aboutsummaryrefslogtreecommitdiff
path: root/TESTING/MATGEN/claror.f
blob: d1d04d26eaf626d5d3e6cc130579fdec91f37bbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
      SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
*
*  -- LAPACK auxiliary test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     June 2010
*
*     .. Scalar Arguments ..
      CHARACTER          INIT, SIDE
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      COMPLEX            A( LDA, * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*     CLAROR pre- or post-multiplies an M by N matrix A by a random
*     unitary matrix U, overwriting A. A may optionally be
*     initialized to the identity matrix before multiplying by U.
*     U is generated using the method of G.W. Stewart
*     ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ).
*     (BLAS-2 version)
*
*  Arguments
*  =========
*
*  SIDE     (input) CHARACTER*1
*           SIDE specifies whether A is multiplied on the left or right
*           by U.
*       SIDE = 'L'   Multiply A on the left (premultiply) by U
*       SIDE = 'R'   Multiply A on the right (postmultiply) by U*
*       SIDE = 'C'   Multiply A on the left by U and the right by U*
*       SIDE = 'T'   Multiply A on the left by U and the right by U'
*           Not modified.
*
*  INIT     (input) CHARACTER*1
*           INIT specifies whether or not A should be initialized to
*           the identity matrix.
*              INIT = 'I'   Initialize A to (a section of) the
*                           identity matrix before applying U.
*              INIT = 'N'   No initialization.  Apply U to the
*                           input matrix A.
*
*           INIT = 'I' may be used to generate square (i.e., unitary)
*           or rectangular orthogonal matrices (orthogonality being
*           in the sense of CDOTC):
*
*           For square matrices, M=N, and SIDE many be either 'L' or
*           'R'; the rows will be orthogonal to each other, as will the
*           columns.
*           For rectangular matrices where M < N, SIDE = 'R' will
*           produce a dense matrix whose rows will be orthogonal and
*           whose columns will not, while SIDE = 'L' will produce a
*           matrix whose rows will be orthogonal, and whose first M
*           columns will be orthogonal, the remaining columns being
*           zero.
*           For matrices where M > N, just use the previous
*           explaination, interchanging 'L' and 'R' and "rows" and
*           "columns".
*
*           Not modified.
*
*  M        (input) INTEGER
*           Number of rows of A. Not modified.
*
*  N        (input) INTEGER
*           Number of columns of A. Not modified.
*
*  A        (input/output) COMPLEX array, dimension ( LDA, N )
*           Input and output array. Overwritten by U A ( if SIDE = 'L' )
*           or by A U ( if SIDE = 'R' )
*           or by U A U* ( if SIDE = 'C')
*           or by U A U' ( if SIDE = 'T') on exit.
*
*  LDA       (input) INTEGER
*           Leading dimension of A. Must be at least MAX ( 1, M ).
*           Not modified.
*
*  ISEED    (input/output) INTEGER array, dimension ( 4 )
*           On entry ISEED specifies the seed of the random number
*           generator. The array elements should be between 0 and 4095;
*           if not they will be reduced mod 4096.  Also, ISEED(4) must
*           be odd.  The random number generator uses a linear
*           congruential sequence limited to small integers, and so
*           should produce machine independent random numbers. The
*           values of ISEED are changed on exit, and can be used in the
*           next call to CLAROR to continue the same random number
*           sequence.
*           Modified.
*
*  X        (workspace) COMPLEX array, dimension ( 3*MAX( M, N ) )
*           Workspace. Of length:
*               2*M + N if SIDE = 'L',
*               2*N + M if SIDE = 'R',
*               3*N     if SIDE = 'C' or 'T'.
*           Modified.
*
*  INFO     (output) INTEGER
*           An error flag.  It is set to:
*            0  if no error.
*            1  if CLARND returned a bad random number (installation
*               problem)
*           -1  if SIDE is not L, R, C, or T.
*           -3  if M is negative.
*           -4  if N is negative or if SIDE is C or T and N is not equal
*               to M.
*           -6  if LDA is less than M.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TOOSML
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0,
     $                   TOOSML = 1.0E-20 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
      REAL               FACTOR, XABS, XNORM
      COMPLEX            CSIGN, XNORMS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SCNRM2
      COMPLEX            CLARND
      EXTERNAL           LSAME, SCNRM2, CLARND
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CGERC, CLACGV, CLASET, CSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, CONJG
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
      ITYPE = 0
      IF( LSAME( SIDE, 'L' ) ) THEN
         ITYPE = 1
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
         ITYPE = 2
      ELSE IF( LSAME( SIDE, 'C' ) ) THEN
         ITYPE = 3
      ELSE IF( LSAME( SIDE, 'T' ) ) THEN
         ITYPE = 4
      END IF
*
*     Check for argument errors.
*
      IF( ITYPE.EQ.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
         INFO = -4
      ELSE IF( LDA.LT.M ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLAROR', -INFO )
         RETURN
      END IF
*
      IF( ITYPE.EQ.1 ) THEN
         NXFRM = M
      ELSE
         NXFRM = N
      END IF
*
*     Initialize A to the identity matrix if desired
*
      IF( LSAME( INIT, 'I' ) )
     $   CALL CLASET( 'Full', M, N, CZERO, CONE, A, LDA )
*
*     If no rotation possible, still multiply by
*     a random complex number from the circle |x| = 1
*
*      2)      Compute Rotation by computing Householder
*              Transformations H(2), H(3), ..., H(n).  Note that the
*              order in which they are computed is irrelevant.
*
      DO 40 J = 1, NXFRM
         X( J ) = CZERO
   40 CONTINUE
*
      DO 60 IXFRM = 2, NXFRM
         KBEG = NXFRM - IXFRM + 1
*
*        Generate independent normal( 0, 1 ) random numbers
*
         DO 50 J = KBEG, NXFRM
            X( J ) = CLARND( 3, ISEED )
   50    CONTINUE
*
*        Generate a Householder transformation from the random vector X
*
         XNORM = SCNRM2( IXFRM, X( KBEG ), 1 )
         XABS = ABS( X( KBEG ) )
         IF( XABS.NE.CZERO ) THEN
            CSIGN = X( KBEG ) / XABS
         ELSE
            CSIGN = CONE
         END IF
         XNORMS = CSIGN*XNORM
         X( NXFRM+KBEG ) = -CSIGN
         FACTOR = XNORM*( XNORM+XABS )
         IF( ABS( FACTOR ).LT.TOOSML ) THEN
            INFO = 1
            CALL XERBLA( 'CLAROR', -INFO )
            RETURN
         ELSE
            FACTOR = ONE / FACTOR
         END IF
         X( KBEG ) = X( KBEG ) + XNORMS
*
*        Apply Householder transformation to A
*
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
*
*           Apply H(k) on the left of A
*
            CALL CGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA,
     $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
            CALL CGERC( IXFRM, N, -CMPLX( FACTOR ), X( KBEG ), 1,
     $                  X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA )
*
         END IF
*
         IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN
*
*           Apply H(k)* (or H(k)') on the right of A
*
            IF( ITYPE.EQ.4 ) THEN
               CALL CLACGV( IXFRM, X( KBEG ), 1 )
            END IF
*
            CALL CGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA,
     $                  X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
            CALL CGERC( M, IXFRM, -CMPLX( FACTOR ), X( 2*NXFRM+1 ), 1,
     $                  X( KBEG ), 1, A( 1, KBEG ), LDA )
*
         END IF
   60 CONTINUE
*
      X( 1 ) = CLARND( 3, ISEED )
      XABS = ABS( X( 1 ) )
      IF( XABS.NE.ZERO ) THEN
         CSIGN = X( 1 ) / XABS
      ELSE
         CSIGN = CONE
      END IF
      X( 2*NXFRM ) = CSIGN
*
*     Scale the matrix A by D.
*
      IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
         DO 70 IROW = 1, M
            CALL CSCAL( N, CONJG( X( NXFRM+IROW ) ), A( IROW, 1 ), LDA )
   70    CONTINUE
      END IF
*
      IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
         DO 80 JCOL = 1, N
            CALL CSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
   80    CONTINUE
      END IF
*
      IF( ITYPE.EQ.4 ) THEN
         DO 90 JCOL = 1, N
            CALL CSCAL( M, CONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 )
   90    CONTINUE
      END IF
      RETURN
*
*     End of CLAROR
*
      END