aboutsummaryrefslogtreecommitdiff
path: root/TESTING/EIG/dsyt22.f
blob: 479b3ba5e56f0eaecfa07045429ee1c0a938e846 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
*> \brief \b DSYT22
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DSYT22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
*                          V, LDV, TAU, WORK, RESULT )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
*      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>      DSYT22  generally checks a decomposition of the form
*>
*>              A U = U S
*>
*>      where A is symmetric, the columns of U are orthonormal, and S
*>      is diagonal (if KBAND=0) or symmetric tridiagonal (if
*>      KBAND=1).  If ITYPE=1, then U is represented as a dense matrix,
*>      otherwise the U is expressed as a product of Householder
*>      transformations, whose vectors are stored in the array "V" and
*>      whose scaling constants are in "TAU"; we shall use the letter
*>      "V" to refer to the product of Householder transformations
*>      (which should be equal to U).
*>
*>      Specifically, if ITYPE=1, then:
*>
*>              RESULT(1) = | U' A U - S | / ( |A| m ulp ) *andC>              RESULT(2) = | I - U'U | / ( m ulp )
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \verbatim
*>  ITYPE   INTEGER
*>          Specifies the type of tests to be performed.
*>          1: U expressed as a dense orthogonal matrix:
*>             RESULT(1) = | A - U S U' | / ( |A| n ulp )   *andC>             RESULT(2) = | I - UU' | / ( n ulp )
*>
*>  UPLO    CHARACTER
*>          If UPLO='U', the upper triangle of A will be used and the
*>          (strictly) lower triangle will not be referenced.  If
*>          UPLO='L', the lower triangle of A will be used and the
*>          (strictly) upper triangle will not be referenced.
*>          Not modified.
*>
*>  N       INTEGER
*>          The size of the matrix.  If it is zero, DSYT22 does nothing.
*>          It must be at least zero.
*>          Not modified.
*>
*>  M       INTEGER
*>          The number of columns of U.  If it is zero, DSYT22 does
*>          nothing.  It must be at least zero.
*>          Not modified.
*>
*>  KBAND   INTEGER
*>          The bandwidth of the matrix.  It may only be zero or one.
*>          If zero, then S is diagonal, and E is not referenced.  If
*>          one, then S is symmetric tri-diagonal.
*>          Not modified.
*>
*>  A       DOUBLE PRECISION array, dimension (LDA , N)
*>          The original (unfactored) matrix.  It is assumed to be
*>          symmetric, and only the upper (UPLO='U') or only the lower
*>          (UPLO='L') will be referenced.
*>          Not modified.
*>
*>  LDA     INTEGER
*>          The leading dimension of A.  It must be at least 1
*>          and at least N.
*>          Not modified.
*>
*>  D       DOUBLE PRECISION array, dimension (N)
*>          The diagonal of the (symmetric tri-) diagonal matrix.
*>          Not modified.
*>
*>  E       DOUBLE PRECISION array, dimension (N)
*>          The off-diagonal of the (symmetric tri-) diagonal matrix.
*>          E(1) is ignored, E(2) is the (1,2) and (2,1) element, etc.
*>          Not referenced if KBAND=0.
*>          Not modified.
*>
*>  U       DOUBLE PRECISION array, dimension (LDU, N)
*>          If ITYPE=1 or 3, this contains the orthogonal matrix in
*>          the decomposition, expressed as a dense matrix.  If ITYPE=2,
*>          then it is not referenced.
*>          Not modified.
*>
*>  LDU     INTEGER
*>          The leading dimension of U.  LDU must be at least N and
*>          at least 1.
*>          Not modified.
*>
*>  V       DOUBLE PRECISION array, dimension (LDV, N)
*>          If ITYPE=2 or 3, the lower triangle of this array contains
*>          the Householder vectors used to describe the orthogonal
*>          matrix in the decomposition.  If ITYPE=1, then it is not
*>          referenced.
*>          Not modified.
*>
*>  LDV     INTEGER
*>          The leading dimension of V.  LDV must be at least N and
*>          at least 1.
*>          Not modified.
*>
*>  TAU     DOUBLE PRECISION array, dimension (N)
*>          If ITYPE >= 2, then TAU(j) is the scalar factor of
*>          v(j) v(j)' in the Householder transformation H(j) of
*>          the product  U = H(1)...H(n-2)
*>          If ITYPE < 2, then TAU is not referenced.
*>          Not modified.
*>
*>  WORK    DOUBLE PRECISION array, dimension (2*N**2)
*>          Workspace.
*>          Modified.
*>
*>  RESULT  DOUBLE PRECISION array, dimension (2)
*>          The values computed by the two tests described above.  The
*>          values are currently limited to 1/ulp, to avoid overflow.
*>          RESULT(1) is always modified.  RESULT(2) is modified only
*>          if LDU is at least N.
*>          Modified.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DSYT22( ITYPE, UPLO, N, M, KBAND, A, LDA, D, E, U, LDU,
     $                   V, LDV, TAU, WORK, RESULT )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            ITYPE, KBAND, LDA, LDU, LDV, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
     $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J, JJ, JJ1, JJ2, NN, NNP1
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           DLAMCH, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DORT01, DSYMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 .OR. M.LE.0 )
     $   RETURN
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Precision' )
*
*     Do Test 1
*
*     Norm of A:
*
      ANORM = MAX( DLANSY( '1', UPLO, N, A, LDA, WORK ), UNFL )
*
*     Compute error matrix:
*
*     ITYPE=1: error = U' A U - S
*
      CALL DSYMM( 'L', UPLO, N, M, ONE, A, LDA, U, LDU, ZERO, WORK, N )
      NN = N*N
      NNP1 = NN + 1
      CALL DGEMM( 'T', 'N', M, M, N, ONE, U, LDU, WORK, N, ZERO,
     $            WORK( NNP1 ), N )
      DO 10 J = 1, M
         JJ = NN + ( J-1 )*N + J
         WORK( JJ ) = WORK( JJ ) - D( J )
   10 CONTINUE
      IF( KBAND.EQ.1 .AND. N.GT.1 ) THEN
         DO 20 J = 2, M
            JJ1 = NN + ( J-1 )*N + J - 1
            JJ2 = NN + ( J-2 )*N + J
            WORK( JJ1 ) = WORK( JJ1 ) - E( J-1 )
            WORK( JJ2 ) = WORK( JJ2 ) - E( J-1 )
   20    CONTINUE
      END IF
      WNORM = DLANSY( '1', UPLO, M, WORK( NNP1 ), N, WORK( 1 ) )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  U'U - I
*
      IF( ITYPE.EQ.1 )
     $   CALL DORT01( 'Columns', N, M, U, LDU, WORK, 2*N*N,
     $                RESULT( 2 ) )
*
      RETURN
*
*     End of DSYT22
*
      END