aboutsummaryrefslogtreecommitdiff
path: root/TESTING/EIG/cchkbb.f
blob: 158b470eccd72b032349ef349c033a8f4945fda0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
*> \brief \b CCHKBB
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
*                          NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
*                          BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
*                          LWORK, RWORK, RESULT, INFO )
* 
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
*      $                   NRHS, NSIZES, NTYPES, NWDTHS
*       REAL               THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
*       REAL               BD( * ), BE( * ), RESULT( * ), RWORK( * )
*       COMPLEX            A( LDA, * ), AB( LDAB, * ), C( LDC, * ),
*      $                   CC( LDC, * ), P( LDP, * ), Q( LDQ, * ),
*      $                   WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CCHKBB tests the reduction of a general complex rectangular band
*> matrix to real bidiagonal form.
*>
*> CGBBRD factors a general band matrix A as  Q B P* , where * means
*> conjugate transpose, B is upper bidiagonal, and Q and P are unitary;
*> CGBBRD can also overwrite a given matrix C with Q* C .
*>
*> For each pair of matrix dimensions (M,N) and each selected matrix
*> type, an M by N matrix A and an M by NRHS matrix C are generated.
*> The problem dimensions are as follows
*>    A:          M x N
*>    Q:          M x M
*>    P:          N x N
*>    B:          min(M,N) x min(M,N)
*>    C:          M x NRHS
*>
*> For each generated matrix, 4 tests are performed:
*>
*> (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
*>
*> (2)   | I - Q' Q | / ( M ulp )
*>
*> (3)   | I - PT PT' | / ( N ulp )
*>
*> (4)   | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C.
*>
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> The possible matrix types are
*>
*> (1)  The zero matrix.
*> (2)  The identity matrix.
*>
*> (3)  A diagonal matrix with evenly spaced entries
*>      1, ..., ULP  and random signs.
*>      (ULP = (first number larger than 1) - 1 )
*> (4)  A diagonal matrix with geometrically spaced entries
*>      1, ..., ULP  and random signs.
*> (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*>      and random signs.
*>
*> (6)  Same as (3), but multiplied by SQRT( overflow threshold )
*> (7)  Same as (3), but multiplied by SQRT( underflow threshold )
*>
*> (8)  A matrix of the form  U D V, where U and V are orthogonal and
*>      D has evenly spaced entries 1, ..., ULP with random signs
*>      on the diagonal.
*>
*> (9)  A matrix of the form  U D V, where U and V are orthogonal and
*>      D has geometrically spaced entries 1, ..., ULP with random
*>      signs on the diagonal.
*>
*> (10) A matrix of the form  U D V, where U and V are orthogonal and
*>      D has "clustered" entries 1, ULP,..., ULP with random
*>      signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Rectangular matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NSIZES
*> \verbatim
*>          NSIZES is INTEGER
*>          The number of values of M and N contained in the vectors
*>          MVAL and NVAL.  The matrix sizes are used in pairs (M,N).
*>          If NSIZES is zero, CCHKBB does nothing.  NSIZES must be at
*>          least zero.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*>          MVAL is INTEGER array, dimension (NSIZES)
*>          The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*>          NVAL is INTEGER array, dimension (NSIZES)
*>          The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NWDTHS
*> \verbatim
*>          NWDTHS is INTEGER
*>          The number of bandwidths to use.  If it is zero,
*>          CCHKBB does nothing.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] KK
*> \verbatim
*>          KK is INTEGER array, dimension (NWDTHS)
*>          An array containing the bandwidths to be used for the band
*>          matrices.  The values must be at least zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*>          NTYPES is INTEGER
*>          The number of elements in DOTYPE.   If it is zero, CCHKBB
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
*>          defined, which is to use whatever matrix is in A.  This
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*>          DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
*>          matrix of that size and of type j will be generated.
*>          If NTYPES is smaller than the maximum number of types
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
*>          MAXTYP will not be generated.  If NTYPES is larger
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*>          will be ignored.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of columns in the "right-hand side" matrix C.
*>          If NRHS = 0, then the operations on the right-hand side will
*>          not be tested. NRHS must be at least 0.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry ISEED specifies the seed of the random number
*>          generator. The array elements should be between 0 and 4095;
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
*>          be odd.  The random number generator uses a linear
*>          congruential sequence limited to small integers, and so
*>          should produce machine independent random numbers. The
*>          values of ISEED are changed on exit, and can be used in the
*>          next call to CCHKBB to continue the same random number
*>          sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is REAL
*>          A test will count as "failed" if the "error", computed as
*>          described above, exceeds THRESH.  Note that the error
*>          is scaled to be O(1), so THRESH should be a reasonably
*>          small multiple of 1, e.g., 10 or 100.  In particular,
*>          it should not depend on the precision (single vs. double)
*>          or the size of the matrix.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*>          NOUNIT is INTEGER
*>          The FORTRAN unit number for printing out error messages
*>          (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension
*>                            (LDA, max(NN))
*>          Used to hold the matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at least 1
*>          and at least max( NN ).
*> \endverbatim
*>
*> \param[out] AB
*> \verbatim
*>          AB is REAL array, dimension (LDAB, max(NN))
*>          Used to hold A in band storage format.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of AB.  It must be at least 2 (not 1!)
*>          and at least max( KK )+1.
*> \endverbatim
*>
*> \param[out] BD
*> \verbatim
*>          BD is REAL array, dimension (max(NN))
*>          Used to hold the diagonal of the bidiagonal matrix computed
*>          by CGBBRD.
*> \endverbatim
*>
*> \param[out] BE
*> \verbatim
*>          BE is REAL array, dimension (max(NN))
*>          Used to hold the off-diagonal of the bidiagonal matrix
*>          computed by CGBBRD.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX array, dimension (LDQ, max(NN))
*>          Used to hold the unitary matrix Q computed by CGBBRD.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*>          LDQ is INTEGER
*>          The leading dimension of Q.  It must be at least 1
*>          and at least max( NN ).
*> \endverbatim
*>
*> \param[out] P
*> \verbatim
*>          P is COMPLEX array, dimension (LDP, max(NN))
*>          Used to hold the unitary matrix P computed by CGBBRD.
*> \endverbatim
*>
*> \param[in] LDP
*> \verbatim
*>          LDP is INTEGER
*>          The leading dimension of P.  It must be at least 1
*>          and at least max( NN ).
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is COMPLEX array, dimension (LDC, max(NN))
*>          Used to hold the matrix C updated by CGBBRD.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of U.  It must be at least 1
*>          and at least max( NN ).
*> \endverbatim
*>
*> \param[out] CC
*> \verbatim
*>          CC is COMPLEX array, dimension (LDC, max(NN))
*>          Used to hold a copy of the matrix C.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The number of entries in WORK.  This must be at least
*>          max( LDA+1, max(NN)+1 )*max(NN).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (4)
*>          The values computed by the tests described above.
*>          The values are currently limited to 1/ulp, to avoid
*>          overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          If 0, then everything ran OK.
*>
*>-----------------------------------------------------------------------
*>
*>       Some Local Variables and Parameters:
*>       ---- ----- --------- --- ----------
*>       ZERO, ONE       Real 0 and 1.
*>       MAXTYP          The number of types defined.
*>       NTEST           The number of tests performed, or which can
*>                       be performed so far, for the current matrix.
*>       NTESTT          The total number of tests performed so far.
*>       NMAX            Largest value in NN.
*>       NMATS           The number of matrices generated so far.
*>       NERRS           The number of tests which have exceeded THRESH
*>                       so far.
*>       COND, IMODE     Values to be passed to the matrix generators.
*>       ANORM           Norm of A; passed to matrix generators.
*>
*>       OVFL, UNFL      Overflow and underflow thresholds.
*>       ULP, ULPINV     Finest relative precision and its inverse.
*>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
*>               The following four arrays decode JTYPE:
*>       KTYPE(j)        The general type (1-10) for type "j".
*>       KMODE(j)        The MODE value to be passed to the matrix
*>                       generator for type "j".
*>       KMAGN(j)        The order of magnitude ( O(1),
*>                       O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_eig
*
*  =====================================================================
      SUBROUTINE CCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
     $                   NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
     $                   BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
     $                   LWORK, RWORK, RESULT, INFO )
*
*  -- LAPACK test routine (input) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
     $                   NRHS, NSIZES, NTYPES, NWDTHS
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
      REAL               BD( * ), BE( * ), RESULT( * ), RWORK( * )
      COMPLEX            A( LDA, * ), AB( LDAB, * ), C( LDC, * ),
     $                   CC( LDC, * ), P( LDP, * ), Q( LDQ, * ),
     $                   WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      INTEGER            MAXTYP
      PARAMETER          ( MAXTYP = 15 )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADMM, BADNN, BADNNB
      INTEGER            I, IINFO, IMODE, ITYPE, J, JCOL, JR, JSIZE,
     $                   JTYPE, JWIDTH, K, KL, KMAX, KU, M, MMAX, MNMAX,
     $                   MNMIN, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
     $                   NTESTT
      REAL               AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL, ULP,
     $                   ULPINV, UNFL
*     ..
*     .. Local Arrays ..
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
     $                   KMODE( MAXTYP ), KTYPE( MAXTYP )
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CBDT01, CBDT02, CGBBRD, CLACPY, CLASET, CLATMR,
     $                   CLATMS, CUNT01, SLAHD2, SLASUM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, REAL, SQRT
*     ..
*     .. Data statements ..
      DATA               KTYPE / 1, 2, 5*4, 5*6, 3*9 /
      DATA               KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3 /
      DATA               KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
     $                   0, 0 /
*     ..
*     .. Executable Statements ..
*
*     Check for errors
*
      NTESTT = 0
      INFO = 0
*
*     Important constants
*
      BADMM = .FALSE.
      BADNN = .FALSE.
      MMAX = 1
      NMAX = 1
      MNMAX = 1
      DO 10 J = 1, NSIZES
         MMAX = MAX( MMAX, MVAL( J ) )
         IF( MVAL( J ).LT.0 )
     $      BADMM = .TRUE.
         NMAX = MAX( NMAX, NVAL( J ) )
         IF( NVAL( J ).LT.0 )
     $      BADNN = .TRUE.
         MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
   10 CONTINUE
*
      BADNNB = .FALSE.
      KMAX = 0
      DO 20 J = 1, NWDTHS
         KMAX = MAX( KMAX, KK( J ) )
         IF( KK( J ).LT.0 )
     $      BADNNB = .TRUE.
   20 CONTINUE
*
*     Check for errors
*
      IF( NSIZES.LT.0 ) THEN
         INFO = -1
      ELSE IF( BADMM ) THEN
         INFO = -2
      ELSE IF( BADNN ) THEN
         INFO = -3
      ELSE IF( NWDTHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( BADNNB ) THEN
         INFO = -5
      ELSE IF( NTYPES.LT.0 ) THEN
         INFO = -6
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -8
      ELSE IF( LDA.LT.NMAX ) THEN
         INFO = -13
      ELSE IF( LDAB.LT.2*KMAX+1 ) THEN
         INFO = -15
      ELSE IF( LDQ.LT.NMAX ) THEN
         INFO = -19
      ELSE IF( LDP.LT.NMAX ) THEN
         INFO = -21
      ELSE IF( LDC.LT.NMAX ) THEN
         INFO = -23
      ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
         INFO = -26
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CCHKBB', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
     $   RETURN
*
*     More Important constants
*
      UNFL = SLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      ULPINV = ONE / ULP
      RTUNFL = SQRT( UNFL )
      RTOVFL = SQRT( OVFL )
*
*     Loop over sizes, widths, types
*
      NERRS = 0
      NMATS = 0
*
      DO 160 JSIZE = 1, NSIZES
         M = MVAL( JSIZE )
         N = NVAL( JSIZE )
         MNMIN = MIN( M, N )
         AMNINV = ONE / REAL( MAX( 1, M, N ) )
*
         DO 150 JWIDTH = 1, NWDTHS
            K = KK( JWIDTH )
            IF( K.GE.M .AND. K.GE.N )
     $         GO TO 150
            KL = MAX( 0, MIN( M-1, K ) )
            KU = MAX( 0, MIN( N-1, K ) )
*
            IF( NSIZES.NE.1 ) THEN
               MTYPES = MIN( MAXTYP, NTYPES )
            ELSE
               MTYPES = MIN( MAXTYP+1, NTYPES )
            END IF
*
            DO 140 JTYPE = 1, MTYPES
               IF( .NOT.DOTYPE( JTYPE ) )
     $            GO TO 140
               NMATS = NMATS + 1
               NTEST = 0
*
               DO 30 J = 1, 4
                  IOLDSD( J ) = ISEED( J )
   30          CONTINUE
*
*              Compute "A".
*
*              Control parameters:
*
*                  KMAGN  KMODE        KTYPE
*              =1  O(1)   clustered 1  zero
*              =2  large  clustered 2  identity
*              =3  small  exponential  (none)
*              =4         arithmetic   diagonal, (w/ singular values)
*              =5         random log   (none)
*              =6         random       nonhermitian, w/ singular values
*              =7                      (none)
*              =8                      (none)
*              =9                      random nonhermitian
*
               IF( MTYPES.GT.MAXTYP )
     $            GO TO 90
*
               ITYPE = KTYPE( JTYPE )
               IMODE = KMODE( JTYPE )
*
*              Compute norm
*
               GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
   40          CONTINUE
               ANORM = ONE
               GO TO 70
*
   50          CONTINUE
               ANORM = ( RTOVFL*ULP )*AMNINV
               GO TO 70
*
   60          CONTINUE
               ANORM = RTUNFL*MAX( M, N )*ULPINV
               GO TO 70
*
   70          CONTINUE
*
               CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
               CALL CLASET( 'Full', LDAB, N, CZERO, CZERO, AB, LDAB )
               IINFO = 0
               COND = ULPINV
*
*              Special Matrices -- Identity & Jordan block
*
*                 Zero
*
               IF( ITYPE.EQ.1 ) THEN
                  IINFO = 0
*
               ELSE IF( ITYPE.EQ.2 ) THEN
*
*                 Identity
*
                  DO 80 JCOL = 1, N
                     A( JCOL, JCOL ) = ANORM
   80             CONTINUE
*
               ELSE IF( ITYPE.EQ.4 ) THEN
*
*                 Diagonal Matrix, singular values specified
*
                  CALL CLATMS( M, N, 'S', ISEED, 'N', RWORK, IMODE,
     $                         COND, ANORM, 0, 0, 'N', A, LDA, WORK,
     $                         IINFO )
*
               ELSE IF( ITYPE.EQ.6 ) THEN
*
*                 Nonhermitian, singular values specified
*
                  CALL CLATMS( M, N, 'S', ISEED, 'N', RWORK, IMODE,
     $                         COND, ANORM, KL, KU, 'N', A, LDA, WORK,
     $                         IINFO )
*
               ELSE IF( ITYPE.EQ.9 ) THEN
*
*                 Nonhermitian, random entries
*
                  CALL CLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE,
     $                         CONE, 'T', 'N', WORK( N+1 ), 1, ONE,
     $                         WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, KL,
     $                         KU, ZERO, ANORM, 'N', A, LDA, IDUMMA,
     $                         IINFO )
*
               ELSE
*
                  IINFO = 1
               END IF
*
*              Generate Right-Hand Side
*
               CALL CLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE,
     $                      CONE, 'T', 'N', WORK( M+1 ), 1, ONE,
     $                      WORK( 2*M+1 ), 1, ONE, 'N', IDUMMA, M, NRHS,
     $                      ZERO, ONE, 'NO', C, LDC, IDUMMA, IINFO )
*
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  RETURN
               END IF
*
   90          CONTINUE
*
*              Copy A to band storage.
*
               DO 110 J = 1, N
                  DO 100 I = MAX( 1, J-KU ), MIN( M, J+KL )
                     AB( KU+1+I-J, J ) = A( I, J )
  100             CONTINUE
  110          CONTINUE
*
*              Copy C
*
               CALL CLACPY( 'Full', M, NRHS, C, LDC, CC, LDC )
*
*              Call CGBBRD to compute B, Q and P, and to update C.
*
               CALL CGBBRD( 'B', M, N, NRHS, KL, KU, AB, LDAB, BD, BE,
     $                      Q, LDQ, P, LDP, CC, LDC, WORK, RWORK,
     $                      IINFO )
*
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'CGBBRD', IINFO, N, JTYPE,
     $               IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 1 ) = ULPINV
                     GO TO 120
                  END IF
               END IF
*
*              Test 1:  Check the decomposition A := Q * B * P'
*                   2:  Check the orthogonality of Q
*                   3:  Check the orthogonality of P
*                   4:  Check the computation of Q' * C
*
               CALL CBDT01( M, N, -1, A, LDA, Q, LDQ, BD, BE, P, LDP,
     $                      WORK, RWORK, RESULT( 1 ) )
               CALL CUNT01( 'Columns', M, M, Q, LDQ, WORK, LWORK, RWORK,
     $                      RESULT( 2 ) )
               CALL CUNT01( 'Rows', N, N, P, LDP, WORK, LWORK, RWORK,
     $                      RESULT( 3 ) )
               CALL CBDT02( M, NRHS, C, LDC, CC, LDC, Q, LDQ, WORK,
     $                      RWORK, RESULT( 4 ) )
*
*              End of Loop -- Check for RESULT(j) > THRESH
*
               NTEST = 4
  120          CONTINUE
               NTESTT = NTESTT + NTEST
*
*              Print out tests which fail.
*
               DO 130 JR = 1, NTEST
                  IF( RESULT( JR ).GE.THRESH ) THEN
                     IF( NERRS.EQ.0 )
     $                  CALL SLAHD2( NOUNIT, 'CBB' )
                     NERRS = NERRS + 1
                     WRITE( NOUNIT, FMT = 9998 )M, N, K, IOLDSD, JTYPE,
     $                  JR, RESULT( JR )
                  END IF
  130          CONTINUE
*
  140       CONTINUE
  150    CONTINUE
  160 CONTINUE
*
*     Summary
*
      CALL SLASUM( 'CBB', NOUNIT, NERRS, NTESTT )
      RETURN
*
 9999 FORMAT( ' CCHKBB: ', A, ' returned INFO=', I5, '.', / 9X, 'M=',
     $      I5, ' N=', I5, ' K=', I5, ', JTYPE=', I5, ', ISEED=(',
     $      3( I5, ',' ), I5, ')' )
 9998 FORMAT( ' M =', I4, ' N=', I4, ', K=', I3, ', seed=',
     $      4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
*
*     End of CCHKBB
*
      END