aboutsummaryrefslogtreecommitdiff
path: root/TESTING/EIG/cchkst2stg.f
blob: df610c20792a92d6b8b107cc0b60d3e3b50fb800 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
*> \brief \b CCHKST2STG
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
*                          NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
*                          WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
*                          LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
*                          INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
*      $                   NSIZES, NTYPES
*       REAL               THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
*       REAL               D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
*      $                   RESULT( * ), RWORK( * ), SD( * ), SE( * ),
*      $                   WA1( * ), WA2( * ), WA3( * ), WR( * )
*       COMPLEX            A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
*      $                   V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CCHKST2STG  checks the Hermitian eigenvalue problem routines
*> using the 2-stage reduction techniques. Since the generation
*> of Q or the vectors is not available in this release, we only 
*> compare the eigenvalue resulting when using the 2-stage to the 
*> one considered as reference using the standard 1-stage reduction
*> CHETRD. For that, we call the standard CHETRD and compute D1 using 
*> DSTEQR, then we call the 2-stage CHETRD_2STAGE with Upper and Lower
*> and we compute D2 and D3 using DSTEQR and then we replaced tests
*> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that 
*> the 1-stage results are OK and can be trusted.
*> This testing routine will converge to the CCHKST in the next 
*> release when vectors and generation of Q will be implemented.
*>
*>    CHETRD factors A as  U S U* , where * means conjugate transpose,
*>    S is real symmetric tridiagonal, and U is unitary.
*>    CHETRD can use either just the lower or just the upper triangle
*>    of A; CCHKST2STG checks both cases.
*>    U is represented as a product of Householder
*>    transformations, whose vectors are stored in the first
*>    n-1 columns of V, and whose scale factors are in TAU.
*>
*>    CHPTRD does the same as CHETRD, except that A and V are stored
*>    in "packed" format.
*>
*>    CUNGTR constructs the matrix U from the contents of V and TAU.
*>
*>    CUPGTR constructs the matrix U from the contents of VP and TAU.
*>
*>    CSTEQR factors S as  Z D1 Z* , where Z is the unitary
*>    matrix of eigenvectors and D1 is a diagonal matrix with
*>    the eigenvalues on the diagonal.  D2 is the matrix of
*>    eigenvalues computed when Z is not computed.
*>
*>    SSTERF computes D3, the matrix of eigenvalues, by the
*>    PWK method, which does not yield eigenvectors.
*>
*>    CPTEQR factors S as  Z4 D4 Z4* , for a
*>    Hermitian positive definite tridiagonal matrix.
*>    D5 is the matrix of eigenvalues computed when Z is not
*>    computed.
*>
*>    SSTEBZ computes selected eigenvalues.  WA1, WA2, and
*>    WA3 will denote eigenvalues computed to high
*>    absolute accuracy, with different range options.
*>    WR will denote eigenvalues computed to high relative
*>    accuracy.
*>
*>    CSTEIN computes Y, the eigenvectors of S, given the
*>    eigenvalues.
*>
*>    CSTEDC factors S as Z D1 Z* , where Z is the unitary
*>    matrix of eigenvectors and D1 is a diagonal matrix with
*>    the eigenvalues on the diagonal ('I' option). It may also
*>    update an input unitary matrix, usually the output
*>    from CHETRD/CUNGTR or CHPTRD/CUPGTR ('V' option). It may
*>    also just compute eigenvalues ('N' option).
*>
*>    CSTEMR factors S as Z D1 Z* , where Z is the unitary
*>    matrix of eigenvectors and D1 is a diagonal matrix with
*>    the eigenvalues on the diagonal ('I' option).  CSTEMR
*>    uses the Relatively Robust Representation whenever possible.
*>
*> When CCHKST2STG is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified.  For each size ("n")
*> and each type of matrix, one matrix will be generated and used
*> to test the Hermitian eigenroutines.  For each matrix, a number
*> of tests will be performed:
*>
*> (1)     | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='U', ... )
*>
*> (2)     | I - UV* | / ( n ulp )        CUNGTR( UPLO='U', ... )
*>
*> (3)     | A - V S V* | / ( |A| n ulp ) CHETRD( UPLO='L', ... )
*>         replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the 
*>         eigenvalue matrix computed using S and D2 is the 
*>         eigenvalue matrix computed using S_2stage the output of
*>         CHETRD_2STAGE("N", "U",....). D1 and D2 are computed 
*>         via DSTEQR('N',...) 
*>
*> (4)     | I - UV* | / ( n ulp )        CUNGTR( UPLO='L', ... )
*>         replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the 
*>         eigenvalue matrix computed using S and D3 is the 
*>         eigenvalue matrix computed using S_2stage the output of
*>         CHETRD_2STAGE("N", "L",....). D1 and D3 are computed 
*>         via DSTEQR('N',...)  
*>
*> (5-8)   Same as 1-4, but for CHPTRD and CUPGTR.
*>
*> (9)     | S - Z D Z* | / ( |S| n ulp ) CSTEQR('V',...)
*>
*> (10)    | I - ZZ* | / ( n ulp )        CSTEQR('V',...)
*>
*> (11)    | D1 - D2 | / ( |D1| ulp )        CSTEQR('N',...)
*>
*> (12)    | D1 - D3 | / ( |D1| ulp )        SSTERF
*>
*> (13)    0 if the true eigenvalues (computed by sturm count)
*>         of S are within THRESH of
*>         those in D1.  2*THRESH if they are not.  (Tested using
*>         SSTECH)
*>
*> For S positive definite,
*>
*> (14)    | S - Z4 D4 Z4* | / ( |S| n ulp ) CPTEQR('V',...)
*>
*> (15)    | I - Z4 Z4* | / ( n ulp )        CPTEQR('V',...)
*>
*> (16)    | D4 - D5 | / ( 100 |D4| ulp )       CPTEQR('N',...)
*>
*> When S is also diagonally dominant by the factor gamma < 1,
*>
*> (17)    max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
*>          i
*>         omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
*>                                              SSTEBZ( 'A', 'E', ...)
*>
*> (18)    | WA1 - D3 | / ( |D3| ulp )          SSTEBZ( 'A', 'E', ...)
*>
*> (19)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>                                              SSTEBZ( 'I', 'E', ...)
*>
*> (20)    | S - Y WA1 Y* | / ( |S| n ulp )  SSTEBZ, CSTEIN
*>
*> (21)    | I - Y Y* | / ( n ulp )          SSTEBZ, CSTEIN
*>
*> (22)    | S - Z D Z* | / ( |S| n ulp )    CSTEDC('I')
*>
*> (23)    | I - ZZ* | / ( n ulp )           CSTEDC('I')
*>
*> (24)    | S - Z D Z* | / ( |S| n ulp )    CSTEDC('V')
*>
*> (25)    | I - ZZ* | / ( n ulp )           CSTEDC('V')
*>
*> (26)    | D1 - D2 | / ( |D1| ulp )           CSTEDC('V') and
*>                                              CSTEDC('N')
*>
*> Test 27 is disabled at the moment because CSTEMR does not
*> guarantee high relatvie accuracy.
*>
*> (27)    max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
*>          i
*>         omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
*>                                              CSTEMR('V', 'A')
*>
*> (28)    max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
*>          i
*>         omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
*>                                              CSTEMR('V', 'I')
*>
*> Tests 29 through 34 are disable at present because CSTEMR
*> does not handle partial specturm requests.
*>
*> (29)    | S - Z D Z* | / ( |S| n ulp )    CSTEMR('V', 'I')
*>
*> (30)    | I - ZZ* | / ( n ulp )           CSTEMR('V', 'I')
*>
*> (31)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>         CSTEMR('N', 'I') vs. CSTEMR('V', 'I')
*>
*> (32)    | S - Z D Z* | / ( |S| n ulp )    CSTEMR('V', 'V')
*>
*> (33)    | I - ZZ* | / ( n ulp )           CSTEMR('V', 'V')
*>
*> (34)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>         CSTEMR('N', 'V') vs. CSTEMR('V', 'V')
*>
*> (35)    | S - Z D Z* | / ( |S| n ulp )    CSTEMR('V', 'A')
*>
*> (36)    | I - ZZ* | / ( n ulp )           CSTEMR('V', 'A')
*>
*> (37)    ( max { min | WA2(i)-WA3(j) | } +
*>            i     j
*>           max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
*>            i     j
*>         CSTEMR('N', 'A') vs. CSTEMR('V', 'A')
*>
*> The "sizes" are specified by an array NN(1:NSIZES); the value of
*> each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1)  The zero matrix.
*> (2)  The identity matrix.
*>
*> (3)  A diagonal matrix with evenly spaced entries
*>      1, ..., ULP  and random signs.
*>      (ULP = (first number larger than 1) - 1 )
*> (4)  A diagonal matrix with geometrically spaced entries
*>      1, ..., ULP  and random signs.
*> (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*>      and random signs.
*>
*> (6)  Same as (4), but multiplied by SQRT( overflow threshold )
*> (7)  Same as (4), but multiplied by SQRT( underflow threshold )
*>
*> (8)  A matrix of the form  U* D U, where U is unitary and
*>      D has evenly spaced entries 1, ..., ULP with random signs
*>      on the diagonal.
*>
*> (9)  A matrix of the form  U* D U, where U is unitary and
*>      D has geometrically spaced entries 1, ..., ULP with random
*>      signs on the diagonal.
*>
*> (10) A matrix of the form  U* D U, where U is unitary and
*>      D has "clustered" entries 1, ULP,..., ULP with random
*>      signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Hermitian matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*> (16) Same as (8), but diagonal elements are all positive.
*> (17) Same as (9), but diagonal elements are all positive.
*> (18) Same as (10), but diagonal elements are all positive.
*> (19) Same as (16), but multiplied by SQRT( overflow threshold )
*> (20) Same as (16), but multiplied by SQRT( underflow threshold )
*> (21) A diagonally dominant tridiagonal matrix with geometrically
*>      spaced diagonal entries 1, ..., ULP.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NSIZES
*> \verbatim
*>          NSIZES is INTEGER
*>          The number of sizes of matrices to use.  If it is zero,
*>          CCHKST2STG does nothing.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER array, dimension (NSIZES)
*>          An array containing the sizes to be used for the matrices.
*>          Zero values will be skipped.  The values must be at least
*>          zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*>          NTYPES is INTEGER
*>          The number of elements in DOTYPE.   If it is zero, CCHKST2STG
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
*>          defined, which is to use whatever matrix is in A.  This
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*>          DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
*>          matrix of that size and of type j will be generated.
*>          If NTYPES is smaller than the maximum number of types
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
*>          MAXTYP will not be generated.  If NTYPES is larger
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*>          will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry ISEED specifies the seed of the random number
*>          generator. The array elements should be between 0 and 4095;
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
*>          be odd.  The random number generator uses a linear
*>          congruential sequence limited to small integers, and so
*>          should produce machine independent random numbers. The
*>          values of ISEED are changed on exit, and can be used in the
*>          next call to CCHKST2STG to continue the same random number
*>          sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is REAL
*>          A test will count as "failed" if the "error", computed as
*>          described above, exceeds THRESH.  Note that the error
*>          is scaled to be O(1), so THRESH should be a reasonably
*>          small multiple of 1, e.g., 10 or 100.  In particular,
*>          it should not depend on the precision (single vs. double)
*>          or the size of the matrix.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*>          NOUNIT is INTEGER
*>          The FORTRAN unit number for printing out error messages
*>          (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array of
*>                                  dimension ( LDA , max(NN) )
*>          Used to hold the matrix whose eigenvalues are to be
*>          computed.  On exit, A contains the last matrix actually
*>          used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A.  It must be at
*>          least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[out] AP
*> \verbatim
*>          AP is COMPLEX array of
*>                      dimension( max(NN)*max(NN+1)/2 )
*>          The matrix A stored in packed format.
*> \endverbatim
*>
*> \param[out] SD
*> \verbatim
*>          SD is REAL array of
*>                             dimension( max(NN) )
*>          The diagonal of the tridiagonal matrix computed by CHETRD.
*>          On exit, SD and SE contain the tridiagonal form of the
*>          matrix in A.
*> \endverbatim
*>
*> \param[out] SE
*> \verbatim
*>          SE is REAL array of
*>                             dimension( max(NN) )
*>          The off-diagonal of the tridiagonal matrix computed by
*>          CHETRD.  On exit, SD and SE contain the tridiagonal form of
*>          the matrix in A.
*> \endverbatim
*>
*> \param[out] D1
*> \verbatim
*>          D1 is REAL array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by CSTEQR simlutaneously
*>          with Z.  On exit, the eigenvalues in D1 correspond with the
*>          matrix in A.
*> \endverbatim
*>
*> \param[out] D2
*> \verbatim
*>          D2 is REAL array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by CSTEQR if Z is not
*>          computed.  On exit, the eigenvalues in D2 correspond with
*>          the matrix in A.
*> \endverbatim
*>
*> \param[out] D3
*> \verbatim
*>          D3 is REAL array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by SSTERF.  On exit, the
*>          eigenvalues in D3 correspond with the matrix in A.
*> \endverbatim
*>
*> \param[out] D4
*> \verbatim
*>          D4 is REAL array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by CPTEQR(V).
*>          CPTEQR factors S as  Z4 D4 Z4*
*>          On exit, the eigenvalues in D4 correspond with the matrix in A.
*> \endverbatim
*>
*> \param[out] D5
*> \verbatim
*>          D5 is REAL array of
*>                             dimension( max(NN) )
*>          The eigenvalues of A, as computed by CPTEQR(N)
*>          when Z is not computed. On exit, the
*>          eigenvalues in D4 correspond with the matrix in A.
*> \endverbatim
*>
*> \param[out] WA1
*> \verbatim
*>          WA1 is REAL array of
*>                             dimension( max(NN) )
*>          All eigenvalues of A, computed to high
*>          absolute accuracy, with different range options.
*>          as computed by SSTEBZ.
*> \endverbatim
*>
*> \param[out] WA2
*> \verbatim
*>          WA2 is REAL array of
*>                             dimension( max(NN) )
*>          Selected eigenvalues of A, computed to high
*>          absolute accuracy, with different range options.
*>          as computed by SSTEBZ.
*>          Choose random values for IL and IU, and ask for the
*>          IL-th through IU-th eigenvalues.
*> \endverbatim
*>
*> \param[out] WA3
*> \verbatim
*>          WA3 is REAL array of
*>                             dimension( max(NN) )
*>          Selected eigenvalues of A, computed to high
*>          absolute accuracy, with different range options.
*>          as computed by SSTEBZ.
*>          Determine the values VL and VU of the IL-th and IU-th
*>          eigenvalues and ask for all eigenvalues in this range.
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*>          WR is REAL array of
*>                             dimension( max(NN) )
*>          All eigenvalues of A, computed to high
*>          absolute accuracy, with different options.
*>          as computed by SSTEBZ.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*>          U is COMPLEX array of
*>                             dimension( LDU, max(NN) ).
*>          The unitary matrix computed by CHETRD + CUNGTR.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of U, Z, and V.  It must be at least 1
*>          and at least max( NN ).
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*>          V is COMPLEX array of
*>                             dimension( LDU, max(NN) ).
*>          The Housholder vectors computed by CHETRD in reducing A to
*>          tridiagonal form.  The vectors computed with UPLO='U' are
*>          in the upper triangle, and the vectors computed with UPLO='L'
*>          are in the lower triangle.  (As described in CHETRD, the
*>          sub- and superdiagonal are not set to 1, although the
*>          true Householder vector has a 1 in that position.  The
*>          routines that use V, such as CUNGTR, set those entries to
*>          1 before using them, and then restore them later.)
*> \endverbatim
*>
*> \param[out] VP
*> \verbatim
*>          VP is COMPLEX array of
*>                      dimension( max(NN)*max(NN+1)/2 )
*>          The matrix V stored in packed format.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX array of
*>                             dimension( max(NN) )
*>          The Householder factors computed by CHETRD in reducing A
*>          to tridiagonal form.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*>          Z is COMPLEX array of
*>                             dimension( LDU, max(NN) ).
*>          The unitary matrix of eigenvectors computed by CSTEQR,
*>          CPTEQR, and CSTEIN.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array of
*>                      dimension( LWORK )
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The number of entries in WORK.  This must be at least
*>          1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
*>          where Nmax = max( NN(j), 2 ) and lg = log base 2.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array,
*>          Workspace.
*> \endverbatim
*>
*> \param[out] LIWORK
*> \verbatim
*>          LIWORK is INTEGER
*>          The number of entries in IWORK.  This must be at least
*>                  6 + 6*Nmax + 5 * Nmax * lg Nmax
*>          where Nmax = max( NN(j), 2 ) and lg = log base 2.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*>          LRWORK is INTEGER
*>          The number of entries in LRWORK (dimension( ??? )
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (26)
*>          The values computed by the tests described above.
*>          The values are currently limited to 1/ulp, to avoid
*>          overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          If 0, then everything ran OK.
*>           -1: NSIZES < 0
*>           -2: Some NN(j) < 0
*>           -3: NTYPES < 0
*>           -5: THRESH < 0
*>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
*>          -23: LDU < 1 or LDU < NMAX.
*>          -29: LWORK too small.
*>          If  CLATMR, CLATMS, CHETRD, CUNGTR, CSTEQR, SSTERF,
*>              or CUNMC2 returns an error code, the
*>              absolute value of it is returned.
*>
*>-----------------------------------------------------------------------
*>
*>       Some Local Variables and Parameters:
*>       ---- ----- --------- --- ----------
*>       ZERO, ONE       Real 0 and 1.
*>       MAXTYP          The number of types defined.
*>       NTEST           The number of tests performed, or which can
*>                       be performed so far, for the current matrix.
*>       NTESTT          The total number of tests performed so far.
*>       NBLOCK          Blocksize as returned by ENVIR.
*>       NMAX            Largest value in NN.
*>       NMATS           The number of matrices generated so far.
*>       NERRS           The number of tests which have exceeded THRESH
*>                       so far.
*>       COND, IMODE     Values to be passed to the matrix generators.
*>       ANORM           Norm of A; passed to matrix generators.
*>
*>       OVFL, UNFL      Overflow and underflow thresholds.
*>       ULP, ULPINV     Finest relative precision and its inverse.
*>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
*>               The following four arrays decode JTYPE:
*>       KTYPE(j)        The general type (1-10) for type "j".
*>       KMODE(j)        The MODE value to be passed to the matrix
*>                       generator for type "j".
*>       KMAGN(j)        The order of magnitude ( O(1),
*>                       O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex_eig
*
*  =====================================================================
      SUBROUTINE CCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
     $                   NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
     $                   WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
     $                   LWORK, RWORK, LRWORK, IWORK, LIWORK, RESULT,
     $                   INFO )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
     $                   NSIZES, NTYPES
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
      REAL               D1( * ), D2( * ), D3( * ), D4( * ), D5( * ),
     $                   RESULT( * ), RWORK( * ), SD( * ), SE( * ),
     $                   WA1( * ), WA2( * ), WA3( * ), WR( * )
      COMPLEX            A( LDA, * ), AP( * ), TAU( * ), U( LDU, * ),
     $                   V( LDU, * ), VP( * ), WORK( * ), Z( LDU, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TWO, EIGHT, TEN, HUN
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0, TWO = 2.0E0,
     $                   EIGHT = 8.0E0, TEN = 10.0E0, HUN = 100.0E0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
      REAL               HALF
      PARAMETER          ( HALF = ONE / TWO )
      INTEGER            MAXTYP
      PARAMETER          ( MAXTYP = 21 )
      LOGICAL            CRANGE
      PARAMETER          ( CRANGE = .FALSE. )
      LOGICAL            CREL
      PARAMETER          ( CREL = .FALSE. )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADNN, TRYRAC
      INTEGER            I, IINFO, IL, IMODE, INDE, INDRWK, ITEMP,
     $                   ITYPE, IU, J, JC, JR, JSIZE, JTYPE, LGN,
     $                   LIWEDC, LOG2UI, LRWEDC, LWEDC, M, M2, M3,
     $                   MTYPES, N, NAP, NBLOCK, NERRS, NMATS, NMAX,
     $                   NSPLIT, NTEST, NTESTT, LH, LW
      REAL               ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
     $                   RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
     $                   ULPINV, UNFL, VL, VU
*     ..
*     .. Local Arrays ..
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
     $                   KTYPE( MAXTYP )
      REAL               DUMMA( 1 )
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      REAL               SLAMCH, SLARND, SSXT1
      EXTERNAL           ILAENV, SLAMCH, SLARND, SSXT1
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SLABAD, SLASUM, SSTEBZ, SSTECH, SSTERF,
     $                   XERBLA, CCOPY, CHET21, CHETRD, CHPT21, CHPTRD,
     $                   CLACPY, CLASET, CLATMR, CLATMS, CPTEQR, CSTEDC,
     $                   CSTEMR, CSTEIN, CSTEQR, CSTT21, CSTT22, CUNGTR,
     $                   CUPGTR, CHETRD_2STAGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, REAL, CONJG, INT, LOG, MAX, MIN, SQRT
*     ..
*     .. Data statements ..
      DATA               KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
     $                   8, 8, 9, 9, 9, 9, 9, 10 /
      DATA               KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
     $                   2, 3, 1, 1, 1, 2, 3, 1 /
      DATA               KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
     $                   0, 0, 4, 3, 1, 4, 4, 3 /
*     ..
*     .. Executable Statements ..
*
*     Keep ftnchek happy
      IDUMMA( 1 ) = 1
*
*     Check for errors
*
      NTESTT = 0
      INFO = 0
*
*     Important constants
*
      BADNN = .FALSE.
      TRYRAC = .TRUE.
      NMAX = 1
      DO 10 J = 1, NSIZES
         NMAX = MAX( NMAX, NN( J ) )
         IF( NN( J ).LT.0 )
     $      BADNN = .TRUE.
   10 CONTINUE
*
      NBLOCK = ILAENV( 1, 'CHETRD', 'L', NMAX, -1, -1, -1 )
      NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
*
*     Check for errors
*
      IF( NSIZES.LT.0 ) THEN
         INFO = -1
      ELSE IF( BADNN ) THEN
         INFO = -2
      ELSE IF( NTYPES.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.NMAX ) THEN
         INFO = -9
      ELSE IF( LDU.LT.NMAX ) THEN
         INFO = -23
      ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
         INFO = -29
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CCHKST2STG', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
     $   RETURN
*
*     More Important constants
*
      UNFL = SLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL SLABAD( UNFL, OVFL )
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      ULPINV = ONE / ULP
      LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
      RTUNFL = SQRT( UNFL )
      RTOVFL = SQRT( OVFL )
*
*     Loop over sizes, types
*
      DO 20 I = 1, 4
         ISEED2( I ) = ISEED( I )
   20 CONTINUE
      NERRS = 0
      NMATS = 0
*
      DO 310 JSIZE = 1, NSIZES
         N = NN( JSIZE )
         IF( N.GT.0 ) THEN
            LGN = INT( LOG( REAL( N ) ) / LOG( TWO ) )
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            IF( 2**LGN.LT.N )
     $         LGN = LGN + 1
            LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
            LRWEDC = 1 + 3*N + 2*N*LGN + 4*N**2
            LIWEDC = 6 + 6*N + 5*N*LGN
         ELSE
            LWEDC = 8
            LRWEDC = 7
            LIWEDC = 12
         END IF
         NAP = ( N*( N+1 ) ) / 2
         ANINV = ONE / REAL( MAX( 1, N ) )
*
         IF( NSIZES.NE.1 ) THEN
            MTYPES = MIN( MAXTYP, NTYPES )
         ELSE
            MTYPES = MIN( MAXTYP+1, NTYPES )
         END IF
*
         DO 300 JTYPE = 1, MTYPES
            IF( .NOT.DOTYPE( JTYPE ) )
     $         GO TO 300
            NMATS = NMATS + 1
            NTEST = 0
*
            DO 30 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   30       CONTINUE
*
*           Compute "A"
*
*           Control parameters:
*
*               KMAGN  KMODE        KTYPE
*           =1  O(1)   clustered 1  zero
*           =2  large  clustered 2  identity
*           =3  small  exponential  (none)
*           =4         arithmetic   diagonal, (w/ eigenvalues)
*           =5         random log   Hermitian, w/ eigenvalues
*           =6         random       (none)
*           =7                      random diagonal
*           =8                      random Hermitian
*           =9                      positive definite
*           =10                     diagonally dominant tridiagonal
*
            IF( MTYPES.GT.MAXTYP )
     $         GO TO 100
*
            ITYPE = KTYPE( JTYPE )
            IMODE = KMODE( JTYPE )
*
*           Compute norm
*
            GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
   40       CONTINUE
            ANORM = ONE
            GO TO 70
*
   50       CONTINUE
            ANORM = ( RTOVFL*ULP )*ANINV
            GO TO 70
*
   60       CONTINUE
            ANORM = RTUNFL*N*ULPINV
            GO TO 70
*
   70       CONTINUE
*
            CALL CLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
            IINFO = 0
            IF( JTYPE.LE.15 ) THEN
               COND = ULPINV
            ELSE
               COND = ULPINV*ANINV / TEN
            END IF
*
*           Special Matrices -- Identity & Jordan block
*
*              Zero
*
            IF( ITYPE.EQ.1 ) THEN
               IINFO = 0
*
            ELSE IF( ITYPE.EQ.2 ) THEN
*
*              Identity
*
               DO 80 JC = 1, N
                  A( JC, JC ) = ANORM
   80          CONTINUE
*
            ELSE IF( ITYPE.EQ.4 ) THEN
*
*              Diagonal Matrix, [Eigen]values Specified
*
               CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
     $                      ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
*
*
            ELSE IF( ITYPE.EQ.5 ) THEN
*
*              Hermitian, eigenvalues specified
*
               CALL CLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
     $                      ANORM, N, N, 'N', A, LDA, WORK, IINFO )
*
            ELSE IF( ITYPE.EQ.7 ) THEN
*
*              Diagonal, random eigenvalues
*
               CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.8 ) THEN
*
*              Hermitian, random eigenvalues
*
               CALL CLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.9 ) THEN
*
*              Positive definite, eigenvalues specified.
*
               CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
     $                      ANORM, N, N, 'N', A, LDA, WORK, IINFO )
*
            ELSE IF( ITYPE.EQ.10 ) THEN
*
*              Positive definite tridiagonal, eigenvalues specified.
*
               CALL CLATMS( N, N, 'S', ISEED, 'P', RWORK, IMODE, COND,
     $                      ANORM, 1, 1, 'N', A, LDA, WORK, IINFO )
               DO 90 I = 2, N
                  TEMP1 = ABS( A( I-1, I ) )
                  TEMP2 = SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
                  IF( TEMP1.GT.HALF*TEMP2 ) THEN
                     A( I-1, I ) = A( I-1, I )*
     $                             ( HALF*TEMP2 / ( UNFL+TEMP1 ) )
                     A( I, I-1 ) = CONJG( A( I-1, I ) )
                  END IF
   90          CONTINUE
*
            ELSE
*
               IINFO = 1
            END IF
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               RETURN
            END IF
*
  100       CONTINUE
*
*           Call CHETRD and CUNGTR to compute S and U from
*           upper triangle.
*
            CALL CLACPY( 'U', N, N, A, LDA, V, LDU )
*
            NTEST = 1
            CALL CHETRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
     $                   IINFO )
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CHETRD(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 1 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            CALL CLACPY( 'U', N, N, V, LDU, U, LDU )
*
            NTEST = 2
            CALL CUNGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CUNGTR(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 2 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do tests 1 and 2
*
            CALL CHET21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
     $                   LDU, TAU, WORK, RWORK, RESULT( 1 ) )
            CALL CHET21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
     $                   LDU, TAU, WORK, RWORK, RESULT( 2 ) )
*
*           Compute D1 the eigenvalues resulting from the tridiagonal
*           form using the standard 1-stage algorithm and use it as a
*           reference to compare with the 2-stage technique
*
*           Compute D1 from the 1-stage and used as reference for the
*           2-stage
*
            CALL SCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
            CALL CSTEQR( 'N', N, D1, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 3 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           2-STAGE TRD Upper case is used to compute D2.
*           Note to set SD and SE to zero to be sure not reusing 
*           the one from above. Compare it with D1 computed 
*           using the 1-stage.
*
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
            CALL CLACPY( 'U', N, N, A, LDA, V, LDU )
            LH = MAX(1, 4*N)
            LW = LWORK - LH
            CALL CHETRD_2STAGE( 'N', "U", N, V, LDU, SD, SE, TAU, 
     $                   WORK, LH, WORK( LH+1 ), LW, IINFO )
*
*           Compute D2 from the 2-stage Upper case
*
            CALL SCOPY( N, SD, 1, D2, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 3
            CALL CSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 3 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           2-STAGE TRD Lower case is used to compute D3.
*           Note to set SD and SE to zero to be sure not reusing 
*           the one from above. Compare it with D1 computed 
*           using the 1-stage. 
*
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, 1 )
            CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, 1 )
            CALL CLACPY( 'L', N, N, A, LDA, V, LDU )
            CALL CHETRD_2STAGE( 'N', "L", N, V, LDU, SD, SE, TAU, 
     $                   WORK, LH, WORK( LH+1 ), LW, IINFO )
*
*           Compute D3 from the 2-stage Upper case
*
            CALL SCOPY( N, SD, 1, D3, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 4
            CALL CSTEQR( 'N', N, D3, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 4 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*
*           Do Tests 3 and 4 which are similar to 11 and 12 but with the
*           D1 computed using the standard 1-stage reduction as reference
*
            NTEST = 4
            TEMP1 = ZERO
            TEMP2 = ZERO
            TEMP3 = ZERO
            TEMP4 = ZERO
*
            DO 151 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
               TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
               TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  151       CONTINUE
*
            RESULT( 3 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
            RESULT( 4 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
*
*           Store the upper triangle of A in AP
*
            I = 0
            DO 120 JC = 1, N
               DO 110 JR = 1, JC
                  I = I + 1
                  AP( I ) = A( JR, JC )
  110          CONTINUE
  120       CONTINUE
*
*           Call CHPTRD and CUPGTR to compute S and U from AP
*
            CALL CCOPY( NAP, AP, 1, VP, 1 )
*
            NTEST = 5
            CALL CHPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CHPTRD(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 5 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            NTEST = 6
            CALL CUPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CUPGTR(U)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 6 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do tests 5 and 6
*
            CALL CHPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 5 ) )
            CALL CHPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 6 ) )
*
*           Store the lower triangle of A in AP
*
            I = 0
            DO 140 JC = 1, N
               DO 130 JR = JC, N
                  I = I + 1
                  AP( I ) = A( JR, JC )
  130          CONTINUE
  140       CONTINUE
*
*           Call CHPTRD and CUPGTR to compute S and U from AP
*
            CALL CCOPY( NAP, AP, 1, VP, 1 )
*
            NTEST = 7
            CALL CHPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CHPTRD(L)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 7 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            NTEST = 8
            CALL CUPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CUPGTR(L)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 8 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            CALL CHPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 7 ) )
            CALL CHPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
     $                   WORK, RWORK, RESULT( 8 ) )
*
*           Call CSTEQR to compute D1, D2, and Z, do tests.
*
*           Compute D1 and Z
*
            CALL SCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK, 1 )
            CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 9
            CALL CSTEQR( 'V', N, D1, RWORK, Z, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEQR(V)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 9 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Compute D2
*
            CALL SCOPY( N, SD, 1, D2, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 11
            CALL CSTEQR( 'N', N, D2, RWORK, WORK, LDU, RWORK( N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEQR(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 11 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Compute D3 (using PWK method)
*
            CALL SCOPY( N, SD, 1, D3, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
            NTEST = 12
            CALL SSTERF( N, D3, RWORK, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'SSTERF', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 12 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Tests 9 and 10
*
            CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 9 ) )
*
*           Do Tests 11 and 12
*
            TEMP1 = ZERO
            TEMP2 = ZERO
            TEMP3 = ZERO
            TEMP4 = ZERO
*
            DO 150 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
               TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
               TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  150       CONTINUE
*
            RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
            RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
*
*           Do Test 13 -- Sturm Sequence Test of Eigenvalues
*                         Go up by factors of two until it succeeds
*
            NTEST = 13
            TEMP1 = THRESH*( HALF-ULP )
*
            DO 160 J = 0, LOG2UI
               CALL SSTECH( N, SD, SE, D1, TEMP1, RWORK, IINFO )
               IF( IINFO.EQ.0 )
     $            GO TO 170
               TEMP1 = TEMP1*TWO
  160       CONTINUE
*
  170       CONTINUE
            RESULT( 13 ) = TEMP1
*
*           For positive definite matrices ( JTYPE.GT.15 ) call CPTEQR
*           and do tests 14, 15, and 16 .
*
            IF( JTYPE.GT.15 ) THEN
*
*              Compute D4 and Z4
*
               CALL SCOPY( N, SD, 1, D4, 1 )
               IF( N.GT.0 )
     $            CALL SCOPY( N-1, SE, 1, RWORK, 1 )
               CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
               NTEST = 14
               CALL CPTEQR( 'V', N, D4, RWORK, Z, LDU, RWORK( N+1 ),
     $                      IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'CPTEQR(V)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 14 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*              Do Tests 14 and 15
*
               CALL CSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
     $                      RWORK, RESULT( 14 ) )
*
*              Compute D5
*
               CALL SCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
               NTEST = 16
               CALL CPTEQR( 'N', N, D5, RWORK, Z, LDU, RWORK( N+1 ),
     $                      IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'CPTEQR(N)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 16 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*              Do Test 16
*
               TEMP1 = ZERO
               TEMP2 = ZERO
               DO 180 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
                  TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
  180          CONTINUE
*
               RESULT( 16 ) = TEMP2 / MAX( UNFL,
     $                        HUN*ULP*MAX( TEMP1, TEMP2 ) )
            ELSE
               RESULT( 14 ) = ZERO
               RESULT( 15 ) = ZERO
               RESULT( 16 ) = ZERO
            END IF
*
*           Call SSTEBZ with different options and do tests 17-18.
*
*              If S is positive definite and diagonally dominant,
*              ask for all eigenvalues with high relative accuracy.
*
            VL = ZERO
            VU = ZERO
            IL = 0
            IU = 0
            IF( JTYPE.EQ.21 ) THEN
               NTEST = 17
               ABSTOL = UNFL + UNFL
               CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
     $                      M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
     $                      RWORK, IWORK( 2*N+1 ), IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,rel)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 17 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*              Do test 17
*
               TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
     $                 ( ONE-HALF )**4
*
               TEMP1 = ZERO
               DO 190 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
     $                    ( ABSTOL+ABS( D4( J ) ) ) )
  190          CONTINUE
*
               RESULT( 17 ) = TEMP1 / TEMP2
            ELSE
               RESULT( 17 ) = ZERO
            END IF
*
*           Now ask for all eigenvalues with high absolute accuracy.
*
            NTEST = 18
            ABSTOL = UNFL + UNFL
            CALL SSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
     $                   NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
     $                   IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 18 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do test 18
*
            TEMP1 = ZERO
            TEMP2 = ZERO
            DO 200 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
  200       CONTINUE
*
            RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
*
*           Choose random values for IL and IU, and ask for the
*           IL-th through IU-th eigenvalues.
*
            NTEST = 19
            IF( N.LE.1 ) THEN
               IL = 1
               IU = N
            ELSE
               IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
               IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
               IF( IU.LT.IL ) THEN
                  ITEMP = IU
                  IU = IL
                  IL = ITEMP
               END IF
            END IF
*
            CALL SSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
     $                   M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
     $                   RWORK, IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(I)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 19 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Determine the values VL and VU of the IL-th and IU-th
*           eigenvalues and ask for all eigenvalues in this range.
*
            IF( N.GT.0 ) THEN
               IF( IL.NE.1 ) THEN
                  VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               ELSE
                  VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               END IF
               IF( IU.NE.N ) THEN
                  VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               ELSE
                  VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
     $                 ULP*ANORM, TWO*RTUNFL )
               END IF
            ELSE
               VL = ZERO
               VU = ONE
            END IF
*
            CALL SSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
     $                   M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
     $                   RWORK, IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(V)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 19 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            IF( M3.EQ.0 .AND. N.NE.0 ) THEN
               RESULT( 19 ) = ULPINV
               GO TO 280
            END IF
*
*           Do test 19
*
            TEMP1 = SSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
            TEMP2 = SSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
            IF( N.GT.0 ) THEN
               TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
            ELSE
               TEMP3 = ZERO
            END IF
*
            RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
*
*           Call CSTEIN to compute eigenvectors corresponding to
*           eigenvalues in WA1.  (First call SSTEBZ again, to make sure
*           it returns these eigenvalues in the correct order.)
*
            NTEST = 21
            CALL SSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
     $                   NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), RWORK,
     $                   IWORK( 2*N+1 ), IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'SSTEBZ(A,B)', IINFO, N,
     $            JTYPE, IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 20 ) = ULPINV
                  RESULT( 21 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
            CALL CSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
     $                   LDU, RWORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
     $                   IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEIN', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 20 ) = ULPINV
                  RESULT( 21 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do tests 20 and 21
*
            CALL CSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 20 ) )
*
*           Call CSTEDC(I) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
            INDE = 1
            INDRWK = INDE + N
            CALL SCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
            CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 22
            CALL CSTEDC( 'I', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
     $                   RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEDC(I)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 22 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Tests 22 and 23
*
            CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 22 ) )
*
*           Call CSTEDC(V) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
            CALL SCOPY( N, SD, 1, D1, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
            CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 24
            CALL CSTEDC( 'V', N, D1, RWORK( INDE ), Z, LDU, WORK, LWEDC,
     $                   RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEDC(V)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 24 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Tests 24 and 25
*
            CALL CSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, RWORK,
     $                   RESULT( 24 ) )
*
*           Call CSTEDC(N) to compute D2, do tests.
*
*           Compute D2
*
            CALL SCOPY( N, SD, 1, D2, 1 )
            IF( N.GT.0 )
     $         CALL SCOPY( N-1, SE, 1, RWORK( INDE ), 1 )
            CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
            NTEST = 26
            CALL CSTEDC( 'N', N, D2, RWORK( INDE ), Z, LDU, WORK, LWEDC,
     $                   RWORK( INDRWK ), LRWEDC, IWORK, LIWEDC, IINFO )
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9999 )'CSTEDC(N)', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               IF( IINFO.LT.0 ) THEN
                  RETURN
               ELSE
                  RESULT( 26 ) = ULPINV
                  GO TO 280
               END IF
            END IF
*
*           Do Test 26
*
            TEMP1 = ZERO
            TEMP2 = ZERO
*
            DO 210 J = 1, N
               TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
               TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  210       CONTINUE
*
            RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
*
*           Only test CSTEMR if IEEE compliant
*
            IF( ILAENV( 10, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
     $          ILAENV( 11, 'CSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
*
*           Call CSTEMR, do test 27 (relative eigenvalue accuracy)
*
*              If S is positive definite and diagonally dominant,
*              ask for all eigenvalues with high relative accuracy.
*
               VL = ZERO
               VU = ZERO
               IL = 0
               IU = 0
               IF( JTYPE.EQ.21 .AND. CREL ) THEN
                  NTEST = 27
                  ABSTOL = UNFL + UNFL
                  CALL CSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
     $                         M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK, LRWORK, IWORK( 2*N+1 ), LWORK-2*N,
     $                         IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A,rel)',
     $                  IINFO, N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 27 ) = ULPINV
                        GO TO 270
                     END IF
                  END IF
*
*              Do test 27
*
                  TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
     $                    ( ONE-HALF )**4
*
                  TEMP1 = ZERO
                  DO 220 J = 1, N
                     TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
     $                       ( ABSTOL+ABS( D4( J ) ) ) )
  220             CONTINUE
*
                  RESULT( 27 ) = TEMP1 / TEMP2
*
                  IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
                  IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
                  IF( IU.LT.IL ) THEN
                     ITEMP = IU
                     IU = IL
                     IL = ITEMP
                  END IF
*
                  IF( CRANGE ) THEN
                     NTEST = 28
                     ABSTOL = UNFL + UNFL
                     CALL CSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
     $                            M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                            RWORK, LRWORK, IWORK( 2*N+1 ),
     $                            LWORK-2*N, IINFO )
*
                     IF( IINFO.NE.0 ) THEN
                        WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I,rel)',
     $                     IINFO, N, JTYPE, IOLDSD
                        INFO = ABS( IINFO )
                        IF( IINFO.LT.0 ) THEN
                           RETURN
                        ELSE
                           RESULT( 28 ) = ULPINV
                           GO TO 270
                        END IF
                     END IF
*
*
*                 Do test 28
*
                     TEMP2 = TWO*( TWO*N-ONE )*ULP*
     $                       ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
*
                     TEMP1 = ZERO
                     DO 230 J = IL, IU
                        TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
     $                          1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
  230                CONTINUE
*
                     RESULT( 28 ) = TEMP1 / TEMP2
                  ELSE
                     RESULT( 28 ) = ZERO
                  END IF
               ELSE
                  RESULT( 27 ) = ZERO
                  RESULT( 28 ) = ZERO
               END IF
*
*           Call CSTEMR(V,I) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
               CALL SCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL SCOPY( N-1, SE, 1, RWORK, 1 )
               CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
               IF( CRANGE ) THEN
                  NTEST = 29
                  IL = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
                  IU = 1 + ( N-1 )*INT( SLARND( 1, ISEED2 ) )
                  IF( IU.LT.IL ) THEN
                     ITEMP = IU
                     IU = IL
                     IL = ITEMP
                  END IF
                  CALL CSTEMR( 'V', 'I', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,I)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 29 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Tests 29 and 30
*
*
*           Call CSTEMR to compute D2, do tests.
*
*           Compute D2
*
                  CALL SCOPY( N, SD, 1, D5, 1 )
                  IF( N.GT.0 )
     $               CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
                  NTEST = 31
                  CALL CSTEMR( 'N', 'I', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,I)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 31 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Test 31
*
                  TEMP1 = ZERO
                  TEMP2 = ZERO
*
                  DO 240 J = 1, IU - IL + 1
                     TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
     $                       ABS( D2( J ) ) )
                     TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  240             CONTINUE
*
                  RESULT( 31 ) = TEMP2 / MAX( UNFL,
     $                           ULP*MAX( TEMP1, TEMP2 ) )
*
*
*           Call CSTEMR(V,V) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
                  CALL SCOPY( N, SD, 1, D5, 1 )
                  IF( N.GT.0 )
     $               CALL SCOPY( N-1, SE, 1, RWORK, 1 )
                  CALL CLASET( 'Full', N, N, CZERO, CONE, Z, LDU )
*
                  NTEST = 32
*
                  IF( N.GT.0 ) THEN
                     IF( IL.NE.1 ) THEN
                        VL = D2( IL ) - MAX( HALF*
     $                       ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
     $                       TWO*RTUNFL )
                     ELSE
                        VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
     $                       ULP*ANORM, TWO*RTUNFL )
                     END IF
                     IF( IU.NE.N ) THEN
                        VU = D2( IU ) + MAX( HALF*
     $                       ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
     $                       TWO*RTUNFL )
                     ELSE
                        VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
     $                       ULP*ANORM, TWO*RTUNFL )
                     END IF
                  ELSE
                     VL = ZERO
                     VU = ONE
                  END IF
*
                  CALL CSTEMR( 'V', 'V', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D1, Z, LDU, M, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,V)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 32 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Tests 32 and 33
*
                  CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
     $                         M, RWORK, RESULT( 32 ) )
*
*           Call CSTEMR to compute D2, do tests.
*
*           Compute D2
*
                  CALL SCOPY( N, SD, 1, D5, 1 )
                  IF( N.GT.0 )
     $               CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
                  NTEST = 34
                  CALL CSTEMR( 'N', 'V', N, D5, RWORK, VL, VU, IL, IU,
     $                         M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                         RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                         LIWORK-2*N, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,V)', IINFO,
     $                  N, JTYPE, IOLDSD
                     INFO = ABS( IINFO )
                     IF( IINFO.LT.0 ) THEN
                        RETURN
                     ELSE
                        RESULT( 34 ) = ULPINV
                        GO TO 280
                     END IF
                  END IF
*
*           Do Test 34
*
                  TEMP1 = ZERO
                  TEMP2 = ZERO
*
                  DO 250 J = 1, IU - IL + 1
                     TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
     $                       ABS( D2( J ) ) )
                     TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  250             CONTINUE
*
                  RESULT( 34 ) = TEMP2 / MAX( UNFL,
     $                           ULP*MAX( TEMP1, TEMP2 ) )
               ELSE
                  RESULT( 29 ) = ZERO
                  RESULT( 30 ) = ZERO
                  RESULT( 31 ) = ZERO
                  RESULT( 32 ) = ZERO
                  RESULT( 33 ) = ZERO
                  RESULT( 34 ) = ZERO
               END IF
*
*
*           Call CSTEMR(V,A) to compute D1 and Z, do tests.
*
*           Compute D1 and Z
*
               CALL SCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
               NTEST = 35
*
               CALL CSTEMR( 'V', 'A', N, D5, RWORK, VL, VU, IL, IU,
     $                      M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                      RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                      LIWORK-2*N, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'CSTEMR(V,A)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 35 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*           Do Tests 35 and 36
*
               CALL CSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
     $                      RWORK, RESULT( 35 ) )
*
*           Call CSTEMR to compute D2, do tests.
*
*           Compute D2
*
               CALL SCOPY( N, SD, 1, D5, 1 )
               IF( N.GT.0 )
     $            CALL SCOPY( N-1, SE, 1, RWORK, 1 )
*
               NTEST = 37
               CALL CSTEMR( 'N', 'A', N, D5, RWORK, VL, VU, IL, IU,
     $                      M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
     $                      RWORK( N+1 ), LRWORK-N, IWORK( 2*N+1 ),
     $                      LIWORK-2*N, IINFO )
               IF( IINFO.NE.0 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )'CSTEMR(N,A)', IINFO, N,
     $               JTYPE, IOLDSD
                  INFO = ABS( IINFO )
                  IF( IINFO.LT.0 ) THEN
                     RETURN
                  ELSE
                     RESULT( 37 ) = ULPINV
                     GO TO 280
                  END IF
               END IF
*
*           Do Test 34
*
               TEMP1 = ZERO
               TEMP2 = ZERO
*
               DO 260 J = 1, N
                  TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
                  TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  260          CONTINUE
*
               RESULT( 37 ) = TEMP2 / MAX( UNFL,
     $                        ULP*MAX( TEMP1, TEMP2 ) )
            END IF
  270       CONTINUE
  280       CONTINUE
            NTESTT = NTESTT + NTEST
*
*           End of Loop -- Check for RESULT(j) > THRESH
*
*
*           Print out tests which fail.
*
            DO 290 JR = 1, NTEST
               IF( RESULT( JR ).GE.THRESH ) THEN
*
*                 If this is the first test to fail,
*                 print a header to the data file.
*
                  IF( NERRS.EQ.0 ) THEN
                     WRITE( NOUNIT, FMT = 9998 )'CST'
                     WRITE( NOUNIT, FMT = 9997 )
                     WRITE( NOUNIT, FMT = 9996 )
                     WRITE( NOUNIT, FMT = 9995 )'Hermitian'
                     WRITE( NOUNIT, FMT = 9994 )
*
*                    Tests performed
*
                     WRITE( NOUNIT, FMT = 9987 )
                  END IF
                  NERRS = NERRS + 1
                  IF( RESULT( JR ).LT.10000.0E0 ) THEN
                     WRITE( NOUNIT, FMT = 9989 )N, JTYPE, IOLDSD, JR,
     $                  RESULT( JR )
                  ELSE
                     WRITE( NOUNIT, FMT = 9988 )N, JTYPE, IOLDSD, JR,
     $                  RESULT( JR )
                  END IF
               END IF
  290       CONTINUE
  300    CONTINUE
  310 CONTINUE
*
*     Summary
*
      CALL SLASUM( 'CST', NOUNIT, NERRS, NTESTT )
      RETURN
*
 9999 FORMAT( ' CCHKST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
     $   'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
 9998 FORMAT( / 1X, A3, ' -- Complex Hermitian eigenvalue problem' )
 9997 FORMAT( ' Matrix types (see CCHKST2STG for details): ' )
*
 9996 FORMAT( / ' Special Matrices:',
     $      / '  1=Zero matrix.                        ',
     $      '  5=Diagonal: clustered entries.',
     $      / '  2=Identity matrix.                    ',
     $      '  6=Diagonal: large, evenly spaced.',
     $      / '  3=Diagonal: evenly spaced entries.    ',
     $      '  7=Diagonal: small, evenly spaced.',
     $      / '  4=Diagonal: geometr. spaced entries.' )
 9995 FORMAT( ' Dense ', A, ' Matrices:',
     $      / '  8=Evenly spaced eigenvals.            ',
     $      ' 12=Small, evenly spaced eigenvals.',
     $      / '  9=Geometrically spaced eigenvals.     ',
     $      ' 13=Matrix with random O(1) entries.',
     $      / ' 10=Clustered eigenvalues.              ',
     $      ' 14=Matrix with large random entries.',
     $      / ' 11=Large, evenly spaced eigenvals.     ',
     $      ' 15=Matrix with small random entries.' )
 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
     $      / ' 17=Positive definite, geometrically spaced eigenvlaues',
     $      / ' 18=Positive definite, clustered eigenvalues',
     $      / ' 19=Positive definite, small evenly spaced eigenvalues',
     $      / ' 20=Positive definite, large evenly spaced eigenvalues',
     $      / ' 21=Diagonally dominant tridiagonal, geometrically',
     $      ' spaced eigenvalues' )
*
 9989 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
     $      4( I4, ',' ), ' result ', I3, ' is', 0P, F8.2 )
 9988 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
     $      4( I4, ',' ), ' result ', I3, ' is', 1P, E10.3 )
*
 9987 FORMAT( / 'Test performed:  see CCHKST2STG for details.', / )
*     End of CCHKST2STG
*
      END