aboutsummaryrefslogtreecommitdiff
path: root/TESTING/MATGEN/clatm6.f
blob: 5780b6077ab9a31f353ae8d49facf3fb3d5ec033 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
      SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
     $                   BETA, WX, WY, S, DIF )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     June 2010
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDX, LDY, N, TYPE
      COMPLEX            ALPHA, BETA, WX, WY
*     ..
*     .. Array Arguments ..
      REAL               DIF( * ), S( * )
      COMPLEX            A( LDA, * ), B( LDA, * ), X( LDX, * ),
     $                   Y( LDY, * )
*     ..
*
*  Purpose
*  =======
*
*  CLATM6 generates test matrices for the generalized eigenvalue
*  problem, their corresponding right and left eigenvector matrices,
*  and also reciprocal condition numbers for all eigenvalues and
*  the reciprocal condition numbers of eigenvectors corresponding to
*  the 1th and 5th eigenvalues.
*
*  Test Matrices
*  =============
*
*  Two kinds of test matrix pairs
*           (A, B) = inverse(YH) * (Da, Db) * inverse(X)
*  are used in the tests:
*
*  Type 1:
*     Da = 1+a   0    0    0    0    Db = 1   0   0   0   0
*           0   2+a   0    0    0         0   1   0   0   0
*           0    0   3+a   0    0         0   0   1   0   0
*           0    0    0   4+a   0         0   0   0   1   0
*           0    0    0    0   5+a ,      0   0   0   0   1
*  and Type 2:
*     Da = 1+i   0    0       0       0    Db = 1   0   0   0   0
*           0   1-i   0       0       0         0   1   0   0   0
*           0    0    1       0       0         0   0   1   0   0
*           0    0    0 (1+a)+(1+b)i  0         0   0   0   1   0
*           0    0    0       0 (1+a)-(1+b)i,   0   0   0   0   1 .
*
*  In both cases the same inverse(YH) and inverse(X) are used to compute
*  (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
*
*  YH:  =  1    0   -y    y   -y    X =  1   0  -x  -x   x
*          0    1   -y    y   -y         0   1   x  -x  -x
*          0    0    1    0    0         0   0   1   0   0
*          0    0    0    1    0         0   0   0   1   0
*          0    0    0    0    1,        0   0   0   0   1 , where
*
*  a, b, x and y will have all values independently of each other.
*
*  Arguments
*  =========
*
*  TYPE    (input) INTEGER
*          Specifies the problem type (see futher details).
*
*  N       (input) INTEGER
*          Size of the matrices A and B.
*
*  A       (output) COMPLEX array, dimension (LDA, N).
*          On exit A N-by-N is initialized according to TYPE.
*
*  LDA     (input) INTEGER
*          The leading dimension of A and of B.
*
*  B       (output) COMPLEX array, dimension (LDA, N).
*          On exit B N-by-N is initialized according to TYPE.
*
*  X       (output) COMPLEX array, dimension (LDX, N).
*          On exit X is the N-by-N matrix of right eigenvectors.
*
*  LDX     (input) INTEGER
*          The leading dimension of X.
*
*  Y       (output) COMPLEX array, dimension (LDY, N).
*          On exit Y is the N-by-N matrix of left eigenvectors.
*
*  LDY     (input) INTEGER
*          The leading dimension of Y.
*
*  ALPHA   (input) COMPLEX
*
*  BETA    (input) COMPLEX
*          Weighting constants for matrix A.
*
*  WX      (input) COMPLEX
*          Constant for right eigenvector matrix.
*
*  WY      (input) COMPLEX
*          Constant for left eigenvector matrix.
*
*  S       (output) REAL array, dimension (N)
*          S(i) is the reciprocal condition number for eigenvalue i.
*
*  DIF     (output) REAL array, dimension (N)
*          DIF(i) is the reciprocal condition number for eigenvector i.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               RONE, TWO, THREE
      PARAMETER          ( RONE = 1.0E+0, TWO = 2.0E+0, THREE = 3.0E+0 )
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
     $                   ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 50 )
      COMPLEX            WORK( 26 ), Z( 8, 8 )
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CABS, CMPLX, CONJG, REAL, SQRT
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGESVD, CLACPY, CLAKF2
*     ..
*     .. Executable Statements ..
*
*     Generate test problem ...
*     (Da, Db) ...
*
      DO 20 I = 1, N
         DO 10 J = 1, N
*
            IF( I.EQ.J ) THEN
               A( I, I ) = CMPLX( I ) + ALPHA
               B( I, I ) = ONE
            ELSE
               A( I, J ) = ZERO
               B( I, J ) = ZERO
            END IF
*
   10    CONTINUE
   20 CONTINUE
      IF( TYPE.EQ.2 ) THEN
         A( 1, 1 ) = CMPLX( RONE, RONE )
         A( 2, 2 ) = CONJG( A( 1, 1 ) )
         A( 3, 3 ) = ONE
         A( 4, 4 ) = CMPLX( REAL( ONE+ALPHA ), REAL( ONE+BETA ) )
         A( 5, 5 ) = CONJG( A( 4, 4 ) )
      END IF
*
*     Form X and Y
*
      CALL CLACPY( 'F', N, N, B, LDA, Y, LDY )
      Y( 3, 1 ) = -CONJG( WY )
      Y( 4, 1 ) = CONJG( WY )
      Y( 5, 1 ) = -CONJG( WY )
      Y( 3, 2 ) = -CONJG( WY )
      Y( 4, 2 ) = CONJG( WY )
      Y( 5, 2 ) = -CONJG( WY )
*
      CALL CLACPY( 'F', N, N, B, LDA, X, LDX )
      X( 1, 3 ) = -WX
      X( 1, 4 ) = -WX
      X( 1, 5 ) = WX
      X( 2, 3 ) = WX
      X( 2, 4 ) = -WX
      X( 2, 5 ) = -WX
*
*     Form (A, B)
*
      B( 1, 3 ) = WX + WY
      B( 2, 3 ) = -WX + WY
      B( 1, 4 ) = WX - WY
      B( 2, 4 ) = WX - WY
      B( 1, 5 ) = -WX + WY
      B( 2, 5 ) = WX + WY
      A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 )
      A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 )
      A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 )
      A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 )
      A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 )
      A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 )
*
*     Compute condition numbers
*
      S( 1 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
     $         ( RONE+CABS( A( 1, 1 ) )*CABS( A( 1, 1 ) ) ) )
      S( 2 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
     $         ( RONE+CABS( A( 2, 2 ) )*CABS( A( 2, 2 ) ) ) )
      S( 3 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
     $         ( RONE+CABS( A( 3, 3 ) )*CABS( A( 3, 3 ) ) ) )
      S( 4 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
     $         ( RONE+CABS( A( 4, 4 ) )*CABS( A( 4, 4 ) ) ) )
      S( 5 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
     $         ( RONE+CABS( A( 5, 5 ) )*CABS( A( 5, 5 ) ) ) )
*
      CALL CLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 8 )
      CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
     $             WORK( 3 ), 24, RWORK( 9 ), INFO )
      DIF( 1 ) = RWORK( 8 )
*
      CALL CLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 8 )
      CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
     $             WORK( 3 ), 24, RWORK( 9 ), INFO )
      DIF( 5 ) = RWORK( 8 )
*
      RETURN
*
*     End of CLATM6
*
      END