aboutsummaryrefslogtreecommitdiff
path: root/SRC/sggsvd3.f
blob: 4f41fc3a851aaf55be05d6e80a884824aed70ffc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
*> \brief <b> SGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGGSVD3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvd3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvd3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvd3.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
*                           LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
*                           LWORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBQ, JOBU, JOBV
*       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       REAL               A( LDA, * ), ALPHA( * ), B( LDB, * ),
*      $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
*      $                   V( LDV, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGGSVD3 computes the generalized singular value decomposition (GSVD)
*> of an M-by-N real matrix A and P-by-N real matrix B:
*>
*>       U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )
*>
*> where U, V and Q are orthogonal matrices.
*> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
*> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
*> D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
*> following structures, respectively:
*>
*> If M-K-L >= 0,
*>
*>                     K  L
*>        D1 =     K ( I  0 )
*>                 L ( 0  C )
*>             M-K-L ( 0  0 )
*>
*>                   K  L
*>        D2 =   L ( 0  S )
*>             P-L ( 0  0 )
*>
*>                 N-K-L  K    L
*>   ( 0 R ) = K (  0   R11  R12 )
*>             L (  0    0   R22 )
*>
*> where
*>
*>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
*>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
*>   C**2 + S**2 = I.
*>
*>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
*>
*> If M-K-L < 0,
*>
*>                   K M-K K+L-M
*>        D1 =   K ( I  0    0   )
*>             M-K ( 0  C    0   )
*>
*>                     K M-K K+L-M
*>        D2 =   M-K ( 0  S    0  )
*>             K+L-M ( 0  0    I  )
*>               P-L ( 0  0    0  )
*>
*>                    N-K-L  K   M-K  K+L-M
*>   ( 0 R ) =     K ( 0    R11  R12  R13  )
*>               M-K ( 0     0   R22  R23  )
*>             K+L-M ( 0     0    0   R33  )
*>
*> where
*>
*>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
*>   S = diag( BETA(K+1),  ... , BETA(M) ),
*>   C**2 + S**2 = I.
*>
*>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
*>   ( 0  R22 R23 )
*>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
*>
*> The routine computes C, S, R, and optionally the orthogonal
*> transformation matrices U, V and Q.
*>
*> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
*> A and B implicitly gives the SVD of A*inv(B):
*>                      A*inv(B) = U*(D1*inv(D2))*V**T.
*> If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
*> also equal to the CS decomposition of A and B. Furthermore, the GSVD
*> can be used to derive the solution of the eigenvalue problem:
*>                      A**T*A x = lambda* B**T*B x.
*> In some literature, the GSVD of A and B is presented in the form
*>                  U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
*> where U and V are orthogonal and X is nonsingular, D1 and D2 are
*> ``diagonal''.  The former GSVD form can be converted to the latter
*> form by taking the nonsingular matrix X as
*>
*>                      X = Q*( I   0    )
*>                            ( 0 inv(R) ).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBU
*> \verbatim
*>          JOBU is CHARACTER*1
*>          = 'U':  Orthogonal matrix U is computed;
*>          = 'N':  U is not computed.
*> \endverbatim
*>
*> \param[in] JOBV
*> \verbatim
*>          JOBV is CHARACTER*1
*>          = 'V':  Orthogonal matrix V is computed;
*>          = 'N':  V is not computed.
*> \endverbatim
*>
*> \param[in] JOBQ
*> \verbatim
*>          JOBQ is CHARACTER*1
*>          = 'Q':  Orthogonal matrix Q is computed;
*>          = 'N':  Q is not computed.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrices A and B.  N >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*>          P is INTEGER
*>          The number of rows of the matrix B.  P >= 0.
*> \endverbatim
*>
*> \param[out] K
*> \verbatim
*>          K is INTEGER
*> \endverbatim
*>
*> \param[out] L
*> \verbatim
*>          L is INTEGER
*>
*>          On exit, K and L specify the dimension of the subblocks
*>          described in Purpose.
*>          K + L = effective numerical rank of (A**T,B**T)**T.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the M-by-N matrix A.
*>          On exit, A contains the triangular matrix R, or part of R.
*>          See Purpose for details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,N)
*>          On entry, the P-by-N matrix B.
*>          On exit, B contains the triangular matrix R if M-K-L < 0.
*>          See Purpose for details.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B. LDB >= max(1,P).
*> \endverbatim
*>
*> \param[out] ALPHA
*> \verbatim
*>          ALPHA is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] BETA
*> \verbatim
*>          BETA is REAL array, dimension (N)
*>
*>          On exit, ALPHA and BETA contain the generalized singular
*>          value pairs of A and B;
*>            ALPHA(1:K) = 1,
*>            BETA(1:K)  = 0,
*>          and if M-K-L >= 0,
*>            ALPHA(K+1:K+L) = C,
*>            BETA(K+1:K+L)  = S,
*>          or if M-K-L < 0,
*>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
*>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
*>          and
*>            ALPHA(K+L+1:N) = 0
*>            BETA(K+L+1:N)  = 0
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is REAL array, dimension (LDU,M)
*>          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
*>          If JOBU = 'N', U is not referenced.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of the array U. LDU >= max(1,M) if
*>          JOBU = 'U'; LDU >= 1 otherwise.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*>          V is REAL array, dimension (LDV,P)
*>          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
*>          If JOBV = 'N', V is not referenced.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*>          LDV is INTEGER
*>          The leading dimension of the array V. LDV >= max(1,P) if
*>          JOBV = 'V'; LDV >= 1 otherwise.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is REAL array, dimension (LDQ,N)
*>          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
*>          If JOBQ = 'N', Q is not referenced.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>          The leading dimension of the array Q. LDQ >= max(1,N) if
*>          JOBQ = 'Q'; LDQ >= 1 otherwise.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (N)
*>          On exit, IWORK stores the sorting information. More
*>          precisely, the following loop will sort ALPHA
*>             for I = K+1, min(M,K+L)
*>                 swap ALPHA(I) and ALPHA(IWORK(I))
*>             endfor
*>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit.
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
*>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
*>                converge.  For further details, see subroutine STGSJA.
*> \endverbatim
*
*> \par Internal Parameters:
*  =========================
*>
*> \verbatim
*>  TOLA    REAL
*>  TOLB    REAL
*>          TOLA and TOLB are the thresholds to determine the effective
*>          rank of (A**T,B**T)**T. Generally, they are set to
*>                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
*>                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
*>          The size of TOLA and TOLB may affect the size of backward
*>          errors of the decomposition.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date August 2015
*
*> \ingroup realGEsing
*
*> \par Contributors:
*  ==================
*>
*>     Ming Gu and Huan Ren, Computer Science Division, University of
*>     California at Berkeley, USA
*>
*
*> \par Further Details:
*  =====================
*>
*>  SGGSVD3 replaces the deprecated subroutine SGGSVD.
*>
*  =====================================================================
      SUBROUTINE SGGSVD3( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
     $                    LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
     $                    WORK, LWORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     August 2015
*
*     .. Scalar Arguments ..
      CHARACTER          JOBQ, JOBU, JOBV
      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
     $                   LWORK
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               A( LDA, * ), ALPHA( * ), B( LDB, * ),
     $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
     $                   V( LDV, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            WANTQ, WANTU, WANTV, LQUERY
      INTEGER            I, IBND, ISUB, J, NCYCLE, LWKOPT
      REAL               ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGGSVP3, STGSJA, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTU = LSAME( JOBU, 'U' )
      WANTV = LSAME( JOBV, 'V' )
      WANTQ = LSAME( JOBQ, 'Q' )
      LQUERY = ( LWORK.EQ.-1 )
      LWKOPT = 1
*
*     Test the input arguments
*
      INFO = 0
      IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -10
      ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
         INFO = -12
      ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
         INFO = -16
      ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
         INFO = -18
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
         INFO = -20
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
         INFO = -24
      END IF
*
*     Compute workspace
*
      IF( INFO.EQ.0 ) THEN
         CALL SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
     $                 TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
     $                 WORK, -1, INFO )
         LWKOPT = N + INT( WORK( 1 ) )
         LWKOPT = MAX( 2*N, LWKOPT )
         LWKOPT = MAX( 1, LWKOPT )
         WORK( 1 ) = REAL( LWKOPT )
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGGSVD3', -INFO )
         RETURN
      END IF
      IF( LQUERY ) THEN
         RETURN
      ENDIF
*
*     Compute the Frobenius norm of matrices A and B
*
      ANORM = SLANGE( '1', M, N, A, LDA, WORK )
      BNORM = SLANGE( '1', P, N, B, LDB, WORK )
*
*     Get machine precision and set up threshold for determining
*     the effective numerical rank of the matrices A and B.
*
      ULP = SLAMCH( 'Precision' )
      UNFL = SLAMCH( 'Safe Minimum' )
      TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
      TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
*
*     Preprocessing
*
      CALL SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
     $              TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
     $              WORK( N+1 ), LWORK-N, INFO )
*
*     Compute the GSVD of two upper "triangular" matrices
*
      CALL STGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
     $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
     $             WORK, NCYCLE, INFO )
*
*     Sort the singular values and store the pivot indices in IWORK
*     Copy ALPHA to WORK, then sort ALPHA in WORK
*
      CALL SCOPY( N, ALPHA, 1, WORK, 1 )
      IBND = MIN( L, M-K )
      DO 20 I = 1, IBND
*
*        Scan for largest ALPHA(K+I)
*
         ISUB = I
         SMAX = WORK( K+I )
         DO 10 J = I + 1, IBND
            TEMP = WORK( K+J )
            IF( TEMP.GT.SMAX ) THEN
               ISUB = J
               SMAX = TEMP
            END IF
   10    CONTINUE
         IF( ISUB.NE.I ) THEN
            WORK( K+ISUB ) = WORK( K+I )
            WORK( K+I ) = SMAX
            IWORK( K+I ) = K + ISUB
         ELSE
            IWORK( K+I ) = K + I
         END IF
   20 CONTINUE
*
      WORK( 1 ) = REAL( LWKOPT )
      RETURN
*
*     End of SGGSVD3
*
      END