aboutsummaryrefslogtreecommitdiff
path: root/SRC/zsytrf_rk.f
blob: 2fabf9d1a3bfcc3b12b12199847a91fe709d1edc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
*> \brief \b ZSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZSYTRF_RK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_rk.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_rk.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_rk.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
*                             INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, LWORK, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX*16         A( LDA, * ), E ( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*> ZSYTRF_RK computes the factorization of a complex symmetric matrix A
*> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
*>
*>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
*>
*> where U (or L) is unit upper (or lower) triangular matrix,
*> U**T (or L**T) is the transpose of U (or L), P is a permutation
*> matrix, P**T is the transpose of P, and D is symmetric and block
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*>
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
*> For more information see Further Details section.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the symmetric matrix A.
*>            If UPLO = 'U': the leading N-by-N upper triangular part
*>            of A contains the upper triangular part of the matrix A,
*>            and the strictly lower triangular part of A is not
*>            referenced.
*>
*>            If UPLO = 'L': the leading N-by-N lower triangular part
*>            of A contains the lower triangular part of the matrix A,
*>            and the strictly upper triangular part of A is not
*>            referenced.
*>
*>          On exit, contains:
*>            a) ONLY diagonal elements of the symmetric block diagonal
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*>               (superdiagonal (or subdiagonal) elements of D
*>                are stored on exit in array E), and
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*>          E is COMPLEX*16 array, dimension (N)
*>          On exit, contains the superdiagonal (or subdiagonal)
*>          elements of the symmetric block diagonal matrix D
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
*>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
*>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
*>
*>          NOTE: For 1-by-1 diagonal block D(k), where
*>          1 <= k <= N, the element E(k) is set to 0 in both
*>          UPLO = 'U' or UPLO = 'L' cases.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          IPIV describes the permutation matrix P in the factorization
*>          of matrix A as follows. The absolute value of IPIV(k)
*>          represents the index of row and column that were
*>          interchanged with the k-th row and column. The value of UPLO
*>          describes the order in which the interchanges were applied.
*>          Also, the sign of IPIV represents the block structure of
*>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
*>          diagonal blocks which correspond to 1 or 2 interchanges
*>          at each factorization step. For more info see Further
*>          Details section.
*>
*>          If UPLO = 'U',
*>          ( in factorization order, k decreases from N to 1 ):
*>            a) A single positive entry IPIV(k) > 0 means:
*>               D(k,k) is a 1-by-1 diagonal block.
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
*>               interchanged in the matrix A(1:N,1:N);
*>               If IPIV(k) = k, no interchange occurred.
*>
*>            b) A pair of consecutive negative entries
*>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
*>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
*>               1) If -IPIV(k) != k, rows and columns
*>                  k and -IPIV(k) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k) = k, no interchange occurred.
*>               2) If -IPIV(k-1) != k-1, rows and columns
*>                  k-1 and -IPIV(k-1) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k-1) = k-1, no interchange occurred.
*>
*>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
*>
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
*>
*>          If UPLO = 'L',
*>          ( in factorization order, k increases from 1 to N ):
*>            a) A single positive entry IPIV(k) > 0 means:
*>               D(k,k) is a 1-by-1 diagonal block.
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
*>               interchanged in the matrix A(1:N,1:N).
*>               If IPIV(k) = k, no interchange occurred.
*>
*>            b) A pair of consecutive negative entries
*>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
*>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
*>               1) If -IPIV(k) != k, rows and columns
*>                  k and -IPIV(k) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k) = k, no interchange occurred.
*>               2) If -IPIV(k+1) != k+1, rows and columns
*>                  k-1 and -IPIV(k-1) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k+1) = k+1, no interchange occurred.
*>
*>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
*>
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ).
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of WORK.  LWORK >=1.  For best performance
*>          LWORK >= N*NB, where NB is the block size returned
*>          by ILAENV.
*>
*>          If LWORK = -1, then a workspace query is assumed;
*>          the routine only calculates the optimal size of the WORK
*>          array, returns this value as the first entry of the WORK
*>          array, and no error message related to LWORK is issued
*>          by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>
*>          < 0: If INFO = -k, the k-th argument had an illegal value
*>
*>          > 0: If INFO = k, the matrix A is singular, because:
*>                 If UPLO = 'U': column k in the upper
*>                 triangular part of A contains all zeros.
*>                 If UPLO = 'L': column k in the lower
*>                 triangular part of A contains all zeros.
*>
*>               Therefore D(k,k) is exactly zero, and superdiagonal
*>               elements of column k of U (or subdiagonal elements of
*>               column k of L ) are all zeros. The factorization has
*>               been completed, but the block diagonal matrix D is
*>               exactly singular, and division by zero will occur if
*>               it is used to solve a system of equations.
*>
*>               NOTE: INFO only stores the first occurrence of
*>               a singularity, any subsequent occurrence of singularity
*>               is not stored in INFO even though the factorization
*>               always completes.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex16SYcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*> TODO: put correct description
*> \endverbatim
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>  December 2016,  Igor Kozachenko,
*>                  Computer Science Division,
*>                  University of California, Berkeley
*>
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
*>                  School of Mathematics,
*>                  University of Manchester
*>
*> \endverbatim
*
*  =====================================================================
      SUBROUTINE ZSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
     $                      INFO )
*
*  -- LAPACK computational routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), E( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT,
     $                   NB, NBMIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASYF_RK, ZSYTF2_RK, ZSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
         INFO = -8
      END IF
*
      IF( INFO.EQ.0 ) THEN
*
*        Determine the block size
*
         NB = ILAENV( 1, 'ZSYTRF_RK', UPLO, N, -1, -1, -1 )
         LWKOPT = N*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZSYTRF_RK', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
      NBMIN = 2
      LDWORK = N
      IF( NB.GT.1 .AND. NB.LT.N ) THEN
         IWS = LDWORK*NB
         IF( LWORK.LT.IWS ) THEN
            NB = MAX( LWORK / LDWORK, 1 )
            NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF_RK',
     $                              UPLO, N, -1, -1, -1 ) )
         END IF
      ELSE
         IWS = 1
      END IF
      IF( NB.LT.NBMIN )
     $   NB = N
*
      IF( UPPER ) THEN
*
*        Factorize A as U*D*U**T using the upper triangle of A
*
*        K is the main loop index, decreasing from N to 1 in steps of
*        KB, where KB is the number of columns factorized by ZLASYF_RK;
*        KB is either NB or NB-1, or K for the last block
*
         K = N
   10    CONTINUE
*
*        If K < 1, exit from loop
*
         IF( K.LT.1 )
     $      GO TO 15
*
         IF( K.GT.NB ) THEN
*
*           Factorize columns k-kb+1:k of A and use blocked code to
*           update columns 1:k-kb
*
            CALL ZLASYF_RK( UPLO, K, NB, KB, A, LDA, E,
     $                      IPIV, WORK, LDWORK, IINFO )
         ELSE
*
*           Use unblocked code to factorize columns 1:k of A
*
            CALL ZSYTF2_RK( UPLO, K, A, LDA, E, IPIV, IINFO )
            KB = K
         END IF
*
*        Set INFO on the first occurrence of a zero pivot
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO
*
*        No need to adjust IPIV
*
*
*        Apply permutations to the leading panel 1:k-1
*
*        Read IPIV from the last block factored, i.e.
*        indices  k-kb+1:k and apply row permutations to the
*        last k+1 colunms k+1:N after that block
*        (We can do the simple loop over IPIV with decrement -1,
*        since the ABS value of IPIV( I ) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         IF( K.LT.N ) THEN
            DO I = K, ( K - KB + 1 ), -1
               IP = ABS( IPIV( I ) )
               IF( IP.NE.I ) THEN
                  CALL ZSWAP( N-K, A( I, K+1 ), LDA,
     $                        A( IP, K+1 ), LDA )
               END IF
            END DO
         END IF
*
*        Decrease K and return to the start of the main loop
*
         K = K - KB
         GO TO 10
*
*        This label is the exit from main loop over K decreasing
*        from N to 1 in steps of KB
*
   15    CONTINUE
*
      ELSE
*
*        Factorize A as L*D*L**T using the lower triangle of A
*
*        K is the main loop index, increasing from 1 to N in steps of
*        KB, where KB is the number of columns factorized by ZLASYF_RK;
*        KB is either NB or NB-1, or N-K+1 for the last block
*
         K = 1
   20    CONTINUE
*
*        If K > N, exit from loop
*
         IF( K.GT.N )
     $      GO TO 35
*
         IF( K.LE.N-NB ) THEN
*
*           Factorize columns k:k+kb-1 of A and use blocked code to
*           update columns k+kb:n
*
            CALL ZLASYF_RK( UPLO, N-K+1, NB, KB, A( K, K ), LDA, E( K ),
     $                        IPIV( K ), WORK, LDWORK, IINFO )


         ELSE
*
*           Use unblocked code to factorize columns k:n of A
*
            CALL ZSYTF2_RK( UPLO, N-K+1, A( K, K ), LDA, E( K ),
     $                      IPIV( K ), IINFO )
            KB = N - K + 1
*
         END IF
*
*        Set INFO on the first occurrence of a zero pivot
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO + K - 1
*
*        Adjust IPIV
*
         DO I = K, K + KB - 1
            IF( IPIV( I ).GT.0 ) THEN
               IPIV( I ) = IPIV( I ) + K - 1
            ELSE
               IPIV( I ) = IPIV( I ) - K + 1
            END IF
         END DO
*
*        Apply permutations to the leading panel 1:k-1
*
*        Read IPIV from the last block factored, i.e.
*        indices  k:k+kb-1 and apply row permutations to the
*        first k-1 colunms 1:k-1 before that block
*        (We can do the simple loop over IPIV with increment 1,
*        since the ABS value of IPIV( I ) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         IF( K.GT.1 ) THEN
            DO I = K, ( K + KB - 1 ), 1
               IP = ABS( IPIV( I ) )
               IF( IP.NE.I ) THEN
                  CALL ZSWAP( K-1, A( I, 1 ), LDA,
     $                        A( IP, 1 ), LDA )
               END IF
            END DO
         END IF
*
*        Increase K and return to the start of the main loop
*
         K = K + KB
         GO TO 20
*
*        This label is the exit from main loop over K increasing
*        from 1 to N in steps of KB
*
   35    CONTINUE
*
*     End Lower
*
      END IF
*
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of ZSYTRF_RK
*
      END