aboutsummaryrefslogtreecommitdiff
path: root/TESTING/EIG/cstt22.f
blob: 2db3736e819c4a462d2bb8036fd16f9b379ae4d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
*> \brief \b CSTT22
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
*                          LDWORK, RWORK, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER            KBAND, LDU, LDWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
*      $                   SD( * ), SE( * )
*       COMPLEX            U( LDU, * ), WORK( LDWORK, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CSTT22  checks a set of M eigenvalues and eigenvectors,
*>
*>     A U = U S
*>
*> where A is Hermitian tridiagonal, the columns of U are unitary,
*> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1).
*> Two tests are performed:
*>
*>    RESULT(1) = | U* A U - S | / ( |A| m ulp )
*>
*>    RESULT(2) = | I - U*U | / ( m ulp )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The size of the matrix.  If it is zero, CSTT22 does nothing.
*>          It must be at least zero.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of eigenpairs to check.  If it is zero, CSTT22
*>          does nothing.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] KBAND
*> \verbatim
*>          KBAND is INTEGER
*>          The bandwidth of the matrix S.  It may only be zero or one.
*>          If zero, then S is diagonal, and SE is not referenced.  If
*>          one, then S is Hermitian tri-diagonal.
*> \endverbatim
*>
*> \param[in] AD
*> \verbatim
*>          AD is REAL array, dimension (N)
*>          The diagonal of the original (unfactored) matrix A.  A is
*>          assumed to be Hermitian tridiagonal.
*> \endverbatim
*>
*> \param[in] AE
*> \verbatim
*>          AE is REAL array, dimension (N)
*>          The off-diagonal of the original (unfactored) matrix A.  A
*>          is assumed to be Hermitian tridiagonal.  AE(1) is ignored,
*>          AE(2) is the (1,2) and (2,1) element, etc.
*> \endverbatim
*>
*> \param[in] SD
*> \verbatim
*>          SD is REAL array, dimension (N)
*>          The diagonal of the (Hermitian tri-) diagonal matrix S.
*> \endverbatim
*>
*> \param[in] SE
*> \verbatim
*>          SE is REAL array, dimension (N)
*>          The off-diagonal of the (Hermitian tri-) diagonal matrix S.
*>          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is
*>          ignored, SE(2) is the (1,2) and (2,1) element, etc.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is REAL array, dimension (LDU, N)
*>          The unitary matrix in the decomposition.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of U.  LDU must be at least N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LDWORK, M+1)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*>          LDWORK is INTEGER
*>          The leading dimension of WORK.  LDWORK must be at least
*>          max(1,M).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (2)
*>          The values computed by the two tests described above.  The
*>          values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup complex_eig
*
*  =====================================================================
      SUBROUTINE CSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
     $                   LDWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            KBAND, LDU, LDWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
     $                   SD( * ), SE( * )
      COMPLEX            U( LDU, * ), WORK( LDWORK, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      REAL               ANORM, ULP, UNFL, WNORM
      COMPLEX            AUKJ
*     ..
*     .. External Functions ..
      REAL               CLANGE, CLANSY, SLAMCH
      EXTERNAL           CLANGE, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 .OR. M.LE.0 )
     $   RETURN
*
      UNFL = SLAMCH( 'Safe minimum' )
      ULP = SLAMCH( 'Epsilon' )
*
*     Do Test 1
*
*     Compute the 1-norm of A.
*
      IF( N.GT.1 ) THEN
         ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
         DO 10 J = 2, N - 1
            ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
     $              ABS( AE( J-1 ) ) )
   10    CONTINUE
         ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
      ELSE
         ANORM = ABS( AD( 1 ) )
      END IF
      ANORM = MAX( ANORM, UNFL )
*
*     Norm of U*AU - S
*
      DO 40 I = 1, M
         DO 30 J = 1, M
            WORK( I, J ) = CZERO
            DO 20 K = 1, N
               AUKJ = AD( K )*U( K, J )
               IF( K.NE.N )
     $            AUKJ = AUKJ + AE( K )*U( K+1, J )
               IF( K.NE.1 )
     $            AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
               WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
   20       CONTINUE
   30    CONTINUE
         WORK( I, I ) = WORK( I, I ) - SD( I )
         IF( KBAND.EQ.1 ) THEN
            IF( I.NE.1 )
     $         WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
            IF( I.NE.N )
     $         WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
         END IF
   40 CONTINUE
*
      WNORM = CLANSY( '1', 'L', M, WORK, M, RWORK )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, REAL( M ) ) / ( M*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  U*U - I
*
      CALL CGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK,
     $            M )
*
      DO 50 J = 1, M
         WORK( J, J ) = WORK( J, J ) - ONE
   50 CONTINUE
*
      RESULT( 2 ) = MIN( REAL( M ), CLANGE( '1', M, M, WORK, M,
     $              RWORK ) ) / ( M*ULP )
*
      RETURN
*
*     End of CSTT22
*
      END