.GT.ROWMAX ) THEN
+ ROWMAX = DTEMP
+ JMAX = ITEMP
+ END IF
+ END IF
+*
+* Case(2)
+* Equivalent to testing for
+* ABS( REAL( W( IMAX,K+1 ) ) ).GE.ALPHA*ROWMAX
+* (used to handle NaN and Inf)
+*
+ IF( .NOT.( ABS( DBLE( W( IMAX,K+1 ) ) )
+ $ .LT.ALPHA*ROWMAX ) ) THEN
+*
+* interchange rows and columns K and IMAX,
+* use 1-by-1 pivot block
+*
+ KP = IMAX
+*
+* copy column K+1 of W to column K of W
+*
+ CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
+*
+ DONE = .TRUE.
+*
+* Case(3)
+* Equivalent to testing for ROWMAX.EQ.COLMAX,
+* (used to handle NaN and Inf)
+*
+ ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
+ $ THEN
+*
+* interchange rows and columns K+1 and IMAX,
+* use 2-by-2 pivot block
+*
+ KP = IMAX
+ KSTEP = 2
+ DONE = .TRUE.
+*
+* Case(4)
+ ELSE
+*
+* Pivot not found: set params and repeat
+*
+ P = IMAX
+ COLMAX = ROWMAX
+ IMAX = JMAX
+*
+* Copy updated JMAXth (next IMAXth) column to Kth of W
+*
+ CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
+*
+ END IF
+*
+*
+* End pivot search loop body
+*
+ IF( .NOT.DONE ) GOTO 72
+*
+ END IF
+*
+* END pivot search
+*
+* ============================================================
+*
+* KK is the column of A where pivoting step stopped
+*
+ KK = K + KSTEP - 1
+*
+* Interchange rows and columns P and K (only for 2-by-2 pivot).
+* Updated column P is already stored in column K of W.
+*
+ IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
+*
+* Copy non-updated column KK-1 to column P of submatrix A
+* at step K. No need to copy element into columns
+* K and K+1 of A for 2-by-2 pivot, since these columns
+* will be later overwritten.
+*
+ A( P, P ) = DBLE( A( K, K ) )
+ CALL ZCOPY( P-K-1, A( K+1, K ), 1, A( P, K+1 ), LDA )
+ CALL ZLACGV( P-K-1, A( P, K+1 ), LDA )
+ IF( P.LT.N )
+ $ CALL ZCOPY( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
+*
+* Interchange rows K and P in first K-1 columns of A
+* (columns K and K+1 of A for 2-by-2 pivot will be
+* later overwritten). Interchange rows K and P
+* in first KK columns of W.
+*
+ IF( K.GT.1 )
+ $ CALL ZSWAP( K-1, A( K, 1 ), LDA, A( P, 1 ), LDA )
+ CALL ZSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
+ END IF
+*
+* Interchange rows and columns KP and KK.
+* Updated column KP is already stored in column KK of W.
+*
+ IF( KP.NE.KK ) THEN
+*
+* Copy non-updated column KK to column KP of submatrix A
+* at step K. No need to copy element into column K
+* (or K and K+1 for 2-by-2 pivot) of A, since these columns
+* will be later overwritten.
+*
+ A( KP, KP ) = DBLE( A( KK, KK ) )
+ CALL ZCOPY( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
+ $ LDA )
+ CALL ZLACGV( KP-KK-1, A( KP, KK+1 ), LDA )
+ IF( KP.LT.N )
+ $ CALL ZCOPY( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
+*
+* Interchange rows KK and KP in first K-1 columns of A
+* (column K (or K and K+1 for 2-by-2 pivot) of A will be
+* later overwritten). Interchange rows KK and KP
+* in first KK columns of W.
+*
+ IF( K.GT.1 )
+ $ CALL ZSWAP( K-1, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
+ CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
+ END IF
+*
+ IF( KSTEP.EQ.1 ) THEN
+*
+* 1-by-1 pivot block D(k): column k of W now holds
+*
+* W(k) = L(k)*D(k),
+*
+* where L(k) is the k-th column of L
+*
+* (1) Store subdiag. elements of column L(k)
+* and 1-by-1 block D(k) in column k of A.
+* (NOTE: Diagonal element L(k,k) is a UNIT element
+* and not stored)
+* A(k,k) := D(k,k) = W(k,k)
+* A(k+1:N,k) := L(k+1:N,k) = W(k+1:N,k)/D(k,k)
+*
+* (NOTE: No need to use for Hermitian matrix
+* A( K, K ) = REAL( W( K, K) ) to separately copy diagonal
+* element D(k,k) from W (potentially saves only one load))
+ CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
+ IF( K.LT.N ) THEN
+*
+* (NOTE: No need to check if A(k,k) is NOT ZERO,
+* since that was ensured earlier in pivot search:
+* case A(k,k) = 0 falls into 2x2 pivot case(3))
+*
+* Handle division by a small number
+*
+ T = DBLE( A( K, K ) )
+ IF( ABS( T ).GE.SFMIN ) THEN
+ R1 = ONE / T
+ CALL ZDSCAL( N-K, R1, A( K+1, K ), 1 )
+ ELSE
+ DO 74 II = K + 1, N
+ A( II, K ) = A( II, K ) / T
+ 74 CONTINUE
+ END IF
+*
+* (2) Conjugate column W(k)
+*
+ CALL ZLACGV( N-K, W( K+1, K ), 1 )
+*
+* Store the subdiagonal element of D in array E
+*
+ E( K ) = CZERO
+*
+ END IF
+*
+ ELSE
+*
+* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
+*
+* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
+*
+* where L(k) and L(k+1) are the k-th and (k+1)-th columns
+* of L
+*
+* (1) Store L(k+2:N,k) and L(k+2:N,k+1) and 2-by-2
+* block D(k:k+1,k:k+1) in columns k and k+1 of A.
+* NOTE: 2-by-2 diagonal block L(k:k+1,k:k+1) is a UNIT
+* block and not stored.
+* A(k:k+1,k:k+1) := D(k:k+1,k:k+1) = W(k:k+1,k:k+1)
+* A(k+2:N,k:k+1) := L(k+2:N,k:k+1) =
+* = W(k+2:N,k:k+1) * ( D(k:k+1,k:k+1)**(-1) )
+*
+ IF( K.LT.N-1 ) THEN
+*
+* Factor out the columns of the inverse of 2-by-2 pivot
+* block D, so that each column contains 1, to reduce the
+* number of FLOPS when we multiply panel
+* ( W(kw-1) W(kw) ) by this inverse, i.e. by D**(-1).
+*
+* D**(-1) = ( d11 cj(d21) )**(-1) =
+* ( d21 d22 )
+*
+* = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) =
+* ( (-d21) ( d11 ) )
+*
+* = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) *
+*
+* * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) =
+* ( ( -1 ) ( d11/conj(d21) ) )
+*
+* = 1/(|d21|**2) * 1/(D22*D11-1) *
+*
+* * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = (1/|d21|**2) * T * ( d21*( D11 ) conj(d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* = ( (T/conj(d21))*( D11 ) (T/d21)*( -1 ) ) =
+* ( ( -1 ) ( D22 ) )
+*
+* Handle division by a small number. (NOTE: order of
+* operations is important)
+*
+* = ( T*(( D11 )/conj(D21)) T*(( -1 )/D21 ) )
+* ( (( -1 ) ) (( D22 ) ) ),
+*
+* where D11 = d22/d21,
+* D22 = d11/conj(d21),
+* D21 = d21,
+* T = 1/(D22*D11-1).
+*
+* (NOTE: No need to check for division by ZERO,
+* since that was ensured earlier in pivot search:
+* (a) d21 != 0 in 2x2 pivot case(4),
+* since |d21| should be larger than |d11| and |d22|;
+* (b) (D22*D11 - 1) != 0, since from (a),
+* both |D11| < 1, |D22| < 1, hence |D22*D11| << 1.)
+*
+ D21 = W( K+1, K )
+ D11 = W( K+1, K+1 ) / D21
+ D22 = W( K, K ) / DCONJG( D21 )
+ T = ONE / ( DBLE( D11*D22 )-ONE )
+*
+* Update elements in columns A(k) and A(k+1) as
+* dot products of rows of ( W(k) W(k+1) ) and columns
+* of D**(-1)
+*
+ DO 80 J = K + 2, N
+ A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
+ $ DCONJG( D21 ) )
+ A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
+ $ D21 )
+ 80 CONTINUE
+ END IF
+*
+* Copy diagonal elements of D(K) to A,
+* copy subdiagonal element of D(K) to E(K) and
+* ZERO out subdiagonal entry of A
+*
+ A( K, K ) = W( K, K )
+ A( K+1, K ) = CZERO
+ A( K+1, K+1 ) = W( K+1, K+1 )
+ E( K ) = W( K+1, K )
+ E( K+1 ) = CZERO
+*
+* (2) Conjugate columns W(k) and W(k+1)
+*
+ CALL ZLACGV( N-K, W( K+1, K ), 1 )
+ CALL ZLACGV( N-K-1, W( K+2, K+1 ), 1 )
+*
+ END IF
+*
+* End column K is nonsingular
+*
+ END IF
+*
+* Store details of the interchanges in IPIV
+*
+ IF( KSTEP.EQ.1 ) THEN
+ IPIV( K ) = KP
+ ELSE
+ IPIV( K ) = -P
+ IPIV( K+1 ) = -KP
+ END IF
+*
+* Increase K and return to the start of the main loop
+*
+ K = K + KSTEP
+ GO TO 70
+*
+ 90 CONTINUE
+*
+* Update the lower triangle of A22 (= A(k:n,k:n)) as
+*
+* A22 := A22 - L21*D*L21**H = A22 - L21*W**H
+*
+* computing blocks of NB columns at a time (note that conjg(W) is
+* actually stored)
+*
+ DO 110 J = K, N, NB
+ JB = MIN( NB, N-J+1 )
+*
+* Update the lower triangle of the diagonal block
+*
+ DO 100 JJ = J, J + JB - 1
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
+ $ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
+ $ A( JJ, JJ ), 1 )
+ A( JJ, JJ ) = DBLE( A( JJ, JJ ) )
+ 100 CONTINUE
+*
+* Update the rectangular subdiagonal block
+*
+ IF( J+JB.LE.N )
+ $ CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
+ $ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
+ $ LDW, CONE, A( J+JB, J ), LDA )
+ 110 CONTINUE
+*
+* Set KB to the number of columns factorized
+*
+ KB = K - 1
+*
+ END IF
+ RETURN
+*
+* End of ZLAHEF_RK
+*
+ END