aboutsummaryrefslogtreecommitdiff
path: root/SRC/zgemlq.f
blob: 10d3a5e4f3f55c7f51d9377009d041d7199e3330 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
*
*  Definition:
*  ===========
*
*      SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, WORK1,
*     $                LWORK1, C, LDC, WORK2, LWORK2, INFO )
*
*
*     .. Scalar Arguments ..
*      CHARACTER         SIDE, TRANS
*      INTEGER           INFO, LDA, M, N, K, MB, NB, LWORK1, LWORK2, LDC
*     ..
*     .. Array Arguments ..
*      COMPLEX*16        A( LDA, * ), WORK1( * ), C(LDC, * ),
*     $                  WORK2( * )
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>     ZGEMLQ overwrites the general real M-by-N matrix C with
*>
*>
*>                    SIDE = 'L'     SIDE = 'R'
*>    TRANS = 'N':      Q * C          C * Q
*>    TRANS = 'T':      Q**T * C       C * Q**T
*>    where Q is a complex orthogonal matrix defined as the product
*>    of blocked elementary reflectors computed by short wide LQ
*>    factorization (DGELQ)
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] SIDE
*>          SIDE is CHARACTER*1
*>          = 'L': apply Q or Q**T from the Left;
*>          = 'R': apply Q or Q**T from the Right.
*>
*> \param[in] TRANS
*>          TRANS is CHARACTER*1
*>          = 'N':  No transpose, apply Q;
*>          = 'T':  Transpose, apply Q**T.
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >=0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix C. N >= M.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines
*>          the matrix Q.
*>          M >= K >= 0;
*>
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,K)
*>          The i-th row must contain the vector which defines the blocked
*>          elementary reflector H(i), for i = 1,2,...,k, as returned by
*>          DLASWLQ in the first k rows of its array argument A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.
*>          If SIDE = 'L', LDA >= max(1,M);
*>          if SIDE = 'R', LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] WORK1
*> \verbatim
*>          WORK1 is COMPLEX*16 array, dimension (MAX(1,LWORK1)) is
*>          returned by GEQR.
*> \endverbatim
*>
*> \param[in] LWORK1
*> \verbatim
*>          LWORK1 is INTEGER
*>          The dimension of the array WORK1.
*> \endverbatim
*>
*> \param[in,out] C
*>          C is COMPLEX*16 array, dimension (LDC,N)
*>          On entry, the M-by-N matrix C.
*>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
*> \param[in] LDC
*>          LDC is INTEGER
*>          The leading dimension of the array C. LDC >= max(1,M).
*>
*> \param[out] WORK2
*> \verbatim
*>         (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK2))
*>
*> \endverbatim
*> \param[in] LWORK2
*> \verbatim
*>          LWORK2 is INTEGER
*>          The dimension of the array WORK2.
*>          If LWORK2 = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK2 array, returns
*>          this value as the third entry of the WORK2 array (WORK2(1)),
*>          and no error message related to LWORK2 is issued by XERBLA.
*>
*> \endverbatim
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>  Depending on the matrix dimensions M and N, and row and column
*>  block sizes MB and NB returned by ILAENV, GELQ will use either
*>  LASWLQ(if the matrix is short-and-wide) or GELQT to compute
*>  the LQ decomposition.
*>  The output of LASWLQ or GELQT representing Q is stored in A and in
*>  array WORK1(6:LWORK1) for later use.
*>  WORK1(2:5) contains the matrix dimensions M,N and block sizes MB, NB
*>  which are needed to interpret A and WORK1(6:LWORK1) for later use.
*>  WORK1(1)=1 indicates that the code needed to take WORK1(2:5) and
*>  decide whether LASWLQ or GELQT was used is the same as used below in
*>  GELQ. For a detailed description of A and WORK1(6:LWORK1), see
*>  Further Details in LASWLQ or GELQT.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, WORK1, LWORK1,
     $      C, LDC, WORK2, LWORK2, INFO )
*
*  -- LAPACK computational routine (version 3.5.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2013
*
*     .. Scalar Arguments ..
      CHARACTER         SIDE, TRANS
      INTEGER           INFO, LDA, M, N, K, LWORK1, LWORK2, LDC
*     ..
*     .. Array Arguments ..
      COMPLEX*16     A( LDA, * ), C( LDC, * ), WORK1( * ), WORK2( * )
*     ..
*
* =====================================================================
*
*     ..
*     .. Local Scalars ..
      LOGICAL    LEFT, RIGHT, TRAN, NOTRAN, LQUERY
      INTEGER    I, II, KK, MB, NB, LW, NBLCKS, MN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     .. External Subroutines ..
      EXTERNAL           ZLAMSWLQ, ZGEMLQT, XERBLA
*     .. Intrinsic Functions ..
      INTRINSIC          INT, MAX, MIN, MOD
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      LQUERY  = LWORK2.LT.0
      NOTRAN  = LSAME( TRANS, 'N' )
      TRAN    = LSAME( TRANS, 'C' )
      LEFT    = LSAME( SIDE, 'L' )
      RIGHT   = LSAME( SIDE, 'R' )
*
      MB = INT(WORK1(4))
      NB = INT(WORK1(5))
      IF (LEFT) THEN
        LW = N * MB
        MN = M
      ELSE
        LW = M * MB
        MN = N
      END IF
      IF ((NB.GT.K).AND.(MN.GT.K)) THEN
        IF(MOD(MN-K, NB-K).EQ.0) THEN
          NBLCKS = (MN-K)/(NB-K)
        ELSE
          NBLCKS = (MN-K)/(NB-K) + 1
        END IF
      ELSE
        NBLCKS = 1
      END IF
*
      INFO = 0
      IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
         INFO = -1
      ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
         INFO = -2
      ELSE IF( M.LT.0 ) THEN
        INFO = -3
      ELSE IF( N.LT.0) THEN
        INFO = -4
      ELSE IF( K.LT.0 ) THEN
        INFO = -5
      ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
        INFO = -7
      ELSE IF( LWORK1.LT.MAX( 1, MB*K*NBLCKS+5 )) THEN
        INFO = -9
      ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
         INFO = -11
      ELSE IF(( LWORK2.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN
        INFO = -13
      END IF
*
      IF( INFO.EQ.0)  THEN
        WORK2(1) = LW
      END IF
      IF( INFO.NE.0 ) THEN
        CALL XERBLA( 'ZGEMLQ', -INFO )
        RETURN
      ELSE IF (LQUERY) THEN
        RETURN
      END IF
*
*     Quick return if possible
*
      IF( MIN(M,N,K).EQ.0 ) THEN
        RETURN
      END IF
*
      IF((LEFT.AND.M.LE.K).OR.(RIGHT.AND.N.LE.K).OR.(NB.LE.K).OR.
     $   (NB.GE.MAX(M,N,K))) THEN
        CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
     $        WORK1(6), MB, C, LDC, WORK2, INFO)
      ELSE
        CALL ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, WORK1(6),
     $    MB, C, LDC, WORK2, LWORK2, INFO )
      END IF
*
      WORK2(1) = LW
      RETURN
*
*     End of ZGEMLQ
*
      END