aboutsummaryrefslogtreecommitdiff
path: root/TESTING/LIN/clattp.f
blob: 14da642c75091969596c4cbd4e03ff417af4442a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
*> \brief \b CLATTP
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, AP, B, WORK,
*                          RWORK, INFO )
* 
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            IMAT, INFO, N
*       ..
*       .. Array Arguments ..
*       INTEGER            ISEED( 4 )
*       REAL               RWORK( * )
*       COMPLEX            AP( * ), B( * ), WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLATTP generates a triangular test matrix in packed storage.
*> IMAT and UPLO uniquely specify the properties of the test matrix,
*> which is returned in the array AP.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] IMAT
*> \verbatim
*>          IMAT is INTEGER
*>          An integer key describing which matrix to generate for this
*>          path.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A will be upper or lower
*>          triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies whether the matrix or its transpose will be used.
*>          = 'N':  No transpose
*>          = 'T':  Transpose
*>          = 'C':  Conjugate transpose
*> \endverbatim
*>
*> \param[out] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*>          ISEED is INTEGER array, dimension (4)
*>          The seed vector for the random number generator (used in
*>          CLATMS).  Modified on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] AP
*> \verbatim
*>          AP is COMPLEX array, dimension (N*(N+1)/2)
*>          The upper or lower triangular matrix A, packed columnwise in
*>          a linear array.  The j-th column of A is stored in the array
*>          AP as follows:
*>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L',
*>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*>          B is COMPLEX array, dimension (N)
*>          The right hand side vector, if IMAT > 10.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, AP, B, WORK,
     $                   RWORK, INFO )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            IMAT, INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      REAL               RWORK( * )
      COMPLEX            AP( * ), B( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, TWO, ZERO
      PARAMETER          ( ONE = 1.0E+0, TWO = 2.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      CHARACTER          DIST, PACKIT, TYPE
      CHARACTER*3        PATH
      INTEGER            I, IY, J, JC, JCNEXT, JCOUNT, JJ, JL, JR, JX,
     $                   KL, KU, MODE
      REAL               ANORM, BIGNUM, BNORM, BSCAL, C, CNDNUM, REXP,
     $                   SFAC, SMLNUM, T, TEXP, TLEFT, TSCAL, ULP, UNFL,
     $                   X, Y, Z
      COMPLEX            CTEMP, PLUS1, PLUS2, RA, RB, S, STAR1
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICAMAX
      REAL               SLAMCH
      COMPLEX            CLARND
      EXTERNAL           LSAME, ICAMAX, SLAMCH, CLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLARNV, CLATB4, CLATMS, CROT, CROTG, CSSCAL,
     $                   SLABAD, SLARNV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, CONJG, MAX, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
      PATH( 1: 1 ) = 'Complex precision'
      PATH( 2: 3 ) = 'TP'
      UNFL = SLAMCH( 'Safe minimum' )
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      SMLNUM = UNFL
      BIGNUM = ( ONE-ULP ) / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      IF( ( IMAT.GE.7 .AND. IMAT.LE.10 ) .OR. IMAT.EQ.18 ) THEN
         DIAG = 'U'
      ELSE
         DIAG = 'N'
      END IF
      INFO = 0
*
*     Quick return if N.LE.0.
*
      IF( N.LE.0 )
     $   RETURN
*
*     Call CLATB4 to set parameters for CLATMS.
*
      UPPER = LSAME( UPLO, 'U' )
      IF( UPPER ) THEN
         CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
     $                CNDNUM, DIST )
         PACKIT = 'C'
      ELSE
         CALL CLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
     $                CNDNUM, DIST )
         PACKIT = 'R'
      END IF
*
*     IMAT <= 6:  Non-unit triangular matrix
*
      IF( IMAT.LE.6 ) THEN
         CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, CNDNUM,
     $                ANORM, KL, KU, PACKIT, AP, N, WORK, INFO )
*
*     IMAT > 6:  Unit triangular matrix
*     The diagonal is deliberately set to something other than 1.
*
*     IMAT = 7:  Matrix is the identity
*
      ELSE IF( IMAT.EQ.7 ) THEN
         IF( UPPER ) THEN
            JC = 1
            DO 20 J = 1, N
               DO 10 I = 1, J - 1
                  AP( JC+I-1 ) = ZERO
   10          CONTINUE
               AP( JC+J-1 ) = J
               JC = JC + J
   20       CONTINUE
         ELSE
            JC = 1
            DO 40 J = 1, N
               AP( JC ) = J
               DO 30 I = J + 1, N
                  AP( JC+I-J ) = ZERO
   30          CONTINUE
               JC = JC + N - J + 1
   40       CONTINUE
         END IF
*
*     IMAT > 7:  Non-trivial unit triangular matrix
*
*     Generate a unit triangular matrix T with condition CNDNUM by
*     forming a triangular matrix with known singular values and
*     filling in the zero entries with Givens rotations.
*
      ELSE IF( IMAT.LE.10 ) THEN
         IF( UPPER ) THEN
            JC = 0
            DO 60 J = 1, N
               DO 50 I = 1, J - 1
                  AP( JC+I ) = ZERO
   50          CONTINUE
               AP( JC+J ) = J
               JC = JC + J
   60       CONTINUE
         ELSE
            JC = 1
            DO 80 J = 1, N
               AP( JC ) = J
               DO 70 I = J + 1, N
                  AP( JC+I-J ) = ZERO
   70          CONTINUE
               JC = JC + N - J + 1
   80       CONTINUE
         END IF
*
*        Since the trace of a unit triangular matrix is 1, the product
*        of its singular values must be 1.  Let s = sqrt(CNDNUM),
*        x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2.
*        The following triangular matrix has singular values s, 1, 1,
*        ..., 1, 1/s:
*
*        1  y  y  y  ...  y  y  z
*           1  0  0  ...  0  0  y
*              1  0  ...  0  0  y
*                 .  ...  .  .  .
*                     .   .  .  .
*                         1  0  y
*                            1  y
*                               1
*
*        To fill in the zeros, we first multiply by a matrix with small
*        condition number of the form
*
*        1  0  0  0  0  ...
*           1  +  *  0  0  ...
*              1  +  0  0  0
*                 1  +  *  0  0
*                    1  +  0  0
*                       ...
*                          1  +  0
*                             1  0
*                                1
*
*        Each element marked with a '*' is formed by taking the product
*        of the adjacent elements marked with '+'.  The '*'s can be
*        chosen freely, and the '+'s are chosen so that the inverse of
*        T will have elements of the same magnitude as T.  If the *'s in
*        both T and inv(T) have small magnitude, T is well conditioned.
*        The two offdiagonals of T are stored in WORK.
*
*        The product of these two matrices has the form
*
*        1  y  y  y  y  y  .  y  y  z
*           1  +  *  0  0  .  0  0  y
*              1  +  0  0  .  0  0  y
*                 1  +  *  .  .  .  .
*                    1  +  .  .  .  .
*                       .  .  .  .  .
*                          .  .  .  .
*                             1  +  y
*                                1  y
*                                   1
*
*        Now we multiply by Givens rotations, using the fact that
*
*              [  c   s ] [  1   w ] [ -c  -s ] =  [  1  -w ]
*              [ -s   c ] [  0   1 ] [  s  -c ]    [  0   1 ]
*        and
*              [ -c  -s ] [  1   0 ] [  c   s ] =  [  1   0 ]
*              [  s  -c ] [  w   1 ] [ -s   c ]    [ -w   1 ]
*
*        where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4).
*
         STAR1 = 0.25*CLARND( 5, ISEED )
         SFAC = 0.5
         PLUS1 = SFAC*CLARND( 5, ISEED )
         DO 90 J = 1, N, 2
            PLUS2 = STAR1 / PLUS1
            WORK( J ) = PLUS1
            WORK( N+J ) = STAR1
            IF( J+1.LE.N ) THEN
               WORK( J+1 ) = PLUS2
               WORK( N+J+1 ) = ZERO
               PLUS1 = STAR1 / PLUS2
               REXP = CLARND( 2, ISEED )
               IF( REXP.LT.ZERO ) THEN
                  STAR1 = -SFAC**( ONE-REXP )*CLARND( 5, ISEED )
               ELSE
                  STAR1 = SFAC**( ONE+REXP )*CLARND( 5, ISEED )
               END IF
            END IF
   90    CONTINUE
*
         X = SQRT( CNDNUM ) - ONE / SQRT( CNDNUM )
         IF( N.GT.2 ) THEN
            Y = SQRT( TWO / REAL( N-2 ) )*X
         ELSE
            Y = ZERO
         END IF
         Z = X*X
*
         IF( UPPER ) THEN
*
*           Set the upper triangle of A with a unit triangular matrix
*           of known condition number.
*
            JC = 1
            DO 100 J = 2, N
               AP( JC+1 ) = Y
               IF( J.GT.2 )
     $            AP( JC+J-1 ) = WORK( J-2 )
               IF( J.GT.3 )
     $            AP( JC+J-2 ) = WORK( N+J-3 )
               JC = JC + J
  100       CONTINUE
            JC = JC - N
            AP( JC+1 ) = Z
            DO 110 J = 2, N - 1
               AP( JC+J ) = Y
  110       CONTINUE
         ELSE
*
*           Set the lower triangle of A with a unit triangular matrix
*           of known condition number.
*
            DO 120 I = 2, N - 1
               AP( I ) = Y
  120       CONTINUE
            AP( N ) = Z
            JC = N + 1
            DO 130 J = 2, N - 1
               AP( JC+1 ) = WORK( J-1 )
               IF( J.LT.N-1 )
     $            AP( JC+2 ) = WORK( N+J-1 )
               AP( JC+N-J ) = Y
               JC = JC + N - J + 1
  130       CONTINUE
         END IF
*
*        Fill in the zeros using Givens rotations
*
         IF( UPPER ) THEN
            JC = 1
            DO 150 J = 1, N - 1
               JCNEXT = JC + J
               RA = AP( JCNEXT+J-1 )
               RB = TWO
               CALL CROTG( RA, RB, C, S )
*
*              Multiply by [ c  s; -conjg(s)  c] on the left.
*
               IF( N.GT.J+1 ) THEN
                  JX = JCNEXT + J
                  DO 140 I = J + 2, N
                     CTEMP = C*AP( JX+J ) + S*AP( JX+J+1 )
                     AP( JX+J+1 ) = -CONJG( S )*AP( JX+J ) +
     $                              C*AP( JX+J+1 )
                     AP( JX+J ) = CTEMP
                     JX = JX + I
  140             CONTINUE
               END IF
*
*              Multiply by [-c -s;  conjg(s) -c] on the right.
*
               IF( J.GT.1 )
     $            CALL CROT( J-1, AP( JCNEXT ), 1, AP( JC ), 1, -C, -S )
*
*              Negate A(J,J+1).
*
               AP( JCNEXT+J-1 ) = -AP( JCNEXT+J-1 )
               JC = JCNEXT
  150       CONTINUE
         ELSE
            JC = 1
            DO 170 J = 1, N - 1
               JCNEXT = JC + N - J + 1
               RA = AP( JC+1 )
               RB = TWO
               CALL CROTG( RA, RB, C, S )
               S = CONJG( S )
*
*              Multiply by [ c -s;  conjg(s) c] on the right.
*
               IF( N.GT.J+1 )
     $            CALL CROT( N-J-1, AP( JCNEXT+1 ), 1, AP( JC+2 ), 1, C,
     $                       -S )
*
*              Multiply by [-c  s; -conjg(s) -c] on the left.
*
               IF( J.GT.1 ) THEN
                  JX = 1
                  DO 160 I = 1, J - 1
                     CTEMP = -C*AP( JX+J-I ) + S*AP( JX+J-I+1 )
                     AP( JX+J-I+1 ) = -CONJG( S )*AP( JX+J-I ) -
     $                                C*AP( JX+J-I+1 )
                     AP( JX+J-I ) = CTEMP
                     JX = JX + N - I + 1
  160             CONTINUE
               END IF
*
*              Negate A(J+1,J).
*
               AP( JC+1 ) = -AP( JC+1 )
               JC = JCNEXT
  170       CONTINUE
         END IF
*
*     IMAT > 10:  Pathological test cases.  These triangular matrices
*     are badly scaled or badly conditioned, so when used in solving a
*     triangular system they may cause overflow in the solution vector.
*
      ELSE IF( IMAT.EQ.11 ) THEN
*
*        Type 11:  Generate a triangular matrix with elements between
*        -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
*        Make the right hand side large so that it requires scaling.
*
         IF( UPPER ) THEN
            JC = 1
            DO 180 J = 1, N
               CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
               AP( JC+J-1 ) = CLARND( 5, ISEED )*TWO
               JC = JC + J
  180       CONTINUE
         ELSE
            JC = 1
            DO 190 J = 1, N
               IF( J.LT.N )
     $            CALL CLARNV( 4, ISEED, N-J, AP( JC+1 ) )
               AP( JC ) = CLARND( 5, ISEED )*TWO
               JC = JC + N - J + 1
  190       CONTINUE
         END IF
*
*        Set the right hand side so that the largest value is BIGNUM.
*
         CALL CLARNV( 2, ISEED, N, B )
         IY = ICAMAX( N, B, 1 )
         BNORM = ABS( B( IY ) )
         BSCAL = BIGNUM / MAX( ONE, BNORM )
         CALL CSSCAL( N, BSCAL, B, 1 )
*
      ELSE IF( IMAT.EQ.12 ) THEN
*
*        Type 12:  Make the first diagonal element in the solve small to
*        cause immediate overflow when dividing by T(j,j).
*        In type 12, the offdiagonal elements are small (CNORM(j) < 1).
*
         CALL CLARNV( 2, ISEED, N, B )
         TSCAL = ONE / MAX( ONE, REAL( N-1 ) )
         IF( UPPER ) THEN
            JC = 1
            DO 200 J = 1, N
               CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
               CALL CSSCAL( J-1, TSCAL, AP( JC ), 1 )
               AP( JC+J-1 ) = CLARND( 5, ISEED )
               JC = JC + J
  200       CONTINUE
            AP( N*( N+1 ) / 2 ) = SMLNUM*AP( N*( N+1 ) / 2 )
         ELSE
            JC = 1
            DO 210 J = 1, N
               CALL CLARNV( 2, ISEED, N-J, AP( JC+1 ) )
               CALL CSSCAL( N-J, TSCAL, AP( JC+1 ), 1 )
               AP( JC ) = CLARND( 5, ISEED )
               JC = JC + N - J + 1
  210       CONTINUE
            AP( 1 ) = SMLNUM*AP( 1 )
         END IF
*
      ELSE IF( IMAT.EQ.13 ) THEN
*
*        Type 13:  Make the first diagonal element in the solve small to
*        cause immediate overflow when dividing by T(j,j).
*        In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1).
*
         CALL CLARNV( 2, ISEED, N, B )
         IF( UPPER ) THEN
            JC = 1
            DO 220 J = 1, N
               CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
               AP( JC+J-1 ) = CLARND( 5, ISEED )
               JC = JC + J
  220       CONTINUE
            AP( N*( N+1 ) / 2 ) = SMLNUM*AP( N*( N+1 ) / 2 )
         ELSE
            JC = 1
            DO 230 J = 1, N
               CALL CLARNV( 4, ISEED, N-J, AP( JC+1 ) )
               AP( JC ) = CLARND( 5, ISEED )
               JC = JC + N - J + 1
  230       CONTINUE
            AP( 1 ) = SMLNUM*AP( 1 )
         END IF
*
      ELSE IF( IMAT.EQ.14 ) THEN
*
*        Type 14:  T is diagonal with small numbers on the diagonal to
*        make the growth factor underflow, but a small right hand side
*        chosen so that the solution does not overflow.
*
         IF( UPPER ) THEN
            JCOUNT = 1
            JC = ( N-1 )*N / 2 + 1
            DO 250 J = N, 1, -1
               DO 240 I = 1, J - 1
                  AP( JC+I-1 ) = ZERO
  240          CONTINUE
               IF( JCOUNT.LE.2 ) THEN
                  AP( JC+J-1 ) = SMLNUM*CLARND( 5, ISEED )
               ELSE
                  AP( JC+J-1 ) = CLARND( 5, ISEED )
               END IF
               JCOUNT = JCOUNT + 1
               IF( JCOUNT.GT.4 )
     $            JCOUNT = 1
               JC = JC - J + 1
  250       CONTINUE
         ELSE
            JCOUNT = 1
            JC = 1
            DO 270 J = 1, N
               DO 260 I = J + 1, N
                  AP( JC+I-J ) = ZERO
  260          CONTINUE
               IF( JCOUNT.LE.2 ) THEN
                  AP( JC ) = SMLNUM*CLARND( 5, ISEED )
               ELSE
                  AP( JC ) = CLARND( 5, ISEED )
               END IF
               JCOUNT = JCOUNT + 1
               IF( JCOUNT.GT.4 )
     $            JCOUNT = 1
               JC = JC + N - J + 1
  270       CONTINUE
         END IF
*
*        Set the right hand side alternately zero and small.
*
         IF( UPPER ) THEN
            B( 1 ) = ZERO
            DO 280 I = N, 2, -2
               B( I ) = ZERO
               B( I-1 ) = SMLNUM*CLARND( 5, ISEED )
  280       CONTINUE
         ELSE
            B( N ) = ZERO
            DO 290 I = 1, N - 1, 2
               B( I ) = ZERO
               B( I+1 ) = SMLNUM*CLARND( 5, ISEED )
  290       CONTINUE
         END IF
*
      ELSE IF( IMAT.EQ.15 ) THEN
*
*        Type 15:  Make the diagonal elements small to cause gradual
*        overflow when dividing by T(j,j).  To control the amount of
*        scaling needed, the matrix is bidiagonal.
*
         TEXP = ONE / MAX( ONE, REAL( N-1 ) )
         TSCAL = SMLNUM**TEXP
         CALL CLARNV( 4, ISEED, N, B )
         IF( UPPER ) THEN
            JC = 1
            DO 310 J = 1, N
               DO 300 I = 1, J - 2
                  AP( JC+I-1 ) = ZERO
  300          CONTINUE
               IF( J.GT.1 )
     $            AP( JC+J-2 ) = CMPLX( -ONE, -ONE )
               AP( JC+J-1 ) = TSCAL*CLARND( 5, ISEED )
               JC = JC + J
  310       CONTINUE
            B( N ) = CMPLX( ONE, ONE )
         ELSE
            JC = 1
            DO 330 J = 1, N
               DO 320 I = J + 2, N
                  AP( JC+I-J ) = ZERO
  320          CONTINUE
               IF( J.LT.N )
     $            AP( JC+1 ) = CMPLX( -ONE, -ONE )
               AP( JC ) = TSCAL*CLARND( 5, ISEED )
               JC = JC + N - J + 1
  330       CONTINUE
            B( 1 ) = CMPLX( ONE, ONE )
         END IF
*
      ELSE IF( IMAT.EQ.16 ) THEN
*
*        Type 16:  One zero diagonal element.
*
         IY = N / 2 + 1
         IF( UPPER ) THEN
            JC = 1
            DO 340 J = 1, N
               CALL CLARNV( 4, ISEED, J, AP( JC ) )
               IF( J.NE.IY ) THEN
                  AP( JC+J-1 ) = CLARND( 5, ISEED )*TWO
               ELSE
                  AP( JC+J-1 ) = ZERO
               END IF
               JC = JC + J
  340       CONTINUE
         ELSE
            JC = 1
            DO 350 J = 1, N
               CALL CLARNV( 4, ISEED, N-J+1, AP( JC ) )
               IF( J.NE.IY ) THEN
                  AP( JC ) = CLARND( 5, ISEED )*TWO
               ELSE
                  AP( JC ) = ZERO
               END IF
               JC = JC + N - J + 1
  350       CONTINUE
         END IF
         CALL CLARNV( 2, ISEED, N, B )
         CALL CSSCAL( N, TWO, B, 1 )
*
      ELSE IF( IMAT.EQ.17 ) THEN
*
*        Type 17:  Make the offdiagonal elements large to cause overflow
*        when adding a column of T.  In the non-transposed case, the
*        matrix is constructed to cause overflow when adding a column in
*        every other step.
*
         TSCAL = UNFL / ULP
         TSCAL = ( ONE-ULP ) / TSCAL
         DO 360 J = 1, N*( N+1 ) / 2
            AP( J ) = ZERO
  360    CONTINUE
         TEXP = ONE
         IF( UPPER ) THEN
            JC = ( N-1 )*N / 2 + 1
            DO 370 J = N, 2, -2
               AP( JC ) = -TSCAL / REAL( N+1 )
               AP( JC+J-1 ) = ONE
               B( J ) = TEXP*( ONE-ULP )
               JC = JC - J + 1
               AP( JC ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
               AP( JC+J-2 ) = ONE
               B( J-1 ) = TEXP*REAL( N*N+N-1 )
               TEXP = TEXP*TWO
               JC = JC - J + 2
  370       CONTINUE
            B( 1 ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
         ELSE
            JC = 1
            DO 380 J = 1, N - 1, 2
               AP( JC+N-J ) = -TSCAL / REAL( N+1 )
               AP( JC ) = ONE
               B( J ) = TEXP*( ONE-ULP )
               JC = JC + N - J + 1
               AP( JC+N-J-1 ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
               AP( JC ) = ONE
               B( J+1 ) = TEXP*REAL( N*N+N-1 )
               TEXP = TEXP*TWO
               JC = JC + N - J
  380       CONTINUE
            B( N ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
         END IF
*
      ELSE IF( IMAT.EQ.18 ) THEN
*
*        Type 18:  Generate a unit triangular matrix with elements
*        between -1 and 1, and make the right hand side large so that it
*        requires scaling.
*
         IF( UPPER ) THEN
            JC = 1
            DO 390 J = 1, N
               CALL CLARNV( 4, ISEED, J-1, AP( JC ) )
               AP( JC+J-1 ) = ZERO
               JC = JC + J
  390       CONTINUE
         ELSE
            JC = 1
            DO 400 J = 1, N
               IF( J.LT.N )
     $            CALL CLARNV( 4, ISEED, N-J, AP( JC+1 ) )
               AP( JC ) = ZERO
               JC = JC + N - J + 1
  400       CONTINUE
         END IF
*
*        Set the right hand side so that the largest value is BIGNUM.
*
         CALL CLARNV( 2, ISEED, N, B )
         IY = ICAMAX( N, B, 1 )
         BNORM = ABS( B( IY ) )
         BSCAL = BIGNUM / MAX( ONE, BNORM )
         CALL CSSCAL( N, BSCAL, B, 1 )
*
      ELSE IF( IMAT.EQ.19 ) THEN
*
*        Type 19:  Generate a triangular matrix with elements between
*        BIGNUM/(n-1) and BIGNUM so that at least one of the column
*        norms will exceed BIGNUM.
*        1/3/91:  CLATPS no longer can handle this case
*
         TLEFT = BIGNUM / MAX( ONE, REAL( N-1 ) )
         TSCAL = BIGNUM*( REAL( N-1 ) / MAX( ONE, REAL( N ) ) )
         IF( UPPER ) THEN
            JC = 1
            DO 420 J = 1, N
               CALL CLARNV( 5, ISEED, J, AP( JC ) )
               CALL SLARNV( 1, ISEED, J, RWORK )
               DO 410 I = 1, J
                  AP( JC+I-1 ) = AP( JC+I-1 )*( TLEFT+RWORK( I )*TSCAL )
  410          CONTINUE
               JC = JC + J
  420       CONTINUE
         ELSE
            JC = 1
            DO 440 J = 1, N
               CALL CLARNV( 5, ISEED, N-J+1, AP( JC ) )
               CALL SLARNV( 1, ISEED, N-J+1, RWORK )
               DO 430 I = J, N
                  AP( JC+I-J ) = AP( JC+I-J )*
     $                           ( TLEFT+RWORK( I-J+1 )*TSCAL )
  430          CONTINUE
               JC = JC + N - J + 1
  440       CONTINUE
         END IF
         CALL CLARNV( 2, ISEED, N, B )
         CALL CSSCAL( N, TWO, B, 1 )
      END IF
*
*     Flip the matrix across its counter-diagonal if the transpose will
*     be used.
*
      IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
         IF( UPPER ) THEN
            JJ = 1
            JR = N*( N+1 ) / 2
            DO 460 J = 1, N / 2
               JL = JJ
               DO 450 I = J, N - J
                  T = AP( JR-I+J )
                  AP( JR-I+J ) = AP( JL )
                  AP( JL ) = T
                  JL = JL + I
  450          CONTINUE
               JJ = JJ + J + 1
               JR = JR - ( N-J+1 )
  460       CONTINUE
         ELSE
            JL = 1
            JJ = N*( N+1 ) / 2
            DO 480 J = 1, N / 2
               JR = JJ
               DO 470 I = J, N - J
                  T = AP( JL+I-J )
                  AP( JL+I-J ) = AP( JR )
                  AP( JR ) = T
                  JR = JR - I
  470          CONTINUE
               JL = JL + N - J + 1
               JJ = JJ - J - 1
  480       CONTINUE
         END IF
      END IF
*
      RETURN
*
*     End of CLATTP
*
      END