aboutsummaryrefslogtreecommitdiff
path: root/SRC/sla_gbrcond.f
blob: 77ffcdfd80c4f0729cb105ea1b5fcdda51b08b61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
      REAL FUNCTION SLA_GBRCOND( TRANS, N, KL, KU, AB, LDAB, AFB, LDAFB,
     $                           IPIV, CMODE, C, INFO, WORK, IWORK )
*
*     -- LAPACK routine (version 3.2.1)                               --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- November 2008                                                --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            N, LDAB, LDAFB, INFO, KL, KU, CMODE
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * ), IPIV( * )
      REAL               AB( LDAB, * ), AFB( LDAFB, * ), WORK( * ),
     $                   C( * )
*    ..
*
*  Purpose
*  =======
*
*     SLA_GERCOND Estimates the Skeel condition number of  op(A) * op2(C)
*     where op2 is determined by CMODE as follows
*     CMODE =  1    op2(C) = C
*     CMODE =  0    op2(C) = I
*     CMODE = -1    op2(C) = inv(C)
*     The Skeel condition number  cond(A) = norminf( |inv(A)||A| )
*     is computed by computing scaling factors R such that
*     diag(R)*A*op2(C) is row equilibrated and computing the standard
*     infinity-norm condition number.
*
*  Arguments
*  ==========
*
*     TRANS   (input) CHARACTER*1
*     Specifies the form of the system of equations:
*       = 'N':  A * X = B     (No transpose)
*       = 'T':  A**T * X = B  (Transpose)
*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
*
*     N       (input) INTEGER
*     The number of linear equations, i.e., the order of the
*     matrix A.  N >= 0.
*
*     KL      (input) INTEGER
*     The number of subdiagonals within the band of A.  KL >= 0.
*
*     KU      (input) INTEGER
*     The number of superdiagonals within the band of A.  KU >= 0.
*
*     AB      (input) REAL array, dimension (LDAB,N)
*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
*     The j-th column of A is stored in the j-th column of the
*     array AB as follows:
*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
*
*     LDAB    (input) INTEGER
*     The leading dimension of the array AB.  LDAB >= KL+KU+1.
*
*     AFB     (input) REAL array, dimension (LDAFB,N)
*     Details of the LU factorization of the band matrix A, as
*     computed by SGBTRF.  U is stored as an upper triangular
*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
*     and the multipliers used during the factorization are stored
*     in rows KL+KU+2 to 2*KL+KU+1.
*
*     LDAFB   (input) INTEGER
*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
*
*     IPIV    (input) INTEGER array, dimension (N)
*     The pivot indices from the factorization A = P*L*U
*     as computed by SGBTRF; row i of the matrix was interchanged
*     with row IPIV(i).
*
*     CMODE   (input) INTEGER
*     Determines op2(C) in the formula op(A) * op2(C) as follows:
*     CMODE =  1    op2(C) = C
*     CMODE =  0    op2(C) = I
*     CMODE = -1    op2(C) = inv(C)
*
*     C       (input) REAL array, dimension (N)
*     The vector C in the formula op(A) * op2(C).
*
*     INFO    (output) INTEGER
*       = 0:  Successful exit.
*     i > 0:  The ith argument is invalid.
*
*     WORK    (input) REAL array, dimension (5*N).
*     Workspace.
*
*     IWORK   (input) INTEGER array, dimension (N).
*     Workspace.
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            NOTRANS
      INTEGER            KASE, I, J, KD, KE
      REAL               AINVNM, TMP
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLACN2, SGBTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
      SLA_GBRCOND = 0.0
*
      INFO = 0
      NOTRANS = LSAME( TRANS, 'N' )
      IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
     $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 .OR. KL.GT.N-1 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.KL+KU+1 ) THEN
         INFO = -6
      ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLA_GBRCOND', -INFO )
         RETURN
      END IF
      IF( N.EQ.0 ) THEN
         SLA_GBRCOND = 1.0
         RETURN
      END IF
*
*     Compute the equilibration matrix R such that
*     inv(R)*A*C has unit 1-norm.
*
      KD = KU + 1
      KE = KL + 1
      IF ( NOTRANS ) THEN
         DO I = 1, N
            TMP = 0.0
               IF ( CMODE .EQ. 1 ) THEN
               DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
                  TMP = TMP + ABS( AB( KD+I-J, J ) * C( J ) )
               END DO
               ELSE IF ( CMODE .EQ. 0 ) THEN
                  DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
                     TMP = TMP + ABS( AB( KD+I-J, J ) )
                  END DO
               ELSE
                  DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
                     TMP = TMP + ABS( AB( KD+I-J, J ) / C( J ) )
                  END DO
               END IF
            WORK( 2*N+I ) = TMP
         END DO
      ELSE
         DO I = 1, N
            TMP = 0.0
            IF ( CMODE .EQ. 1 ) THEN
               DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
                  TMP = TMP + ABS( AB( KE-I+J, I ) * C( J ) )
               END DO
            ELSE IF ( CMODE .EQ. 0 ) THEN
               DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
                  TMP = TMP + ABS( AB( KE-I+J, I ) )
               END DO
            ELSE
               DO J = MAX( I-KL, 1 ), MIN( I+KU, N )
                  TMP = TMP + ABS( AB( KE-I+J, I ) / C( J ) )
               END DO
            END IF
            WORK( 2*N+I ) = TMP
         END DO
      END IF
*
*     Estimate the norm of inv(op(A)).
*
      AINVNM = 0.0

      KASE = 0
   10 CONTINUE
      CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( KASE.EQ.2 ) THEN
*
*           Multiply by R.
*
            DO I = 1, N
               WORK( I ) = WORK( I ) * WORK( 2*N+I )
            END DO

            IF ( NOTRANS ) THEN
               CALL SGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
     $              IPIV, WORK, N, INFO )
            ELSE
               CALL SGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
     $              WORK, N, INFO )
            END IF
*
*           Multiply by inv(C).
*
            IF ( CMODE .EQ. 1 ) THEN
               DO I = 1, N
                  WORK( I ) = WORK( I ) / C( I )
               END DO
            ELSE IF ( CMODE .EQ. -1 ) THEN
               DO I = 1, N
                  WORK( I ) = WORK( I ) * C( I )
               END DO
            END IF
         ELSE
*
*           Multiply by inv(C').
*
            IF ( CMODE .EQ. 1 ) THEN
               DO I = 1, N
                  WORK( I ) = WORK( I ) / C( I )
               END DO
            ELSE IF ( CMODE .EQ. -1 ) THEN
               DO I = 1, N
                  WORK( I ) = WORK( I ) * C( I )
               END DO
            END IF

            IF ( NOTRANS ) THEN
               CALL SGBTRS( 'Transpose', N, KL, KU, 1, AFB, LDAFB, IPIV,
     $              WORK, N, INFO )
            ELSE
               CALL SGBTRS( 'No transpose', N, KL, KU, 1, AFB, LDAFB,
     $              IPIV, WORK, N, INFO )
            END IF
*
*           Multiply by R.
*
            DO I = 1, N
               WORK( I ) = WORK( I ) * WORK( 2*N+I )
            END DO
         END IF
         GO TO 10
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM .NE. 0.0 )
     $   SLA_GBRCOND = ( 1.0 / AINVNM )
*
      RETURN
*
      END