aboutsummaryrefslogtreecommitdiff
path: root/SRC/slalsd.f
blob: a6696607957c4423691bce36871a9f38bb9d7e38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
*> \brief \b SLALSD uses the singular value decomposition of A to solve the least squares problem.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLALSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slalsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slalsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slalsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
*                          RANK, WORK, IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
*       REAL               RCOND
*       ..
*       .. Array Arguments ..
*       INTEGER            IWORK( * )
*       REAL               B( LDB, * ), D( * ), E( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLALSD uses the singular value decomposition of A to solve the least
*> squares problem of finding X to minimize the Euclidean norm of each
*> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
*> are N-by-NRHS. The solution X overwrites B.
*>
*> The singular values of A smaller than RCOND times the largest
*> singular value are treated as zero in solving the least squares
*> problem; in this case a minimum norm solution is returned.
*> The actual singular values are returned in D in ascending order.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>         = 'U': D and E define an upper bidiagonal matrix.
*>         = 'L': D and E define a  lower bidiagonal matrix.
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*>          SMLSIZ is INTEGER
*>         The maximum size of the subproblems at the bottom of the
*>         computation tree.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>         The dimension of the  bidiagonal matrix.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>         The number of columns of B. NRHS must be at least 1.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>         On entry D contains the main diagonal of the bidiagonal
*>         matrix. On exit, if INFO = 0, D contains its singular values.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*>          E is REAL array, dimension (N-1)
*>         Contains the super-diagonal entries of the bidiagonal matrix.
*>         On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>         On input, B contains the right hand sides of the least
*>         squares problem. On output, B contains the solution X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>         The leading dimension of B in the calling subprogram.
*>         LDB must be at least max(1,N).
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*>          RCOND is REAL
*>         The singular values of A less than or equal to RCOND times
*>         the largest singular value are treated as zero in solving
*>         the least squares problem. If RCOND is negative,
*>         machine precision is used instead.
*>         For example, if diag(S)*X=B were the least squares problem,
*>         where diag(S) is a diagonal matrix of singular values, the
*>         solution would be X(i) = B(i) / S(i) if S(i) is greater than
*>         RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
*>         RCOND*max(S).
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*>          RANK is INTEGER
*>         The number of singular values of A greater than RCOND times
*>         the largest singular value.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension at least
*>         (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2),
*>         where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension at least
*>         (3*N*NLVL + 11*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>         = 0:  successful exit.
*>         < 0:  if INFO = -i, the i-th argument had an illegal value.
*>         > 0:  The algorithm failed to compute a singular value while
*>               working on the submatrix lying in rows and columns
*>               INFO/(N+1) through MOD(INFO,N+1).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup realOTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
*>       California at Berkeley, USA \n
*>     Osni Marques, LBNL/NERSC, USA \n
*
*  =====================================================================
      SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
     $                   RANK, WORK, IWORK, INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDB, N, NRHS, RANK, SMLSIZ
      REAL               RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      REAL               B( LDB, * ), D( * ), E( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
     $                   GIVPTR, I, ICMPQ1, ICMPQ2, IWK, J, K, NLVL,
     $                   NM1, NSIZE, NSUB, NWORK, PERM, POLES, S, SIZEI,
     $                   SMLSZP, SQRE, ST, ST1, U, VT, Z
      REAL               CS, EPS, ORGNRM, R, RCND, SN, TOL
*     ..
*     .. External Functions ..
      INTEGER            ISAMAX
      REAL               SLAMCH, SLANST
      EXTERNAL           ISAMAX, SLAMCH, SLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMM, SLACPY, SLALSA, SLARTG, SLASCL,
     $                   SLASDA, SLASDQ, SLASET, SLASRT, SROT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, INT, LOG, REAL, SIGN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.1 ) THEN
         INFO = -4
      ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SLALSD', -INFO )
         RETURN
      END IF
*
      EPS = SLAMCH( 'Epsilon' )
*
*     Set up the tolerance.
*
      IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
         RCND = EPS
      ELSE
         RCND = RCOND
      END IF
*
      RANK = 0
*
*     Quick return if possible.
*
      IF( N.EQ.0 ) THEN
         RETURN
      ELSE IF( N.EQ.1 ) THEN
         IF( D( 1 ).EQ.ZERO ) THEN
            CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B, LDB )
         ELSE
            RANK = 1
            CALL SLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
            D( 1 ) = ABS( D( 1 ) )
         END IF
         RETURN
      END IF
*
*     Rotate the matrix if it is lower bidiagonal.
*
      IF( UPLO.EQ.'L' ) THEN
         DO 10 I = 1, N - 1
            CALL SLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            IF( NRHS.EQ.1 ) THEN
               CALL SROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
            ELSE
               WORK( I*2-1 ) = CS
               WORK( I*2 ) = SN
            END IF
   10    CONTINUE
         IF( NRHS.GT.1 ) THEN
            DO 30 I = 1, NRHS
               DO 20 J = 1, N - 1
                  CS = WORK( J*2-1 )
                  SN = WORK( J*2 )
                  CALL SROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
   20          CONTINUE
   30       CONTINUE
         END IF
      END IF
*
*     Scale.
*
      NM1 = N - 1
      ORGNRM = SLANST( 'M', N, D, E )
      IF( ORGNRM.EQ.ZERO ) THEN
         CALL SLASET( 'A', N, NRHS, ZERO, ZERO, B, LDB )
         RETURN
      END IF
*
      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
*
*     If N is smaller than the minimum divide size SMLSIZ, then solve
*     the problem with another solver.
*
      IF( N.LE.SMLSIZ ) THEN
         NWORK = 1 + N*N
         CALL SLASET( 'A', N, N, ZERO, ONE, WORK, N )
         CALL SLASDQ( 'U', 0, N, N, 0, NRHS, D, E, WORK, N, WORK, N, B,
     $                LDB, WORK( NWORK ), INFO )
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
         DO 40 I = 1, N
            IF( D( I ).LE.TOL ) THEN
               CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
            ELSE
               CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
     $                      LDB, INFO )
               RANK = RANK + 1
            END IF
   40    CONTINUE
         CALL SGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
     $               WORK( NWORK ), N )
         CALL SLACPY( 'A', N, NRHS, WORK( NWORK ), N, B, LDB )
*
*        Unscale.
*
         CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
         CALL SLASRT( 'D', N, D, INFO )
         CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
         RETURN
      END IF
*
*     Book-keeping and setting up some constants.
*
      NLVL = INT( LOG( REAL( N ) / REAL( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
*
      SMLSZP = SMLSIZ + 1
*
      U = 1
      VT = 1 + SMLSIZ*N
      DIFL = VT + SMLSZP*N
      DIFR = DIFL + NLVL*N
      Z = DIFR + NLVL*N*2
      C = Z + NLVL*N
      S = C + N
      POLES = S + N
      GIVNUM = POLES + 2*NLVL*N
      BX = GIVNUM + 2*NLVL*N
      NWORK = BX + N*NRHS
*
      SIZEI = 1 + N
      K = SIZEI + N
      GIVPTR = K + N
      PERM = GIVPTR + N
      GIVCOL = PERM + NLVL*N
      IWK = GIVCOL + NLVL*N*2
*
      ST = 1
      SQRE = 0
      ICMPQ1 = 1
      ICMPQ2 = 0
      NSUB = 0
*
      DO 50 I = 1, N
         IF( ABS( D( I ) ).LT.EPS ) THEN
            D( I ) = SIGN( EPS, D( I ) )
         END IF
   50 CONTINUE
*
      DO 60 I = 1, NM1
         IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
            NSUB = NSUB + 1
            IWORK( NSUB ) = ST
*
*           Subproblem found. First determine its size and then
*           apply divide and conquer on it.
*
            IF( I.LT.NM1 ) THEN
*
*              A subproblem with E(I) small for I < NM1.
*
               NSIZE = I - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
            ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
*
*              A subproblem with E(NM1) not too small but I = NM1.
*
               NSIZE = N - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
            ELSE
*
*              A subproblem with E(NM1) small. This implies an
*              1-by-1 subproblem at D(N), which is not solved
*              explicitly.
*
               NSIZE = I - ST + 1
               IWORK( SIZEI+NSUB-1 ) = NSIZE
               NSUB = NSUB + 1
               IWORK( NSUB ) = N
               IWORK( SIZEI+NSUB-1 ) = 1
               CALL SCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
            END IF
            ST1 = ST - 1
            IF( NSIZE.EQ.1 ) THEN
*
*              This is a 1-by-1 subproblem and is not solved
*              explicitly.
*
               CALL SCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
            ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
*              This is a small subproblem and is solved by SLASDQ.
*
               CALL SLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
     $                      WORK( VT+ST1 ), N )
               CALL SLASDQ( 'U', 0, NSIZE, NSIZE, 0, NRHS, D( ST ),
     $                      E( ST ), WORK( VT+ST1 ), N, WORK( NWORK ),
     $                      N, B( ST, 1 ), LDB, WORK( NWORK ), INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
               CALL SLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
     $                      WORK( BX+ST1 ), N )
            ELSE
*
*              A large problem. Solve it using divide and conquer.
*
               CALL SLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
     $                      E( ST ), WORK( U+ST1 ), N, WORK( VT+ST1 ),
     $                      IWORK( K+ST1 ), WORK( DIFL+ST1 ),
     $                      WORK( DIFR+ST1 ), WORK( Z+ST1 ),
     $                      WORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
     $                      IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
     $                      WORK( GIVNUM+ST1 ), WORK( C+ST1 ),
     $                      WORK( S+ST1 ), WORK( NWORK ), IWORK( IWK ),
     $                      INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
               BXST = BX + ST1
               CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
     $                      LDB, WORK( BXST ), N, WORK( U+ST1 ), N,
     $                      WORK( VT+ST1 ), IWORK( K+ST1 ),
     $                      WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
     $                      WORK( Z+ST1 ), WORK( POLES+ST1 ),
     $                      IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
     $                      IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
     $                      WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
     $                      IWORK( IWK ), INFO )
               IF( INFO.NE.0 ) THEN
                  RETURN
               END IF
            END IF
            ST = I + 1
         END IF
   60 CONTINUE
*
*     Apply the singular values and treat the tiny ones as zero.
*
      TOL = RCND*ABS( D( ISAMAX( N, D, 1 ) ) )
*
      DO 70 I = 1, N
*
*        Some of the elements in D can be negative because 1-by-1
*        subproblems were not solved explicitly.
*
         IF( ABS( D( I ) ).LE.TOL ) THEN
            CALL SLASET( 'A', 1, NRHS, ZERO, ZERO, WORK( BX+I-1 ), N )
         ELSE
            RANK = RANK + 1
            CALL SLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
     $                   WORK( BX+I-1 ), N, INFO )
         END IF
         D( I ) = ABS( D( I ) )
   70 CONTINUE
*
*     Now apply back the right singular vectors.
*
      ICMPQ2 = 1
      DO 80 I = 1, NSUB
         ST = IWORK( I )
         ST1 = ST - 1
         NSIZE = IWORK( SIZEI+I-1 )
         BXST = BX + ST1
         IF( NSIZE.EQ.1 ) THEN
            CALL SCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
         ELSE IF( NSIZE.LE.SMLSIZ ) THEN
            CALL SGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
     $                  WORK( VT+ST1 ), N, WORK( BXST ), N, ZERO,
     $                  B( ST, 1 ), LDB )
         ELSE
            CALL SLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
     $                   B( ST, 1 ), LDB, WORK( U+ST1 ), N,
     $                   WORK( VT+ST1 ), IWORK( K+ST1 ),
     $                   WORK( DIFL+ST1 ), WORK( DIFR+ST1 ),
     $                   WORK( Z+ST1 ), WORK( POLES+ST1 ),
     $                   IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
     $                   IWORK( PERM+ST1 ), WORK( GIVNUM+ST1 ),
     $                   WORK( C+ST1 ), WORK( S+ST1 ), WORK( NWORK ),
     $                   IWORK( IWK ), INFO )
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
         END IF
   80 CONTINUE
*
*     Unscale and sort the singular values.
*
      CALL SLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
      CALL SLASRT( 'D', N, D, INFO )
      CALL SLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
      RETURN
*
*     End of SLALSD
*
      END