aboutsummaryrefslogtreecommitdiff
path: root/SRC/sbdsvdx.f
blob: 4fa16ec853bd6c4e68dbe89b14ce1330b3607a67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
*> \brief \b SBDSVDX
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SBDSVDX + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sbdsvdx.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sbdsvdx.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sbdsvdx.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*     SUBROUTINE SBDSVDX( UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
*    $                    NS, S, Z, LDZ, WORK, IWORK, INFO )
*
*     .. Scalar Arguments ..
*      CHARACTER          JOBZ, RANGE, UPLO
*      INTEGER            IL, INFO, IU, LDZ, N, NS
*      REAL               VL, VU
*     ..
*     .. Array Arguments ..
*      INTEGER            IWORK( * )
*      REAL               D( * ), E( * ), S( * ), WORK( * ),
*                         Z( LDZ, * )
*       ..
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>  SBDSVDX computes the singular value decomposition (SVD) of a real
*>  N-by-N (upper or lower) bidiagonal matrix B, B = U * S * VT,
*>  where S is a diagonal matrix with non-negative diagonal elements
*>  (the singular values of B), and U and VT are orthogonal matrices
*>  of left and right singular vectors, respectively.
*>
*>  Given an upper bidiagonal B with diagonal D = [ d_1 d_2 ... d_N ]
*>  and superdiagonal E = [ e_1 e_2 ... e_N-1 ], SBDSVDX computes the
*>  singular value decompositon of B through the eigenvalues and
*>  eigenvectors of the N*2-by-N*2 tridiagonal matrix
*>
*>        |  0  d_1                |
*>        | d_1  0  e_1            |
*>  TGK = |     e_1  0  d_2        |
*>        |         d_2  .   .     |
*>        |              .   .   . |
*>
*>  If (s,u,v) is a singular triplet of B with ||u|| = ||v|| = 1, then
*>  (+/-s,q), ||q|| = 1, are eigenpairs of TGK, with q = P * ( u' +/-v' ) /
*>  sqrt(2) = ( v_1 u_1 v_2 u_2 ... v_n u_n ) / sqrt(2), and
*>  P = [ e_{n+1} e_{1} e_{n+2} e_{2} ... ].
*>
*>  Given a TGK matrix, one can either a) compute -s,-v and change signs
*>  so that the singular values (and corresponding vectors) are already in
*>  descending order (as in SGESVD/SGESDD) or b) compute s,v and reorder
*>  the values (and corresponding vectors). SBDSVDX implements a) by
*>  calling SSTEVX (bisection plus inverse iteration, to be replaced
*>  with a version of the Multiple Relative Robust Representation
*>  algorithm. (See P. Willems and B. Lang, A framework for the MR^3
*>  algorithm: theory and implementation, SIAM J. Sci. Comput.,
*>  35:740-766, 2013.)
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  B is upper bidiagonal;
*>          = 'L':  B is lower bidiagonal.
*> \endverbatim
*>
*> \param[in] JOBZ
*> \verbatim
*>          JOBZ is CHARACTER*1
*>          = 'N':  Compute singular values only;
*>          = 'V':  Compute singular values and singular vectors.
*> \endverbatim
*>
*> \param[in] RANGE
*> \verbatim
*>          RANGE is CHARACTER*1
*>          = 'A': all singular values will be found.
*>          = 'V': all singular values in the half-open interval [VL,VU)
*>                 will be found.
*>          = 'I': the IL-th through IU-th singular values will be found.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the bidiagonal matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          The n diagonal elements of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is REAL array, dimension (max(1,N-1))
*>          The (n-1) superdiagonal elements of the bidiagonal matrix
*>          B in elements 1 to N-1.
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>         VL is REAL
*>          If RANGE='V', the lower bound of the interval to
*>          be searched for singular values. VU > VL.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] VU
*> \verbatim
*>         VU is REAL
*>          If RANGE='V', the upper bound of the interval to
*>          be searched for singular values. VU > VL.
*>          Not referenced if RANGE = 'A' or 'I'.
*> \endverbatim
*>
*> \param[in] IL
*> \verbatim
*>          IL is INTEGER
*>          If RANGE='I', the index of the
*>          smallest singular value to be returned.
*>          1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[in] IU
*> \verbatim
*>          IU is INTEGER
*>          If RANGE='I', the index of the
*>          largest singular value to be returned.
*>          1 <= IL <= IU <= min(M,N), if min(M,N) > 0.
*>          Not referenced if RANGE = 'A' or 'V'.
*> \endverbatim
*>
*> \param[out] NS
*> \verbatim
*>          NS is INTEGER
*>          The total number of singular values found.  0 <= NS <= N.
*>          If RANGE = 'A', NS = N, and if RANGE = 'I', NS = IU-IL+1.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (N)
*>          The first NS elements contain the selected singular values in
*>          ascending order.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is REAL array, dimension (2*N,K) )
*>          If JOBZ = 'V', then if INFO = 0 the first NS columns of Z
*>          contain the singular vectors of the matrix B corresponding to
*>          the selected singular values, with U in rows 1 to N and V
*>          in rows N+1 to N*2, i.e.
*>          Z = [ U ]
*>              [ V ]
*>          If JOBZ = 'N', then Z is not referenced.
*>          Note: The user must ensure that at least K = NS+1 columns are
*>          supplied in the array Z; if RANGE = 'V', the exact value of
*>          NS is not known in advance and an upper bound must be used.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>          The leading dimension of the array Z. LDZ >= 1, and if
*>          JOBZ = 'V', LDZ >= max(2,N*2).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (14*N)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (12*N)
*>          If JOBZ = 'V', then if INFO = 0, the first NS elements of
*>          IWORK are zero. If INFO > 0, then IWORK contains the indices
*>          of the eigenvectors that failed to converge in DSTEVX.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, then i eigenvectors failed to converge
*>                   in SSTEVX. The indices of the eigenvectors
*>                   (as returned by SSTEVX) are stored in the
*>                   array IWORK.
*>                if INFO = N*2 + 1, an internal error occurred.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date June 2016
*
*> \ingroup realOTHEReigen
*
*  =====================================================================
      SUBROUTINE SBDSVDX( UPLO, JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
     $                    NS, S, Z, LDZ, WORK, IWORK, INFO)
*
*  -- LAPACK driver routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          JOBZ, RANGE, UPLO
      INTEGER            IL, INFO, IU, LDZ, N, NS
      REAL               VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               D( * ), E( * ), S( * ), WORK( * ),
     $                   Z( LDZ, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TEN, HNDRD, MEIGTH
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TEN = 10.0E0,
     $                     HNDRD = 100.0E0, MEIGTH = -0.1250E0 )
      REAL               FUDGE
      PARAMETER          ( FUDGE = 2.0E0 )
*     ..
*     .. Local Scalars ..
      CHARACTER          RNGVX
      LOGICAL            ALLSV, INDSV, LOWER, SPLIT, SVEQ0, VALSV, WANTZ
      INTEGER            I, ICOLZ, IDBEG, IDEND, IDTGK, IDPTR, IEPTR,
     $                   IETGK, IIFAIL, IIWORK, ILTGK, IROWU, IROWV,
     $                   IROWZ, ISBEG, ISPLT, ITEMP, IUTGK, J, K,
     $                   NTGK, NRU, NRV, NSL
      REAL               ABSTOL, EPS, EMIN, MU, NRMU, NRMV, ORTOL, SMAX,
     $                   SMIN, SQRT2, THRESH, TOL, ULP,
     $                   VLTGK, VUTGK, ZJTJI
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SDOT, SLAMCH, SNRM2
      EXTERNAL           ISAMAX, LSAME, SAXPY, SDOT, SLAMCH, SNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLASET, SSCAL, SSWAP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, SIGN, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      ALLSV = LSAME( RANGE, 'A' )
      VALSV = LSAME( RANGE, 'V' )
      INDSV = LSAME( RANGE, 'I' )
      WANTZ = LSAME( JOBZ, 'V' )
      LOWER = LSAME( UPLO, 'L' )
*
      INFO = 0
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
         INFO = -1
      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( ALLSV .OR. VALSV .OR. INDSV ) ) THEN
         INFO = -3
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.GT.0 ) THEN
         IF( VALSV ) THEN
            IF( VL.LT.ZERO ) THEN
               INFO = -7
            ELSE IF( VU.LE.VL ) THEN
               INFO = -8
            END IF
         ELSE IF( INDSV ) THEN
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
               INFO = -9
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
               INFO = -10
            END IF
         END IF
      END IF
      IF( INFO.EQ.0 ) THEN
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N*2 ) ) INFO = -14
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SBDSVDX', -INFO )
         RETURN
      END IF
*
*     Quick return if possible (N.LE.1)
*
      NS = 0
      IF( N.EQ.0 ) RETURN
*
      IF( N.EQ.1 ) THEN
         IF( ALLSV .OR. INDSV ) THEN
            NS = 1
            S( 1 ) = ABS( D( 1 ) )
         ELSE
            IF( VL.LT.ABS( D( 1 ) ) .AND. VU.GE.ABS( D( 1 ) ) ) THEN
               NS = 1
               S( 1 ) = ABS( D( 1 ) )
            END IF
         END IF
         IF( WANTZ ) THEN
            Z( 1, 1 ) = SIGN( ONE, D( 1 ) )
            Z( 2, 1 ) = ONE
         END IF
         RETURN
      END IF
*
      ABSTOL = 2*SLAMCH( 'Safe Minimum' )
      ULP = SLAMCH( 'Precision' )
      EPS = SLAMCH( 'Epsilon' )
      SQRT2 = SQRT( 2.0E0 )
      ORTOL = SQRT( ULP )
*
*     Criterion for splitting is taken from SBDSQR when singular
*     values are computed to relative accuracy TOL. (See J. Demmel and
*     W. Kahan, Accurate singular values of bidiagonal matrices, SIAM
*     J. Sci. and Stat. Comput., 11:873–912, 1990.)
*
      TOL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )*EPS
*
*     Compute approximate maximum, minimum singular values.
*
      I = ISAMAX( N, D, 1 )
      SMAX = ABS( D( I ) )
      I = ISAMAX( N-1, E, 1 )
      SMAX = MAX( SMAX, ABS( E( I ) ) )
*
*     Compute threshold for neglecting D's and E's.
*
      SMIN = ABS( D( 1 ) )
      IF( SMIN.NE.ZERO ) THEN
         MU = SMIN
         DO I = 2, N
            MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
            SMIN = MIN( SMIN, MU )
            IF( SMIN.EQ.ZERO ) EXIT
         END DO
      END IF
      SMIN = SMIN / SQRT( REAL( N ) )
      THRESH = TOL*SMIN
*
*     Check for zeros in D and E (splits), i.e. submatrices.
*
      DO I = 1, N-1
         IF( ABS( D( I ) ).LE.THRESH ) D( I ) = ZERO
         IF( ABS( E( I ) ).LE.THRESH ) E( I ) = ZERO
      END DO
      IF( ABS( D( N ) ).LE.THRESH ) D( N ) = ZERO
*
*     Pointers for arrays used by SSTEVX.
*
      IDTGK = 1
      IETGK = IDTGK + N*2
      ITEMP = IETGK + N*2
      IIFAIL = 1
      IIWORK = IIFAIL + N*2
*
*     Set RNGVX, which corresponds to RANGE for SSTEVX in TGK mode.
*     VL,VU or IL,IU are redefined to conform to implementation a)
*     described in the leading comments.
*
      ILTGK = 0
      IUTGK = 0
      VLTGK = ZERO
      VUTGK = ZERO
*
      IF( ALLSV ) THEN
*
*        All singular values will be found. We aim at -s (see
*        leading comments) with RNGVX = 'I'. IL and IU are set
*        later (as ILTGK and IUTGK) according to the dimension
*        of the active submatrix.
*
         RNGVX = 'I'
         IF( WANTZ ) CALL SLASET( 'F', N*2, N+1, ZERO, ZERO, Z, LDZ )
      ELSE IF( VALSV ) THEN
*
*        Find singular values in a half-open interval. We aim
*        at -s (see leading comments) and we swap VL and VU
*        (as VUTGK and VLTGK), changing their signs.
*
         RNGVX = 'V'
         VLTGK = -VU
         VUTGK = -VL
         WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
         CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
         CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
         CALL SSTEVX( 'N', 'V', N*2, WORK( IDTGK ), WORK( IETGK ),
     $                VLTGK, VUTGK, ILTGK, ILTGK, ABSTOL, NS, S,
     $                Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
     $                IWORK( IIFAIL ), INFO )
         IF( NS.EQ.0 ) THEN
            RETURN
         ELSE
            IF( WANTZ ) CALL SLASET( 'F', N*2, NS, ZERO, ZERO, Z, LDZ )
         END IF
      ELSE IF( INDSV ) THEN
*
*        Find the IL-th through the IU-th singular values. We aim
*        at -s (see leading comments) and indices are mapped into
*        values, therefore mimicking SSTEBZ, where
*
*        GL = GL - FUDGE*TNORM*ULP*N - FUDGE*TWO*PIVMIN
*        GU = GU + FUDGE*TNORM*ULP*N + FUDGE*PIVMIN
*
         ILTGK = IL
         IUTGK = IU
         RNGVX = 'V'
         WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
         CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
         CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
         CALL SSTEVX( 'N', 'I', N*2, WORK( IDTGK ), WORK( IETGK ),
     $                VLTGK, VLTGK, ILTGK, ILTGK, ABSTOL, NS, S,
     $                Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
     $                IWORK( IIFAIL ), INFO )
         VLTGK = S( 1 ) - FUDGE*SMAX*ULP*N
         WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
         CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
         CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
         CALL SSTEVX( 'N', 'I', N*2, WORK( IDTGK ), WORK( IETGK ),
     $                VUTGK, VUTGK, IUTGK, IUTGK, ABSTOL, NS, S,
     $                Z, LDZ, WORK( ITEMP ), IWORK( IIWORK ),
     $                IWORK( IIFAIL ), INFO )
         VUTGK = S( 1 ) + FUDGE*SMAX*ULP*N
         VUTGK = MIN( VUTGK, ZERO )
*
*        If VLTGK=VUTGK, SSTEVX returns an error message,
*        so if needed we change VUTGK slightly.
*
         IF( VLTGK.EQ.VUTGK ) VLTGK = VLTGK - TOL
*
         IF( WANTZ ) CALL SLASET( 'F', N*2, IU-IL+1, ZERO, ZERO, Z, LDZ)
      END IF
*
*     Initialize variables and pointers for S, Z, and WORK.
*
*     NRU, NRV: number of rows in U and V for the active submatrix
*     IDBEG, ISBEG: offsets for the entries of D and S
*     IROWZ, ICOLZ: offsets for the rows and columns of Z
*     IROWU, IROWV: offsets for the rows of U and V
*
      NS = 0
      NRU = 0
      NRV = 0
      IDBEG = 1
      ISBEG = 1
      IROWZ = 1
      ICOLZ = 1
      IROWU = 2
      IROWV = 1
      SPLIT = .FALSE.
      SVEQ0 = .FALSE.
*
*     Form the tridiagonal TGK matrix.
*
      S( 1:N ) = ZERO
      WORK( IETGK+2*N-1 ) = ZERO
      WORK( IDTGK:IDTGK+2*N-1 ) = ZERO
      CALL SCOPY( N, D, 1, WORK( IETGK ), 2 )
      CALL SCOPY( N-1, E, 1, WORK( IETGK+1 ), 2 )
*
*
*     Check for splits in two levels, outer level
*     in E and inner level in D.
*
      DO IEPTR = 2, N*2, 2
         IF( WORK( IETGK+IEPTR-1 ).EQ.ZERO ) THEN
*
*           Split in E (this piece of B is square) or bottom
*           of the (input bidiagonal) matrix.
*
            ISPLT = IDBEG
            IDEND = IEPTR - 1
            DO IDPTR = IDBEG, IDEND, 2
               IF( WORK( IETGK+IDPTR-1 ).EQ.ZERO ) THEN
*
*                 Split in D (rectangular submatrix). Set the number
*                 of rows in U and V (NRU and NRV) accordingly.
*
                  IF( IDPTR.EQ.IDBEG ) THEN
*
*                    D=0 at the top.
*
                     SVEQ0 = .TRUE.
                     IF( IDBEG.EQ.IDEND) THEN
                        NRU = 1
                        NRV = 1
                     END IF
                  ELSE IF( IDPTR.EQ.IDEND ) THEN
*
*                    D=0 at the bottom.
*
                     SVEQ0 = .TRUE.
                     NRU = (IDEND-ISPLT)/2 + 1
                     NRV = NRU
                     IF( ISPLT.NE.IDBEG ) THEN
                        NRU = NRU + 1
                     END IF
                  ELSE
                     IF( ISPLT.EQ.IDBEG ) THEN
*
*                       Split: top rectangular submatrix.
*
                        NRU = (IDPTR-IDBEG)/2
                        NRV = NRU + 1
                     ELSE
*
*                       Split: middle square submatrix.
*
                        NRU = (IDPTR-ISPLT)/2 + 1
                        NRV = NRU
                     END IF
                  END IF
               ELSE IF( IDPTR.EQ.IDEND ) THEN
*
*                 Last entry of D in the active submatrix.
*
                  IF( ISPLT.EQ.IDBEG ) THEN
*
*                    No split (trivial case).
*
                     NRU = (IDEND-IDBEG)/2 + 1
                     NRV = NRU
                  ELSE
*
*                    Split: bottom rectangular submatrix.
*
                     NRV = (IDEND-ISPLT)/2 + 1
                     NRU = NRV + 1
                  END IF
               END IF
*
               NTGK = NRU + NRV
*
               IF( NTGK.GT.0 ) THEN
*
*                 Compute eigenvalues/vectors of the active
*                 submatrix according to RANGE:
*                 if RANGE='A' (ALLSV) then RNGVX = 'I'
*                 if RANGE='V' (VALSV) then RNGVX = 'V'
*                 if RANGE='I' (INDSV) then RNGVX = 'V'
*
                  ILTGK = 1
                  IUTGK = NTGK / 2
                  IF( ALLSV .OR. VUTGK.EQ.ZERO ) THEN
                     IF( SVEQ0 .OR.
     $                   SMIN.LT.EPS .OR.
     $                   MOD(NTGK,2).GT.0 ) THEN
*                        Special case: eigenvalue equal to zero or very
*                        small, additional eigenvector is needed.
                         IUTGK = IUTGK + 1
                     END IF
                  END IF
*
*                 Workspace needed by SSTEVX:
*                 WORK( ITEMP: ): 2*5*NTGK
*                 IWORK( 1: ): 2*6*NTGK
*
                  CALL SSTEVX( JOBZ, RNGVX, NTGK, WORK( IDTGK+ISPLT-1 ),
     $                         WORK( IETGK+ISPLT-1 ), VLTGK, VUTGK,
     $                         ILTGK, IUTGK, ABSTOL, NSL, S( ISBEG ),
     $                         Z( IROWZ,ICOLZ ), LDZ, WORK( ITEMP ),
     $                         IWORK( IIWORK ), IWORK( IIFAIL ),
     $                         INFO )
                  IF( INFO.NE.0 ) THEN
*                    Exit with the error code from SSTEVX.
                     RETURN
                  END IF
                  EMIN = ABS( MAXVAL( S( ISBEG:ISBEG+NSL-1 ) ) )
*
                  IF( NSL.GT.0 .AND. WANTZ ) THEN
*
*                    Normalize u=Z([2,4,...],:) and v=Z([1,3,...],:),
*                    changing the sign of v as discussed in the leading
*                    comments. The norms of u and v may be (slightly)
*                    different from 1/sqrt(2) if the corresponding
*                    eigenvalues are very small or too close. We check
*                    those norms and, if needed, reorthogonalize the
*                    vectors.
*
                     IF( NSL.GT.1 .AND.
     $                   VUTGK.EQ.ZERO .AND.
     $                   MOD(NTGK,2).EQ.0 .AND.
     $                   EMIN.EQ.0 .AND. .NOT.SPLIT ) THEN
*
*                       D=0 at the top or bottom of the active submatrix:
*                       one eigenvalue is equal to zero; concatenate the
*                       eigenvectors corresponding to the two smallest
*                       eigenvalues.
*
                        Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) =
     $                  Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-2 ) +
     $                  Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 )
                        Z( IROWZ:IROWZ+NTGK-1,ICOLZ+NSL-1 ) =
     $                  ZERO
*                       IF( IUTGK*2.GT.NTGK ) THEN
*                          Eigenvalue equal to zero or very small.
*                          NSL = NSL - 1
*                       END IF
                     END IF
*
                     DO I = 0, MIN( NSL-1, NRU-1 )
                        NRMU = SNRM2( NRU, Z( IROWU, ICOLZ+I ), 2 )
                        IF( NRMU.EQ.ZERO ) THEN
                           INFO = N*2 + 1
                           RETURN
                        END IF
                        CALL SSCAL( NRU, ONE/NRMU,
     $                              Z( IROWU,ICOLZ+I ), 2 )
                        IF( NRMU.NE.ONE .AND.
     $                      ABS( NRMU-ORTOL )*SQRT2.GT.ONE )
     $                      THEN
                           DO J = 0, I-1
                              ZJTJI = -SDOT( NRU, Z( IROWU, ICOLZ+J ),
     $                                       2, Z( IROWU, ICOLZ+I ), 2 )
                              CALL SAXPY( NRU, ZJTJI,
     $                                    Z( IROWU, ICOLZ+J ), 2,
     $                                    Z( IROWU, ICOLZ+I ), 2 )
                           END DO
                           NRMU = SNRM2( NRU, Z( IROWU, ICOLZ+I ), 2 )
                           CALL SSCAL( NRU, ONE/NRMU,
     $                                 Z( IROWU,ICOLZ+I ), 2 )
                        END IF
                     END DO
                     DO I = 0, MIN( NSL-1, NRV-1 )
                        NRMV = SNRM2( NRV, Z( IROWV, ICOLZ+I ), 2 )
                        IF( NRMV.EQ.ZERO ) THEN
                           INFO = N*2 + 1
                           RETURN
                        END IF
                        CALL SSCAL( NRV, -ONE/NRMV,
     $                              Z( IROWV,ICOLZ+I ), 2 )
                        IF( NRMV.NE.ONE .AND.
     $                      ABS( NRMV-ORTOL )*SQRT2.GT.ONE )
     $                      THEN
                           DO J = 0, I-1
                              ZJTJI = -SDOT( NRV, Z( IROWV, ICOLZ+J ),
     $                                       2, Z( IROWV, ICOLZ+I ), 2 )
                              CALL SAXPY( NRU, ZJTJI,
     $                                    Z( IROWV, ICOLZ+J ), 2,
     $                                    Z( IROWV, ICOLZ+I ), 2 )
                           END DO
                           NRMV = SNRM2( NRV, Z( IROWV, ICOLZ+I ), 2 )
                           CALL SSCAL( NRV, ONE/NRMV,
     $                                 Z( IROWV,ICOLZ+I ), 2 )
                        END IF
                     END DO
                     IF( VUTGK.EQ.ZERO .AND.
     $                   IDPTR.LT.IDEND .AND.
     $                   MOD(NTGK,2).GT.0 ) THEN
*
*                       D=0 in the middle of the active submatrix (one
*                       eigenvalue is equal to zero): save the corresponding
*                       eigenvector for later use (when bottom of the
*                       active submatrix is reached).
*
                        SPLIT = .TRUE.
                        Z( IROWZ:IROWZ+NTGK-1,N+1 ) =
     $                     Z( IROWZ:IROWZ+NTGK-1,NS+NSL )
                        Z( IROWZ:IROWZ+NTGK-1,NS+NSL ) =
     $                     ZERO
                     END IF
                  END IF !** WANTZ **!
*
                  NSL = MIN( NSL, NRU )
                  SVEQ0 = .FALSE.
*
*                 Absolute values of the eigenvalues of TGK.
*
                  DO I = 0, NSL-1
                     S( ISBEG+I ) = ABS( S( ISBEG+I ) )
                  END DO
*
*                 Update pointers for TGK, S and Z.
*
                  ISBEG = ISBEG + NSL
                  IROWZ = IROWZ + NTGK
                  ICOLZ = ICOLZ + NSL
                  IROWU = IROWZ
                  IROWV = IROWZ + 1
                  ISPLT = IDPTR + 1
                  NS = NS + NSL
                  NRU = 0
                  NRV = 0
               END IF !** NTGK.GT.0 **!
               IF( IROWZ.LT.N*2 .AND. WANTZ ) THEN
                  Z( 1:IROWZ-1, ICOLZ ) = ZERO
               END IF
            END DO !** IDPTR loop **!
            IF( SPLIT .AND. WANTZ ) THEN
*
*              Bring back eigenvector corresponding
*              to eigenvalue equal to zero.
*
               Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) =
     $         Z( IDBEG:IDEND-NTGK+1,ISBEG-1 ) +
     $         Z( IDBEG:IDEND-NTGK+1,N+1 )
               Z( IDBEG:IDEND-NTGK+1,N+1 ) = 0
            END IF
            IROWV = IROWV - 1
            IROWU = IROWU + 1
            IDBEG = IEPTR + 1
            SVEQ0 = .FALSE.
            SPLIT = .FALSE.
         END IF !** Check for split in E **!
      END DO !** IEPTR loop **!
*
*     Sort the singular values into decreasing order (insertion sort on
*     singular values, but only one transposition per singular vector)
*
      DO I = 1, NS-1
         K = 1
         SMIN = S( 1 )
         DO J = 2, NS + 1 - I
            IF( S( J ).LE.SMIN ) THEN
               K = J
               SMIN = S( J )
            END IF
         END DO
         IF( K.NE.NS+1-I ) THEN
            S( K ) = S( NS+1-I )
            S( NS+1-I ) = SMIN
            IF( WANTZ ) CALL SSWAP( N*2, Z( 1,K ), 1, Z( 1,NS+1-I ), 1 )
         END IF
      END DO
*
*     If RANGE=I, check for singular values/vectors to be discarded.
*
      IF( INDSV ) THEN
         K = IU - IL + 1
         IF( K.LT.NS ) THEN
            S( K+1:NS ) = ZERO
            IF( WANTZ ) Z( 1:N*2,K+1:NS ) = ZERO
            NS = K
         END IF
      END IF
*
*     Reorder Z: U = Z( 1:N,1:NS ), V = Z( N+1:N*2,1:NS ).
*     If B is a lower diagonal, swap U and V.
*
      IF( WANTZ ) THEN
      DO I = 1, NS
         CALL SCOPY( N*2, Z( 1,I ), 1, WORK, 1 )
         IF( LOWER ) THEN
            CALL SCOPY( N, WORK( 2 ), 2, Z( N+1,I ), 1 )
            CALL SCOPY( N, WORK( 1 ), 2, Z( 1  ,I ), 1 )
         ELSE
            CALL SCOPY( N, WORK( 2 ), 2, Z( 1  ,I ), 1 )
            CALL SCOPY( N, WORK( 1 ), 2, Z( N+1,I ), 1 )
         END IF
      END DO
      END IF
*
      RETURN
*
*     End of SBDSVDX
*
      END