aboutsummaryrefslogtreecommitdiff
path: root/TESTING/LIN/dsyt01_aa.f
blob: f008ecf2ec90710a7bd300f3870d74693123af65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
*> \brief \b DSYT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
*                             RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDA, LDAFAC, LDC, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
*      $                   RWORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DSYT01 reconstructs a symmetric indefinite matrix A from its
*> block L*D*L' or U*D*U' factorization and computes the residual
*>    norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix and EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          The original symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
*>          The factored form of the matrix A.  AFAC contains the block
*>          diagonal matrix D and the multipliers used to obtain the
*>          factor L or U from the block L*D*L' or U*D*U' factorization
*>          as computed by DSYTRF.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*>          LDAFAC is INTEGER
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices from DSYTRF.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C.  LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date December 2016
*
*  @precisions fortran d -> z c
*
*> \ingroup double_lin
*
*  =====================================================================
      SUBROUTINE DSYT01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
     $                         LDC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.7.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     December 2016
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAFAC, LDC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
     $                   RWORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      DOUBLE PRECISION   ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANSY
      EXTERNAL           LSAME, DLAMCH, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASET, DLAVSY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
*
*     Initialize C to the tridiagonal matrix T.
*
      CALL DLASET( 'Full', N, N, ZERO, ZERO, C, LDC )
      CALL DLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 )
      IF( N.GT.1 ) THEN
         IF( LSAME( UPLO, 'U' ) ) THEN
            CALL DLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ),
     $                   LDC+1 )
            CALL DLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ),
     $                   LDC+1 )
         ELSE
            CALL DLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ),
     $                   LDC+1 )
            CALL DLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ),
     $                   LDC+1 )
         ENDIF
*
*        Call DTRMM to form the product U' * D (or L * D ).
*
         IF( LSAME( UPLO, 'U' ) ) THEN
            CALL DTRMM( 'Left', UPLO, 'Transpose', 'Unit', N-1, N,
     $                  ONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ), LDC )
         ELSE
            CALL DTRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N,
     $                  ONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC )
         END IF
*
*        Call DTRMM again to multiply by U (or L ).
*
         IF( LSAME( UPLO, 'U' ) ) THEN
            CALL DTRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1,
     $                  ONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC )
         ELSE
            CALL DTRMM( 'Right', UPLO, 'Transpose', 'Unit', N, N-1,
     $                  ONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ), LDC )
         END IF
      ENDIF
*
*     Apply symmetric pivots
*
      DO J = N, 1, -1
         I = IPIV( J )
         IF( I.NE.J )
     $      CALL DSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC )
      END DO
      DO J = N, 1, -1
         I = IPIV( J )
         IF( I.NE.J )
     $      CALL DSWAP( N, C( 1, J ), 1, C( 1, I ), 1 )
      END DO
*
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO J = 1, N
            DO I = 1, J
               C( I, J ) = C( I, J ) - A( I, J )
            END DO
         END DO
      ELSE
         DO J = 1, N
            DO I = J, N
               C( I, J ) = C( I, J ) - A( I, J )
            END DO
         END DO
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = DLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of DSYT01
*
      END