aboutsummaryrefslogtreecommitdiff
path: root/TESTING/EIG/ddrvev.f
blob: a3e6a2023ae98b80d5cfe4f6ed585c759997eccf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
*> \brief \b DDRVEV
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
*                          NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
*                          VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
*                          IWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
*      $                   NTYPES, NWORK
*       DOUBLE PRECISION   THRESH
*       ..
*       .. Array Arguments ..
*       LOGICAL            DOTYPE( * )
*       INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
*       DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
*      $                   RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
*      $                   WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    DDRVEV  checks the nonsymmetric eigenvalue problem driver DGEEV.
*>
*>    When DDRVEV is called, a number of matrix "sizes" ("n's") and a
*>    number of matrix "types" are specified.  For each size ("n")
*>    and each type of matrix, one matrix will be generated and used
*>    to test the nonsymmetric eigenroutines.  For each matrix, 7
*>    tests will be performed:
*>
*>    (1)     | A * VR - VR * W | / ( n |A| ulp )
*>
*>      Here VR is the matrix of unit right eigenvectors.
*>      W is a block diagonal matrix, with a 1x1 block for each
*>      real eigenvalue and a 2x2 block for each complex conjugate
*>      pair.  If eigenvalues j and j+1 are a complex conjugate pair,
*>      so WR(j) = WR(j+1) = wr and WI(j) = - WI(j+1) = wi, then the
*>      2 x 2 block corresponding to the pair will be:
*>
*>              (  wr  wi  )
*>              ( -wi  wr  )
*>
*>      Such a block multiplying an n x 2 matrix  ( ur ui ) on the
*>      right will be the same as multiplying  ur + i*ui  by  wr + i*wi.
*>
*>    (2)     | A**H * VL - VL * W**H | / ( n |A| ulp )
*>
*>      Here VL is the matrix of unit left eigenvectors, A**H is the
*>      conjugate transpose of A, and W is as above.
*>
*>    (3)     | |VR(i)| - 1 | / ulp and whether largest component real
*>
*>      VR(i) denotes the i-th column of VR.
*>
*>    (4)     | |VL(i)| - 1 | / ulp and whether largest component real
*>
*>      VL(i) denotes the i-th column of VL.
*>
*>    (5)     W(full) = W(partial)
*>
*>      W(full) denotes the eigenvalues computed when both VR and VL
*>      are also computed, and W(partial) denotes the eigenvalues
*>      computed when only W, only W and VR, or only W and VL are
*>      computed.
*>
*>    (6)     VR(full) = VR(partial)
*>
*>      VR(full) denotes the right eigenvectors computed when both VR
*>      and VL are computed, and VR(partial) denotes the result
*>      when only VR is computed.
*>
*>     (7)     VL(full) = VL(partial)
*>
*>      VL(full) denotes the left eigenvectors computed when both VR
*>      and VL are also computed, and VL(partial) denotes the result
*>      when only VL is computed.
*>
*>    The "sizes" are specified by an array NN(1:NSIZES); the value of
*>    each element NN(j) specifies one size.
*>    The "types" are specified by a logical array DOTYPE( 1:NTYPES );
*>    if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*>    Currently, the list of possible types is:
*>
*>    (1)  The zero matrix.
*>    (2)  The identity matrix.
*>    (3)  A (transposed) Jordan block, with 1's on the diagonal.
*>
*>    (4)  A diagonal matrix with evenly spaced entries
*>         1, ..., ULP  and random signs.
*>         (ULP = (first number larger than 1) - 1 )
*>    (5)  A diagonal matrix with geometrically spaced entries
*>         1, ..., ULP  and random signs.
*>    (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*>         and random signs.
*>
*>    (7)  Same as (4), but multiplied by a constant near
*>         the overflow threshold
*>    (8)  Same as (4), but multiplied by a constant near
*>         the underflow threshold
*>
*>    (9)  A matrix of the form  U' T U, where U is orthogonal and
*>         T has evenly spaced entries 1, ..., ULP with random signs
*>         on the diagonal and random O(1) entries in the upper
*>         triangle.
*>
*>    (10) A matrix of the form  U' T U, where U is orthogonal and
*>         T has geometrically spaced entries 1, ..., ULP with random
*>         signs on the diagonal and random O(1) entries in the upper
*>         triangle.
*>
*>    (11) A matrix of the form  U' T U, where U is orthogonal and
*>         T has "clustered" entries 1, ULP,..., ULP with random
*>         signs on the diagonal and random O(1) entries in the upper
*>         triangle.
*>
*>    (12) A matrix of the form  U' T U, where U is orthogonal and
*>         T has real or complex conjugate paired eigenvalues randomly
*>         chosen from ( ULP, 1 ) and random O(1) entries in the upper
*>         triangle.
*>
*>    (13) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP
*>         with random signs on the diagonal and random O(1) entries
*>         in the upper triangle.
*>
*>    (14) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has geometrically spaced entries
*>         1, ..., ULP with random signs on the diagonal and random
*>         O(1) entries in the upper triangle.
*>
*>    (15) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP
*>         with random signs on the diagonal and random O(1) entries
*>         in the upper triangle.
*>
*>    (16) A matrix of the form  X' T X, where X has condition
*>         SQRT( ULP ) and T has real or complex conjugate paired
*>         eigenvalues randomly chosen from ( ULP, 1 ) and random
*>         O(1) entries in the upper triangle.
*>
*>    (17) Same as (16), but multiplied by a constant
*>         near the overflow threshold
*>    (18) Same as (16), but multiplied by a constant
*>         near the underflow threshold
*>
*>    (19) Nonsymmetric matrix with random entries chosen from (-1,1).
*>         If N is at least 4, all entries in first two rows and last
*>         row, and first column and last two columns are zero.
*>    (20) Same as (19), but multiplied by a constant
*>         near the overflow threshold
*>    (21) Same as (19), but multiplied by a constant
*>         near the underflow threshold
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NSIZES
*> \verbatim
*>          NSIZES is INTEGER
*>          The number of sizes of matrices to use.  If it is zero,
*>          DDRVEV does nothing.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*>          NN is INTEGER array, dimension (NSIZES)
*>          An array containing the sizes to be used for the matrices.
*>          Zero values will be skipped.  The values must be at least
*>          zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*>          NTYPES is INTEGER
*>          The number of elements in DOTYPE.   If it is zero, DDRVEV
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
*>          defined, which is to use whatever matrix is in A.  This
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*>          DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
*>          matrix of that size and of type j will be generated.
*>          If NTYPES is smaller than the maximum number of types
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
*>          MAXTYP will not be generated.  If NTYPES is larger
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*>          will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry ISEED specifies the seed of the random number
*>          generator. The array elements should be between 0 and 4095;
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
*>          be odd.  The random number generator uses a linear
*>          congruential sequence limited to small integers, and so
*>          should produce machine independent random numbers. The
*>          values of ISEED are changed on exit, and can be used in the
*>          next call to DDRVEV to continue the same random number
*>          sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*>          THRESH is DOUBLE PRECISION
*>          A test will count as "failed" if the "error", computed as
*>          described above, exceeds THRESH.  Note that the error
*>          is scaled to be O(1), so THRESH should be a reasonably
*>          small multiple of 1, e.g., 10 or 100.  In particular,
*>          it should not depend on the precision (single vs. double)
*>          or the size of the matrix.  It must be at least zero.
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*>          NOUNIT is INTEGER
*>          The FORTRAN unit number for printing out error messages
*>          (e.g., if a routine returns INFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA, max(NN))
*>          Used to hold the matrix whose eigenvalues are to be
*>          computed.  On exit, A contains the last matrix actually used.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of A, and H. LDA must be at
*>          least 1 and at least max(NN).
*> \endverbatim
*>
*> \param[out] H
*> \verbatim
*>          H is DOUBLE PRECISION array, dimension (LDA, max(NN))
*>          Another copy of the test matrix A, modified by DGEEV.
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*>          WR is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] WI
*> \verbatim
*>          WI is DOUBLE PRECISION array, dimension (max(NN))
*>
*>          The real and imaginary parts of the eigenvalues of A.
*>          On exit, WR + WI*i are the eigenvalues of the matrix in A.
*> \endverbatim
*>
*> \param[out] WR1
*> \verbatim
*>          WR1 is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] WI1
*> \verbatim
*>          WI1 is DOUBLE PRECISION array, dimension (max(NN))
*>
*>          Like WR, WI, these arrays contain the eigenvalues of A,
*>          but those computed when DGEEV only computes a partial
*>          eigendecomposition, i.e. not the eigenvalues and left
*>          and right eigenvectors.
*> \endverbatim
*>
*> \param[out] VL
*> \verbatim
*>          VL is DOUBLE PRECISION array, dimension (LDVL, max(NN))
*>          VL holds the computed left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          Leading dimension of VL. Must be at least max(1,max(NN)).
*> \endverbatim
*>
*> \param[out] VR
*> \verbatim
*>          VR is DOUBLE PRECISION array, dimension (LDVR, max(NN))
*>          VR holds the computed right eigenvectors.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          Leading dimension of VR. Must be at least max(1,max(NN)).
*> \endverbatim
*>
*> \param[out] LRE
*> \verbatim
*>          LRE is DOUBLE PRECISION array, dimension (LDLRE,max(NN))
*>          LRE holds the computed right or left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDLRE
*> \verbatim
*>          LDLRE is INTEGER
*>          Leading dimension of LRE. Must be at least max(1,max(NN)).
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (7)
*>          The values computed by the seven tests described above.
*>          The values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (NWORK)
*> \endverbatim
*>
*> \param[in] NWORK
*> \verbatim
*>          NWORK is INTEGER
*>          The number of entries in WORK.  This must be at least
*>          5*NN(j)+2*NN(j)**2 for all j.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          If 0, then everything ran OK.
*>           -1: NSIZES < 0
*>           -2: Some NN(j) < 0
*>           -3: NTYPES < 0
*>           -6: THRESH < 0
*>           -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
*>          -16: LDVL < 1 or LDVL < NMAX, where NMAX is max( NN(j) ).
*>          -18: LDVR < 1 or LDVR < NMAX, where NMAX is max( NN(j) ).
*>          -20: LDLRE < 1 or LDLRE < NMAX, where NMAX is max( NN(j) ).
*>          -23: NWORK too small.
*>          If  DLATMR, SLATMS, SLATME or DGEEV returns an error code,
*>              the absolute value of it is returned.
*>
*>-----------------------------------------------------------------------
*>
*>     Some Local Variables and Parameters:
*>     ---- ----- --------- --- ----------
*>
*>     ZERO, ONE       Real 0 and 1.
*>     MAXTYP          The number of types defined.
*>     NMAX            Largest value in NN.
*>     NERRS           The number of tests which have exceeded THRESH
*>     COND, CONDS,
*>     IMODE           Values to be passed to the matrix generators.
*>     ANORM           Norm of A; passed to matrix generators.
*>
*>     OVFL, UNFL      Overflow and underflow thresholds.
*>     ULP, ULPINV     Finest relative precision and its inverse.
*>     RTULP, RTULPI   Square roots of the previous 4 values.
*>
*>             The following four arrays decode JTYPE:
*>     KTYPE(j)        The general type (1-10) for type "j".
*>     KMODE(j)        The MODE value to be passed to the matrix
*>                     generator for type "j".
*>     KMAGN(j)        The order of magnitude ( O(1),
*>                     O(overflow^(1/2) ), O(underflow^(1/2) )
*>     KCONDS(j)       Selectw whether CONDS is to be 1 or
*>                     1/sqrt(ulp).  (0 means irrelevant.)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DDRVEV( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
     $                   NOUNIT, A, LDA, H, WR, WI, WR1, WI1, VL, LDVL,
     $                   VR, LDVR, LRE, LDLRE, RESULT, WORK, NWORK,
     $                   IWORK, INFO )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDLRE, LDVL, LDVR, NOUNIT, NSIZES,
     $                   NTYPES, NWORK
      DOUBLE PRECISION   THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            DOTYPE( * )
      INTEGER            ISEED( 4 ), IWORK( * ), NN( * )
      DOUBLE PRECISION   A( LDA, * ), H( LDA, * ), LRE( LDLRE, * ),
     $                   RESULT( 7 ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WI( * ), WI1( * ), WORK( * ), WR( * ), WR1( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
      DOUBLE PRECISION   TWO
      PARAMETER          ( TWO = 2.0D0 )
      INTEGER            MAXTYP
      PARAMETER          ( MAXTYP = 21 )
*     ..
*     .. Local Scalars ..
      LOGICAL            BADNN
      CHARACTER*3        PATH
      INTEGER            IINFO, IMODE, ITYPE, IWK, J, JCOL, JJ, JSIZE,
     $                   JTYPE, MTYPES, N, NERRS, NFAIL, NMAX, NNWORK,
     $                   NTEST, NTESTF, NTESTT
      DOUBLE PRECISION   ANORM, COND, CONDS, OVFL, RTULP, RTULPI, TNRM,
     $                   ULP, ULPINV, UNFL, VMX, VRMX, VTST
*     ..
*     .. Local Arrays ..
      CHARACTER          ADUMMA( 1 )
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ),
     $                   KMAGN( MAXTYP ), KMODE( MAXTYP ),
     $                   KTYPE( MAXTYP )
      DOUBLE PRECISION   DUM( 1 ), RES( 2 )
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2, DNRM2
      EXTERNAL           DLAMCH, DLAPY2, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEEV, DGET22, DLABAD, DLACPY, DLASET, DLASUM,
     $                   DLATME, DLATMR, DLATMS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, SQRT
*     ..
*     .. Data statements ..
      DATA               KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 /
      DATA               KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2,
     $                   3, 1, 2, 3 /
      DATA               KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3,
     $                   1, 5, 5, 5, 4, 3, 1 /
      DATA               KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 /
*     ..
*     .. Executable Statements ..
*
      PATH( 1: 1 ) = 'Double precision'
      PATH( 2: 3 ) = 'EV'
*
*     Check for errors
*
      NTESTT = 0
      NTESTF = 0
      INFO = 0
*
*     Important constants
*
      BADNN = .FALSE.
      NMAX = 0
      DO 10 J = 1, NSIZES
         NMAX = MAX( NMAX, NN( J ) )
         IF( NN( J ).LT.0 )
     $      BADNN = .TRUE.
   10 CONTINUE
*
*     Check for errors
*
      IF( NSIZES.LT.0 ) THEN
         INFO = -1
      ELSE IF( BADNN ) THEN
         INFO = -2
      ELSE IF( NTYPES.LT.0 ) THEN
         INFO = -3
      ELSE IF( THRESH.LT.ZERO ) THEN
         INFO = -6
      ELSE IF( NOUNIT.LE.0 ) THEN
         INFO = -7
      ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
         INFO = -9
      ELSE IF( LDVL.LT.1 .OR. LDVL.LT.NMAX ) THEN
         INFO = -16
      ELSE IF( LDVR.LT.1 .OR. LDVR.LT.NMAX ) THEN
         INFO = -18
      ELSE IF( LDLRE.LT.1 .OR. LDLRE.LT.NMAX ) THEN
         INFO = -20
      ELSE IF( 5*NMAX+2*NMAX**2.GT.NWORK ) THEN
         INFO = -23
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DDRVEV', -INFO )
         RETURN
      END IF
*
*     Quick return if nothing to do
*
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
     $   RETURN
*
*     More Important constants
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      ULP = DLAMCH( 'Precision' )
      ULPINV = ONE / ULP
      RTULP = SQRT( ULP )
      RTULPI = ONE / RTULP
*
*     Loop over sizes, types
*
      NERRS = 0
*
      DO 270 JSIZE = 1, NSIZES
         N = NN( JSIZE )
         IF( NSIZES.NE.1 ) THEN
            MTYPES = MIN( MAXTYP, NTYPES )
         ELSE
            MTYPES = MIN( MAXTYP+1, NTYPES )
         END IF
*
         DO 260 JTYPE = 1, MTYPES
            IF( .NOT.DOTYPE( JTYPE ) )
     $         GO TO 260
*
*           Save ISEED in case of an error.
*
            DO 20 J = 1, 4
               IOLDSD( J ) = ISEED( J )
   20       CONTINUE
*
*           Compute "A"
*
*           Control parameters:
*
*           KMAGN  KCONDS  KMODE        KTYPE
*       =1  O(1)   1       clustered 1  zero
*       =2  large  large   clustered 2  identity
*       =3  small          exponential  Jordan
*       =4                 arithmetic   diagonal, (w/ eigenvalues)
*       =5                 random log   symmetric, w/ eigenvalues
*       =6                 random       general, w/ eigenvalues
*       =7                              random diagonal
*       =8                              random symmetric
*       =9                              random general
*       =10                             random triangular
*
            IF( MTYPES.GT.MAXTYP )
     $         GO TO 90
*
            ITYPE = KTYPE( JTYPE )
            IMODE = KMODE( JTYPE )
*
*           Compute norm
*
            GO TO ( 30, 40, 50 )KMAGN( JTYPE )
*
   30       CONTINUE
            ANORM = ONE
            GO TO 60
*
   40       CONTINUE
            ANORM = OVFL*ULP
            GO TO 60
*
   50       CONTINUE
            ANORM = UNFL*ULPINV
            GO TO 60
*
   60       CONTINUE
*
            CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
            IINFO = 0
            COND = ULPINV
*
*           Special Matrices -- Identity & Jordan block
*
*              Zero
*
            IF( ITYPE.EQ.1 ) THEN
               IINFO = 0
*
            ELSE IF( ITYPE.EQ.2 ) THEN
*
*              Identity
*
               DO 70 JCOL = 1, N
                  A( JCOL, JCOL ) = ANORM
   70          CONTINUE
*
            ELSE IF( ITYPE.EQ.3 ) THEN
*
*              Jordan Block
*
               DO 80 JCOL = 1, N
                  A( JCOL, JCOL ) = ANORM
                  IF( JCOL.GT.1 )
     $               A( JCOL, JCOL-1 ) = ONE
   80          CONTINUE
*
            ELSE IF( ITYPE.EQ.4 ) THEN
*
*              Diagonal Matrix, [Eigen]values Specified
*
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
     $                      ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.5 ) THEN
*
*              Symmetric, eigenvalues specified
*
               CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
     $                      ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.6 ) THEN
*
*              General, eigenvalues specified
*
               IF( KCONDS( JTYPE ).EQ.1 ) THEN
                  CONDS = ONE
               ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN
                  CONDS = RTULPI
               ELSE
                  CONDS = ZERO
               END IF
*
               ADUMMA( 1 ) = ' '
               CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE,
     $                      ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4,
     $                      CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ),
     $                      IINFO )
*
            ELSE IF( ITYPE.EQ.7 ) THEN
*
*              Diagonal, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.8 ) THEN
*
*              Symmetric, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE IF( ITYPE.EQ.9 ) THEN
*
*              General, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
               IF( N.GE.4 ) THEN
                  CALL DLASET( 'Full', 2, N, ZERO, ZERO, A, LDA )
                  CALL DLASET( 'Full', N-3, 1, ZERO, ZERO, A( 3, 1 ),
     $                         LDA )
                  CALL DLASET( 'Full', N-3, 2, ZERO, ZERO, A( 3, N-1 ),
     $                         LDA )
                  CALL DLASET( 'Full', 1, N, ZERO, ZERO, A( N, 1 ),
     $                         LDA )
               END IF
*
            ELSE IF( ITYPE.EQ.10 ) THEN
*
*              Triangular, random eigenvalues
*
               CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
     $                      'T', 'N', WORK( N+1 ), 1, ONE,
     $                      WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0,
     $                      ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
            ELSE
*
               IINFO = 1
            END IF
*
            IF( IINFO.NE.0 ) THEN
               WRITE( NOUNIT, FMT = 9993 )'Generator', IINFO, N, JTYPE,
     $            IOLDSD
               INFO = ABS( IINFO )
               RETURN
            END IF
*
   90       CONTINUE
*
*           Test for minimal and generous workspace
*
            DO 250 IWK = 1, 2
               IF( IWK.EQ.1 ) THEN
                  NNWORK = 4*N
               ELSE
                  NNWORK = 5*N + 2*N**2
               END IF
               NNWORK = MAX( NNWORK, 1 )
*
*              Initialize RESULT
*
               DO 100 J = 1, 7
                  RESULT( J ) = -ONE
  100          CONTINUE
*
*              Compute eigenvalues and eigenvectors, and test them
*
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
               CALL DGEEV( 'V', 'V', N, H, LDA, WR, WI, VL, LDVL, VR,
     $                     LDVR, WORK, NNWORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  RESULT( 1 ) = ULPINV
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV1', IINFO, N, JTYPE,
     $               IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 220
               END IF
*
*              Do Test (1)
*
               CALL DGET22( 'N', 'N', 'N', N, A, LDA, VR, LDVR, WR, WI,
     $                      WORK, RES )
               RESULT( 1 ) = RES( 1 )
*
*              Do Test (2)
*
               CALL DGET22( 'T', 'N', 'T', N, A, LDA, VL, LDVL, WR, WI,
     $                      WORK, RES )
               RESULT( 2 ) = RES( 1 )
*
*              Do Test (3)
*
               DO 120 J = 1, N
                  TNRM = ONE
                  IF( WI( J ).EQ.ZERO ) THEN
                     TNRM = DNRM2( N, VR( 1, J ), 1 )
                  ELSE IF( WI( J ).GT.ZERO ) THEN
                     TNRM = DLAPY2( DNRM2( N, VR( 1, J ), 1 ),
     $                      DNRM2( N, VR( 1, J+1 ), 1 ) )
                  END IF
                  RESULT( 3 ) = MAX( RESULT( 3 ),
     $                          MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
                  IF( WI( J ).GT.ZERO ) THEN
                     VMX = ZERO
                     VRMX = ZERO
                     DO 110 JJ = 1, N
                        VTST = DLAPY2( VR( JJ, J ), VR( JJ, J+1 ) )
                        IF( VTST.GT.VMX )
     $                     VMX = VTST
                        IF( VR( JJ, J+1 ).EQ.ZERO .AND.
     $                      ABS( VR( JJ, J ) ).GT.VRMX )
     $                      VRMX = ABS( VR( JJ, J ) )
  110                CONTINUE
                     IF( VRMX / VMX.LT.ONE-TWO*ULP )
     $                  RESULT( 3 ) = ULPINV
                  END IF
  120          CONTINUE
*
*              Do Test (4)
*
               DO 140 J = 1, N
                  TNRM = ONE
                  IF( WI( J ).EQ.ZERO ) THEN
                     TNRM = DNRM2( N, VL( 1, J ), 1 )
                  ELSE IF( WI( J ).GT.ZERO ) THEN
                     TNRM = DLAPY2( DNRM2( N, VL( 1, J ), 1 ),
     $                      DNRM2( N, VL( 1, J+1 ), 1 ) )
                  END IF
                  RESULT( 4 ) = MAX( RESULT( 4 ),
     $                          MIN( ULPINV, ABS( TNRM-ONE ) / ULP ) )
                  IF( WI( J ).GT.ZERO ) THEN
                     VMX = ZERO
                     VRMX = ZERO
                     DO 130 JJ = 1, N
                        VTST = DLAPY2( VL( JJ, J ), VL( JJ, J+1 ) )
                        IF( VTST.GT.VMX )
     $                     VMX = VTST
                        IF( VL( JJ, J+1 ).EQ.ZERO .AND.
     $                      ABS( VL( JJ, J ) ).GT.VRMX )
     $                      VRMX = ABS( VL( JJ, J ) )
  130                CONTINUE
                     IF( VRMX / VMX.LT.ONE-TWO*ULP )
     $                  RESULT( 4 ) = ULPINV
                  END IF
  140          CONTINUE
*
*              Compute eigenvalues only, and test them
*
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
               CALL DGEEV( 'N', 'N', N, H, LDA, WR1, WI1, DUM, 1, DUM,
     $                     1, WORK, NNWORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  RESULT( 1 ) = ULPINV
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV2', IINFO, N, JTYPE,
     $               IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 220
               END IF
*
*              Do Test (5)
*
               DO 150 J = 1, N
                  IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
     $               RESULT( 5 ) = ULPINV
  150          CONTINUE
*
*              Compute eigenvalues and right eigenvectors, and test them
*
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
               CALL DGEEV( 'N', 'V', N, H, LDA, WR1, WI1, DUM, 1, LRE,
     $                     LDLRE, WORK, NNWORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  RESULT( 1 ) = ULPINV
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV3', IINFO, N, JTYPE,
     $               IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 220
               END IF
*
*              Do Test (5) again
*
               DO 160 J = 1, N
                  IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
     $               RESULT( 5 ) = ULPINV
  160          CONTINUE
*
*              Do Test (6)
*
               DO 180 J = 1, N
                  DO 170 JJ = 1, N
                     IF( VR( J, JJ ).NE.LRE( J, JJ ) )
     $                  RESULT( 6 ) = ULPINV
  170             CONTINUE
  180          CONTINUE
*
*              Compute eigenvalues and left eigenvectors, and test them
*
               CALL DLACPY( 'F', N, N, A, LDA, H, LDA )
               CALL DGEEV( 'V', 'N', N, H, LDA, WR1, WI1, LRE, LDLRE,
     $                     DUM, 1, WORK, NNWORK, IINFO )
               IF( IINFO.NE.0 ) THEN
                  RESULT( 1 ) = ULPINV
                  WRITE( NOUNIT, FMT = 9993 )'DGEEV4', IINFO, N, JTYPE,
     $               IOLDSD
                  INFO = ABS( IINFO )
                  GO TO 220
               END IF
*
*              Do Test (5) again
*
               DO 190 J = 1, N
                  IF( WR( J ).NE.WR1( J ) .OR. WI( J ).NE.WI1( J ) )
     $               RESULT( 5 ) = ULPINV
  190          CONTINUE
*
*              Do Test (7)
*
               DO 210 J = 1, N
                  DO 200 JJ = 1, N
                     IF( VL( J, JJ ).NE.LRE( J, JJ ) )
     $                  RESULT( 7 ) = ULPINV
  200             CONTINUE
  210          CONTINUE
*
*              End of Loop -- Check for RESULT(j) > THRESH
*
  220          CONTINUE
*
               NTEST = 0
               NFAIL = 0
               DO 230 J = 1, 7
                  IF( RESULT( J ).GE.ZERO )
     $               NTEST = NTEST + 1
                  IF( RESULT( J ).GE.THRESH )
     $               NFAIL = NFAIL + 1
  230          CONTINUE
*
               IF( NFAIL.GT.0 )
     $            NTESTF = NTESTF + 1
               IF( NTESTF.EQ.1 ) THEN
                  WRITE( NOUNIT, FMT = 9999 )PATH
                  WRITE( NOUNIT, FMT = 9998 )
                  WRITE( NOUNIT, FMT = 9997 )
                  WRITE( NOUNIT, FMT = 9996 )
                  WRITE( NOUNIT, FMT = 9995 )THRESH
                  NTESTF = 2
               END IF
*
               DO 240 J = 1, 7
                  IF( RESULT( J ).GE.THRESH ) THEN
                     WRITE( NOUNIT, FMT = 9994 )N, IWK, IOLDSD, JTYPE,
     $                  J, RESULT( J )
                  END IF
  240          CONTINUE
*
               NERRS = NERRS + NFAIL
               NTESTT = NTESTT + NTEST
*
  250       CONTINUE
  260    CONTINUE
  270 CONTINUE
*
*     Summary
*
      CALL DLASUM( PATH, NOUNIT, NERRS, NTESTT )
*
 9999 FORMAT( / 1X, A3, ' -- Real Eigenvalue-Eigenvector Decomposition',
     $      ' Driver', / ' Matrix types (see DDRVEV for details): ' )
*
 9998 FORMAT( / ' Special Matrices:', / '  1=Zero matrix.             ',
     $      '           ', '  5=Diagonal: geometr. spaced entries.',
     $      / '  2=Identity matrix.                    ', '  6=Diagona',
     $      'l: clustered entries.', / '  3=Transposed Jordan block.  ',
     $      '          ', '  7=Diagonal: large, evenly spaced.', / '  ',
     $      '4=Diagonal: evenly spaced entries.    ', '  8=Diagonal: s',
     $      'mall, evenly spaced.' )
 9997 FORMAT( ' Dense, Non-Symmetric Matrices:', / '  9=Well-cond., ev',
     $      'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
     $      'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
     $      ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
     $      'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
     $      'lex ', / ' 12=Well-cond., random complex ', 6X, '   ',
     $      ' 17=Ill-cond., large rand. complx ', / ' 13=Ill-condi',
     $      'tioned, evenly spaced.     ', ' 18=Ill-cond., small rand.',
     $      ' complx ' )
 9996 FORMAT( ' 19=Matrix with random O(1) entries.    ', ' 21=Matrix ',
     $      'with small random entries.', / ' 20=Matrix with large ran',
     $      'dom entries.   ', / )
 9995 FORMAT( ' Tests performed with test threshold =', F8.2,
     $      / / ' 1 = | A VR - VR W | / ( n |A| ulp ) ',
     $      / ' 2 = | transpose(A) VL - VL W | / ( n |A| ulp ) ',
     $      / ' 3 = | |VR(i)| - 1 | / ulp ',
     $      / ' 4 = | |VL(i)| - 1 | / ulp ',
     $      / ' 5 = 0 if W same no matter if VR or VL computed,',
     $      ' 1/ulp otherwise', /
     $      ' 6 = 0 if VR same no matter if VL computed,',
     $      '  1/ulp otherwise', /
     $      ' 7 = 0 if VL same no matter if VR computed,',
     $      '  1/ulp otherwise', / )
 9994 FORMAT( ' N=', I5, ', IWK=', I2, ', seed=', 4( I4, ',' ),
     $      ' type ', I2, ', test(', I2, ')=', G10.3 )
 9993 FORMAT( ' DDRVEV: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
      RETURN
*
*     End of DDRVEV
*
      END