aboutsummaryrefslogtreecommitdiff
path: root/SRC/dgttrf.f
blob: d7c48396faa598ddd893e707f7461bd7c5052d76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
      SUBROUTINE DGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
*  -- LAPACK routine (version 3.2) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  Purpose
*  =======
*
*  DGTTRF computes an LU factorization of a real tridiagonal matrix A
*  using elimination with partial pivoting and row interchanges.
*
*  The factorization has the form
*     A = L * U
*  where L is a product of permutation and unit lower bidiagonal
*  matrices and U is upper triangular with nonzeros in only the main
*  diagonal and first two superdiagonals.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, DL must contain the (n-1) sub-diagonal elements of
*          A.
*
*          On exit, DL is overwritten by the (n-1) multipliers that
*          define the matrix L from the LU factorization of A.
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, D must contain the diagonal elements of A.
*
*          On exit, D is overwritten by the n diagonal elements of the
*          upper triangular matrix U from the LU factorization of A.
*
*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, DU must contain the (n-1) super-diagonal elements
*          of A.
*
*          On exit, DU is overwritten by the (n-1) elements of the first
*          super-diagonal of U.
*
*  DU2     (output) DOUBLE PRECISION array, dimension (N-2)
*          On exit, DU2 is overwritten by the (n-2) elements of the
*          second super-diagonal of U.
*
*  IPIV    (output) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -k, the k-th argument had an illegal value
*          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization
*                has been completed, but the factor U is exactly
*                singular, and division by zero will occur if it is used
*                to solve a system of equations.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   FACT, TEMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'DGTTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Initialize IPIV(i) = i and DU2(I) = 0
*
      DO 10 I = 1, N
         IPIV( I ) = I
   10 CONTINUE
      DO 20 I = 1, N - 2
         DU2( I ) = ZERO
   20 CONTINUE
*
      DO 30 I = 1, N - 2
         IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
*           No row interchange required, eliminate DL(I)
*
            IF( D( I ).NE.ZERO ) THEN
               FACT = DL( I ) / D( I )
               DL( I ) = FACT
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
            END IF
         ELSE
*
*           Interchange rows I and I+1, eliminate DL(I)
*
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            DU2( I ) = DU( I+1 )
            DU( I+1 ) = -FACT*DU( I+1 )
            IPIV( I ) = I + 1
         END IF
   30 CONTINUE
      IF( N.GT.1 ) THEN
         I = N - 1
         IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
            IF( D( I ).NE.ZERO ) THEN
               FACT = DL( I ) / D( I )
               DL( I ) = FACT
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
            END IF
         ELSE
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            IPIV( I ) = I + 1
         END IF
      END IF
*
*     Check for a zero on the diagonal of U.
*
      DO 40 I = 1, N
         IF( D( I ).EQ.ZERO ) THEN
            INFO = I
            GO TO 50
         END IF
   40 CONTINUE
   50 CONTINUE
*
      RETURN
*
*     End of DGTTRF
*
      END