aboutsummaryrefslogtreecommitdiff
path: root/TESTING/LIN/clatsp.f
blob: ae55b7081f624c1f25b9a6ecf5d096609c5045ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
*> \brief \b CLATSP
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLATSP( UPLO, N, X, ISEED )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( * )
*       COMPLEX            X( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLATSP generates a special test matrix for the complex symmetric
*> (indefinite) factorization for packed matrices.  The pivot blocks of
*> the generated matrix will be in the following order:
*>    2x2 pivot block, non diagonalizable
*>    1x1 pivot block
*>    2x2 pivot block, diagonalizable
*>    (cycle repeats)
*> A row interchange is required for each non-diagonalizable 2x2 block.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER
*>          Specifies whether the generated matrix is to be upper or
*>          lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The dimension of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*>          X is COMPLEX array, dimension (N*(N+1)/2)
*>          The generated matrix in packed storage format.  The matrix
*>          consists of 3x3 and 2x2 diagonal blocks which result in the
*>          pivot sequence given above.  The matrix outside these
*>          diagonal blocks is zero.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          On entry, the seed for the random number generator.  The last
*>          of the four integers must be odd.  (modified on exit)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CLATSP( UPLO, N, X, ISEED )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( * )
      COMPLEX            X( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            EYE
      PARAMETER          ( EYE = ( 0.0, 1.0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            J, JJ, N5
      REAL               ALPHA, ALPHA3, BETA
      COMPLEX            A, B, C, R
*     ..
*     .. External Functions ..
      COMPLEX            CLARND
      EXTERNAL           CLARND
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Initialize constants
*
      ALPHA = ( 1.+SQRT( 17. ) ) / 8.
      BETA = ALPHA - 1. / 1000.
      ALPHA3 = ALPHA*ALPHA*ALPHA
*
*     Fill the matrix with zeros.
*
      DO 10 J = 1, N*( N+1 ) / 2
         X( J ) = 0.0
   10 CONTINUE
*
*     UPLO = 'U':  Upper triangular storage
*
      IF( UPLO.EQ.'U' ) THEN
         N5 = N / 5
         N5 = N - 5*N5 + 1
*
         JJ = N*( N+1 ) / 2
         DO 20 J = N, N5, -5
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( JJ ) = A
            X( JJ-2 ) = B
            JJ = JJ - J
            X( JJ ) = CLARND( 2, ISEED )
            X( JJ-1 ) = R
            JJ = JJ - ( J-1 )
            X( JJ ) = C
            JJ = JJ - ( J-2 )
            X( JJ ) = CLARND( 2, ISEED )
            JJ = JJ - ( J-3 )
            X( JJ ) = CLARND( 2, ISEED )
            IF( ABS( X( JJ+( J-3 ) ) ).GT.ABS( X( JJ ) ) ) THEN
               X( JJ+( J-4 ) ) = 2.0*X( JJ+( J-3 ) )
            ELSE
               X( JJ+( J-4 ) ) = 2.0*X( JJ )
            END IF
            JJ = JJ - ( J-4 )
   20    CONTINUE
*
*        Clean-up for N not a multiple of 5.
*
         J = N5 - 1
         IF( J.GT.2 ) THEN
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( JJ ) = A
            X( JJ-2 ) = B
            JJ = JJ - J
            X( JJ ) = CLARND( 2, ISEED )
            X( JJ-1 ) = R
            JJ = JJ - ( J-1 )
            X( JJ ) = C
            JJ = JJ - ( J-2 )
            J = J - 3
         END IF
         IF( J.GT.1 ) THEN
            X( JJ ) = CLARND( 2, ISEED )
            X( JJ-J ) = CLARND( 2, ISEED )
            IF( ABS( X( JJ ) ).GT.ABS( X( JJ-J ) ) ) THEN
               X( JJ-1 ) = 2.0*X( JJ )
            ELSE
               X( JJ-1 ) = 2.0*X( JJ-J )
            END IF
            JJ = JJ - J - ( J-1 )
            J = J - 2
         ELSE IF( J.EQ.1 ) THEN
            X( JJ ) = CLARND( 2, ISEED )
            J = J - 1
         END IF
*
*     UPLO = 'L':  Lower triangular storage
*
      ELSE
         N5 = N / 5
         N5 = N5*5
*
         JJ = 1
         DO 30 J = 1, N5, 5
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( JJ ) = A
            X( JJ+2 ) = B
            JJ = JJ + ( N-J+1 )
            X( JJ ) = CLARND( 2, ISEED )
            X( JJ+1 ) = R
            JJ = JJ + ( N-J )
            X( JJ ) = C
            JJ = JJ + ( N-J-1 )
            X( JJ ) = CLARND( 2, ISEED )
            JJ = JJ + ( N-J-2 )
            X( JJ ) = CLARND( 2, ISEED )
            IF( ABS( X( JJ-( N-J-2 ) ) ).GT.ABS( X( JJ ) ) ) THEN
               X( JJ-( N-J-2 )+1 ) = 2.0*X( JJ-( N-J-2 ) )
            ELSE
               X( JJ-( N-J-2 )+1 ) = 2.0*X( JJ )
            END IF
            JJ = JJ + ( N-J-3 )
   30    CONTINUE
*
*        Clean-up for N not a multiple of 5.
*
         J = N5 + 1
         IF( J.LT.N-1 ) THEN
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( JJ ) = A
            X( JJ+2 ) = B
            JJ = JJ + ( N-J+1 )
            X( JJ ) = CLARND( 2, ISEED )
            X( JJ+1 ) = R
            JJ = JJ + ( N-J )
            X( JJ ) = C
            JJ = JJ + ( N-J-1 )
            J = J + 3
         END IF
         IF( J.LT.N ) THEN
            X( JJ ) = CLARND( 2, ISEED )
            X( JJ+( N-J+1 ) ) = CLARND( 2, ISEED )
            IF( ABS( X( JJ ) ).GT.ABS( X( JJ+( N-J+1 ) ) ) ) THEN
               X( JJ+1 ) = 2.0*X( JJ )
            ELSE
               X( JJ+1 ) = 2.0*X( JJ+( N-J+1 ) )
            END IF
            JJ = JJ + ( N-J+1 ) + ( N-J )
            J = J + 2
         ELSE IF( J.EQ.N ) THEN
            X( JJ ) = CLARND( 2, ISEED )
            JJ = JJ + ( N-J+1 )
            J = J + 1
         END IF
      END IF
*
      RETURN
*
*     End of CLATSP
*
      END