aboutsummaryrefslogtreecommitdiff
path: root/SRC/claed8.f
blob: d66bf801ac57c2c52ef45df3e618407969c955ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
*> \brief \b CLAED8 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAED8 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed8.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed8.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed8.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
*                          Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
*                          GIVCOL, GIVNUM, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
*       REAL               RHO
*       ..
*       .. Array Arguments ..
*       INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
*      $                   INDXQ( * ), PERM( * )
*       REAL               D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
*      $                   Z( * )
*       COMPLEX            Q( LDQ, * ), Q2( LDQ2, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLAED8 merges the two sets of eigenvalues together into a single
*> sorted set.  Then it tries to deflate the size of the problem.
*> There are two ways in which deflation can occur:  when two or more
*> eigenvalues are close together or if there is a tiny element in the
*> Z vector.  For each such occurrence the order of the related secular
*> equation problem is reduced by one.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[out] K
*> \verbatim
*>          K is INTEGER
*>         Contains the number of non-deflated eigenvalues.
*>         This is the order of the related secular equation.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in] QSIZ
*> \verbatim
*>          QSIZ is INTEGER
*>         The dimension of the unitary matrix used to reduce
*>         the dense or band matrix to tridiagonal form.
*>         QSIZ >= N if ICOMPQ = 1.
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*>          Q is COMPLEX array, dimension (LDQ,N)
*>         On entry, Q contains the eigenvectors of the partially solved
*>         system which has been previously updated in matrix
*>         multiplies with other partially solved eigensystems.
*>         On exit, Q contains the trailing (N-K) updated eigenvectors
*>         (those which were deflated) in its last N-K columns.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>         The leading dimension of the array Q.  LDQ >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>         On entry, D contains the eigenvalues of the two submatrices to
*>         be combined.  On exit, D contains the trailing (N-K) updated
*>         eigenvalues (those which were deflated) sorted into increasing
*>         order.
*> \endverbatim
*>
*> \param[in,out] RHO
*> \verbatim
*>          RHO is REAL
*>         Contains the off diagonal element associated with the rank-1
*>         cut which originally split the two submatrices which are now
*>         being recombined. RHO is modified during the computation to
*>         the value required by SLAED3.
*> \endverbatim
*>
*> \param[in] CUTPNT
*> \verbatim
*>          CUTPNT is INTEGER
*>         Contains the location of the last eigenvalue in the leading
*>         sub-matrix.  MIN(1,N) <= CUTPNT <= N.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*>          Z is REAL array, dimension (N)
*>         On input this vector contains the updating vector (the last
*>         row of the first sub-eigenvector matrix and the first row of
*>         the second sub-eigenvector matrix).  The contents of Z are
*>         destroyed during the updating process.
*> \endverbatim
*>
*> \param[out] DLAMDA
*> \verbatim
*>          DLAMDA is REAL array, dimension (N)
*>         Contains a copy of the first K eigenvalues which will be used
*>         by SLAED3 to form the secular equation.
*> \endverbatim
*>
*> \param[out] Q2
*> \verbatim
*>          Q2 is COMPLEX array, dimension (LDQ2,N)
*>         If ICOMPQ = 0, Q2 is not referenced.  Otherwise,
*>         Contains a copy of the first K eigenvectors which will be used
*>         by SLAED7 in a matrix multiply (SGEMM) to update the new
*>         eigenvectors.
*> \endverbatim
*>
*> \param[in] LDQ2
*> \verbatim
*>          LDQ2 is INTEGER
*>         The leading dimension of the array Q2.  LDQ2 >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is REAL array, dimension (N)
*>         This will hold the first k values of the final
*>         deflation-altered z-vector and will be passed to SLAED3.
*> \endverbatim
*>
*> \param[out] INDXP
*> \verbatim
*>          INDXP is INTEGER array, dimension (N)
*>         This will contain the permutation used to place deflated
*>         values of D at the end of the array. On output INDXP(1:K)
*>         points to the nondeflated D-values and INDXP(K+1:N)
*>         points to the deflated eigenvalues.
*> \endverbatim
*>
*> \param[out] INDX
*> \verbatim
*>          INDX is INTEGER array, dimension (N)
*>         This will contain the permutation used to sort the contents of
*>         D into ascending order.
*> \endverbatim
*>
*> \param[in] INDXQ
*> \verbatim
*>          INDXQ is INTEGER array, dimension (N)
*>         This contains the permutation which separately sorts the two
*>         sub-problems in D into ascending order.  Note that elements in
*>         the second half of this permutation must first have CUTPNT
*>         added to their values in order to be accurate.
*> \endverbatim
*>
*> \param[out] PERM
*> \verbatim
*>          PERM is INTEGER array, dimension (N)
*>         Contains the permutations (from deflation and sorting) to be
*>         applied to each eigenblock.
*> \endverbatim
*>
*> \param[out] GIVPTR
*> \verbatim
*>          GIVPTR is INTEGER
*>         Contains the number of Givens rotations which took place in
*>         this subproblem.
*> \endverbatim
*>
*> \param[out] GIVCOL
*> \verbatim
*>          GIVCOL is INTEGER array, dimension (2, N)
*>         Each pair of numbers indicates a pair of columns to take place
*>         in a Givens rotation.
*> \endverbatim
*>
*> \param[out] GIVNUM
*> \verbatim
*>          GIVNUM is REAL array, dimension (2, N)
*>         Each number indicates the S value to be used in the
*>         corresponding Givens rotation.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complexOTHERcomputational
*
*  =====================================================================
      SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMDA,
     $                   Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
     $                   GIVCOL, GIVNUM, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
      REAL               RHO
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( 2, * ), INDX( * ), INDXP( * ),
     $                   INDXQ( * ), PERM( * )
      REAL               D( * ), DLAMDA( * ), GIVNUM( 2, * ), W( * ),
     $                   Z( * )
      COMPLEX            Q( LDQ, * ), Q2( LDQ2, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               MONE, ZERO, ONE, TWO, EIGHT
      PARAMETER          ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
     $                   TWO = 2.0E0, EIGHT = 8.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
      REAL               C, EPS, S, T, TAU, TOL
*     ..
*     .. External Functions ..
      INTEGER            ISAMAX
      REAL               SLAMCH, SLAPY2
      EXTERNAL           ISAMAX, SLAMCH, SLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( QSIZ.LT.N ) THEN
         INFO = -3
      ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
         INFO = -5
      ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
         INFO = -8
      ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
         INFO = -12
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLAED8', -INFO )
         RETURN
      END IF
*
*     Need to initialize GIVPTR to O here in case of quick exit
*     to prevent an unspecified code behavior (usually sigfault)
*     when IWORK array on entry to *stedc is not zeroed
*     (or at least some IWORK entries which used in *laed7 for GIVPTR).
*
      GIVPTR = 0
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      N1 = CUTPNT
      N2 = N - N1
      N1P1 = N1 + 1
*
      IF( RHO.LT.ZERO ) THEN
         CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
      END IF
*
*     Normalize z so that norm(z) = 1
*
      T = ONE / SQRT( TWO )
      DO 10 J = 1, N
         INDX( J ) = J
   10 CONTINUE
      CALL SSCAL( N, T, Z, 1 )
      RHO = ABS( TWO*RHO )
*
*     Sort the eigenvalues into increasing order
*
      DO 20 I = CUTPNT + 1, N
         INDXQ( I ) = INDXQ( I ) + CUTPNT
   20 CONTINUE
      DO 30 I = 1, N
         DLAMDA( I ) = D( INDXQ( I ) )
         W( I ) = Z( INDXQ( I ) )
   30 CONTINUE
      I = 1
      J = CUTPNT + 1
      CALL SLAMRG( N1, N2, DLAMDA, 1, 1, INDX )
      DO 40 I = 1, N
         D( I ) = DLAMDA( INDX( I ) )
         Z( I ) = W( INDX( I ) )
   40 CONTINUE
*
*     Calculate the allowable deflation tolerance
*
      IMAX = ISAMAX( N, Z, 1 )
      JMAX = ISAMAX( N, D, 1 )
      EPS = SLAMCH( 'Epsilon' )
      TOL = EIGHT*EPS*ABS( D( JMAX ) )
*
*     If the rank-1 modifier is small enough, no more needs to be done
*     -- except to reorganize Q so that its columns correspond with the
*     elements in D.
*
      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
         K = 0
         DO 50 J = 1, N
            PERM( J ) = INDXQ( INDX( J ) )
            CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
   50    CONTINUE
         CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ )
         RETURN
      END IF
*
*     If there are multiple eigenvalues then the problem deflates.  Here
*     the number of equal eigenvalues are found.  As each equal
*     eigenvalue is found, an elementary reflector is computed to rotate
*     the corresponding eigensubspace so that the corresponding
*     components of Z are zero in this new basis.
*
      K = 0
      K2 = N + 1
      DO 60 J = 1, N
         IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
*
*           Deflate due to small z component.
*
            K2 = K2 - 1
            INDXP( K2 ) = J
            IF( J.EQ.N )
     $         GO TO 100
         ELSE
            JLAM = J
            GO TO 70
         END IF
   60 CONTINUE
   70 CONTINUE
      J = J + 1
      IF( J.GT.N )
     $   GO TO 90
      IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
*
*        Deflate due to small z component.
*
         K2 = K2 - 1
         INDXP( K2 ) = J
      ELSE
*
*        Check if eigenvalues are close enough to allow deflation.
*
         S = Z( JLAM )
         C = Z( J )
*
*        Find sqrt(a**2+b**2) without overflow or
*        destructive underflow.
*
         TAU = SLAPY2( C, S )
         T = D( J ) - D( JLAM )
         C = C / TAU
         S = -S / TAU
         IF( ABS( T*C*S ).LE.TOL ) THEN
*
*           Deflation is possible.
*
            Z( J ) = TAU
            Z( JLAM ) = ZERO
*
*           Record the appropriate Givens rotation
*
            GIVPTR = GIVPTR + 1
            GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
            GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
            GIVNUM( 1, GIVPTR ) = C
            GIVNUM( 2, GIVPTR ) = S
            CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
     $                  Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
            T = D( JLAM )*C*C + D( J )*S*S
            D( J ) = D( JLAM )*S*S + D( J )*C*C
            D( JLAM ) = T
            K2 = K2 - 1
            I = 1
   80       CONTINUE
            IF( K2+I.LE.N ) THEN
               IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
                  INDXP( K2+I-1 ) = INDXP( K2+I )
                  INDXP( K2+I ) = JLAM
                  I = I + 1
                  GO TO 80
               ELSE
                  INDXP( K2+I-1 ) = JLAM
               END IF
            ELSE
               INDXP( K2+I-1 ) = JLAM
            END IF
            JLAM = J
         ELSE
            K = K + 1
            W( K ) = Z( JLAM )
            DLAMDA( K ) = D( JLAM )
            INDXP( K ) = JLAM
            JLAM = J
         END IF
      END IF
      GO TO 70
   90 CONTINUE
*
*     Record the last eigenvalue.
*
      K = K + 1
      W( K ) = Z( JLAM )
      DLAMDA( K ) = D( JLAM )
      INDXP( K ) = JLAM
*
  100 CONTINUE
*
*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
*     and Q2 respectively.  The eigenvalues/vectors which were not
*     deflated go into the first K slots of DLAMDA and Q2 respectively,
*     while those which were deflated go into the last N - K slots.
*
      DO 110 J = 1, N
         JP = INDXP( J )
         DLAMDA( J ) = D( JP )
         PERM( J ) = INDXQ( INDX( JP ) )
         CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  110 CONTINUE
*
*     The deflated eigenvalues and their corresponding vectors go back
*     into the last N - K slots of D and Q respectively.
*
      IF( K.LT.N ) THEN
         CALL SCOPY( N-K, DLAMDA( K+1 ), 1, D( K+1 ), 1 )
         CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ),
     $                LDQ )
      END IF
*
      RETURN
*
*     End of CLAED8
*
      END